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Abstract. In this paper we show that there are no real hypersurfaces in a non-
flat complex space form with recurrent Ricci tensor.
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1. Introduction. Let MnðcÞ be an n-dimensional non-flat complex space form
with constant holomorphic sectional curvature 4c. It is known that a complete and
simply connected non-flat complex space form is either a complex projective space
(c > 0) or a complex hyperbolic space (c < 0).

It is well known that there are no real hypersurfaces M in MnðcÞ with parallel
Ricci tensor S, i.e., rS ¼ 0 (cf. [3]), where r denotes the Levi-Civita connection on
M. Therefore, it is interesting to study real hypersurfaces M in MnðcÞ under certain
conditions that are weaker than the Ricci-parallel condition. Many results have been
obtained along this direction (cf. [2], [4], [6], [7], [8], [10], [11]). In this paper, we
investigate the condition that the Ricci tensor is recurrent, i.e., there exists a 1-form
 in M such that

rXS ¼  ðX ÞS

for any vector field X tangent to M. We prove the following:

Theorem. There are no real hypersurfaces M in MnðcÞ, N � 3, with recurrent
Ricci tensor.

Remark. A similar result has been obtained by Hamda [2] for c > 0 under the
assumption the vector field � ¼ �JN is principal, where N is a unit normal vector
field on M.

2. Preliminaries. Let M be an orientable connected real hypersurface of MnðcÞ,
c 6¼ 0, and let N be a unit normal vector field on M. Denote by �rr the Levi-Civita
connection on MnðcÞ and r the connection induced on M. Then the Gauss and
Weingarten formulas are given respectively by

�rrXY ¼ rXYþ hAX;YiN

�rrXN ¼ �AX;
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for any vector fields X and Y tangent to M, where h; i denotes the Riemannian
metric of M induced from the Riemannian metric of MnðcÞ and A is the second
fundamental tensor of M in MnðcÞ. Now, we define a tensor field � of type (1,1), a
vector field � and a 1-form � by

JX ¼ �Xþ �ðX ÞN; JN ¼ ��:

Then it is seen that h�;X i ¼ �ðX Þ. Furthermore, the set of tensors ð�; �; �; h; iÞ is an
almost contact metric structure on M, i.e., they satisfy the following

�2X ¼ �Xþ �ðX Þ�; �� ¼ 0; �ð�X Þ ¼ 0; �ð�Þ ¼ 1: ð1Þ

Let R be the curvature tensor of M. Then the equation of Gauss is given by

RðX;Y ÞZ ¼ cfhY;ZiX� hX;ZiYþ h�Y;Zi�X� h�X;Zi�Y� 2h�X;Zi�Yg

þ hAY;ZiAX � hAX;ZiAY :

From (1) and the Gauss equation that

SX ¼ cfð2nþ 1ÞX� 3�ðX Þ�g þ hAX � A2X

where h ¼ traceA and S is the Ricci tensor of type (1,1) on M. The real hypersur-
faces M is said to be Ryan if the Ricci tensor S satisfies

ðRðX;Y ÞS ÞZ ¼ 0

for any vector field X, Y and Z tangent to M.
Finally we state some known results for later use.

Theorem A. [10]. There are no real hypersurfaces M in MnðcÞ, n � 3, satisfying
the Ryan condition.

Theorem B. [1, 5, 9]. There are no Einstein real hypersurfaces M in MnðcÞ, n � 3.

3. Proof of Theorem. Suppose that the Ricci tensor is recurrent. Then

ðrYSÞZ ¼  ðY ÞSZ ð2Þ

for any vector fields Y and Z tangent to M. Since M is non-Einsteinian (by Theorem
B), S admits at least one nonzero eigenvalue 	, for otherwise, we must have S ¼ 0,
which contradicts M being non-Einsteinian. Let Z be a unit eigenvector of S corre-
sponding to the eigenvalue 	 6¼ 0. By using the relationship (2), we get

Y	 ¼ hðrYS ÞZ;Zi þ hSrYZ;Zi þ hSZ;rYZi

¼  ðY ÞhSZ;Zi þ 	ðrYZ;Zi þ 	hZ;rYZi

¼ 	 ðY Þ:
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This means that

d	 ¼ 	 :

Therefore

0 ¼ d 2	 ¼ d	 ^  þ 	d ¼ 	 ^  þ 	d ¼ 	d :

Now we look at the open set W of all points x such that 	ðxÞ 6¼ 0. Then we have
d ¼ 0 or

ðrX ÞY ¼ ðrY ÞX ð3Þ

for any X and Y 2 TxM and x 2W.
Next, for any X, Y and Z 2 TxM and x 2W, by differentiating (2) covariantly

with respect to X, we obtain

ðrXrYSÞZ ¼ rXðrYSÞZ� ðrrXYSÞZ� ðrYSÞrXZ

¼ rXf ðY ÞSZg �  ðrXY ÞSZ�  ðY ÞSrXZ

¼ frX½ ðY Þ�gSZþ  ðY ÞrXSZ�  ðrXY ÞSZ�  ðY ÞSrXZ

¼ fðrX ÞYgSZþ  ðY ÞðrXSÞZ

¼ fðrX ÞYgSZþ  ðY Þ ðX ÞSZ:

By exchanging X and Y in this equation, we have

ðrYrXSÞZ ¼ fðrY ÞXgSZþ  ðX Þ ðY ÞSZ:

From these equations, together with the Ricci identity, we have

ðRðX;Y ÞSÞZ ¼ fðrY ÞX� ðrY ÞXgSZ:

Together with (3), we find that

ðRðX;Y ÞSÞZ ¼ 0

From Theorem A, this is impossible. Hence the open set W must be empty and so
	 ¼ 0. This is a contradiction and so we conclude that S cannot be recurrent.
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