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SHEAR STRESS AT THE BASE OF A RIGIDLY ROTATING
CIRQUE GLACIER

By J. WEERTMAN

(Department of Materials Science, Department of Geological Sciences and Materials Research
Center, Northwestern University, Evanston, Illinois 6ozo1, U.S.A)

AsstracT. The value of the basal shear stress is derived for two-dimensional and three-dimensional
cirque glaciers. It is assumed that a cirque glacier moves primarily by a rigid-body rotation over a bed of
cylindrical or spherical shape. In the region of maximum ice thickness the new value of the basal shear
stress is only about one half that derived from equations in common use in the literature. The new
expression for the basal shear stress of a cirque glacier is used to correct a data point in Paterson’s recent
compilation of measured sliding velocities and basal shear stresses of glaciers.

Resume. Cisaillement a la base d’un glacier de cirque subissant une rotation a la maniére d'un corps solide. La
valeur de Ieffort de cisaillement 4 la base est calculée pour des glaciers de cirques considérés comme ayant
2 dimensions et 3 dimensions. On admet qu'un glacier de cirque se meut en premiére approximation
comme un corps solide en rotation sur un lit de forme cylindrique ou sphérique. Dans la région d’¢paisseur
maximum de la glace la nouvelle valeur de 1'effort de cisaillement 4 la base est seulement d’environ la
moiti¢ de celui tiré des équations communément employées dans la littérature. La nouvelle expression
pour Peffort de cisaillement & la base d’un glacier de cirque est utilisée pour corriger une donnée dans une
récente compilation de Paterson de mesures de vitesses de glissement et defforts de cisaillement a la base
des glaciers.

ZUSAMMENFASSUNG.  Scherspannung am Grunde cines starr rotierenden Kargletschers. Der Scherspannungswert
am Grund wird fiir zwei- und dreidimensionale Kargletscher abgeleitet. Es wurde angenommen, dass
die Bewegung ecines Kargletschers primir der Rotation eines starren Kérpers iiber ein zylindrisches oder
sphirisches Bett entspricht. Im Gebiet der grassten Eismachtigkeit ist der neue Wert fiir die Scherspannung
am Grunde nur halb so gross wie der, den man mit in der Literatur gebriuchlichen Gleichungen erhiilt.
Der neue Ausdruck fiir die Grundscherspannung eines Kargletschers wird benutzt, um einen bestimmten
Wert in Paterson’s neuerer Berechnung von gemessenen Gleitgeschwindigkeiten und Grundscherspannungen
von Gletschern zu korrigieren,

1. InTrRODUCTION

Paterson (1970) has examined the published data on the measured sliding velocity of
glaciers. He concluded that the existing data (seven measured sliding velocities and stresses
listed in his table IT and retabulated again in our Table I) lend no support to our equation
(Weertman, 1957, 1964) for the sliding velocity of a glacier.

uy — BSprm (1)

Here wy, is the sliding velocity, B is a constant, § is a measure of the smoothness of the bed,
7 is the basal shear stress, p &~ 4, and m ~ 2.

Paterson was careful to point out that the data compiled in his table 11 (and our Table I)
do not disprove Equation (1). With one exception, the value of the smoothness § was not
measured. Paterson could only conclude that if it is assumed that the beds of all the glaciers
figuring in his compilation have the same value of S, the data do not support a relationship
of up being proportional to 7. An observed failure of the relationship would not be surprising.
For example, if § varies from glacier to glacier (or from one region of a glacier to another
region) over the relatively narrow range of a factor of g the sliding velocity predicted by
Equation (1) for a given stress varies over two orders of magnitude. Obviously it is difficult
to test Equation (1) without knowledge of S. (Moreover, theoretical predictions have been
made that an abundance of melt water at the base of a glacier can change the sliding velocity
markedly. Equation (1) takes no account of the effect of water flow at the bottom of a glacier.)

A plot of uy, versus 7, done with values from Paterson’s paper, is shown in Figure 1. (His
paper contained no such plot.) The basal shear stress = was estimated by the well-known
equation

T = pghsin (2)
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where p is the density of ice, g is the gravitational acceleration, h is the ice thickness, and « is
the slope of the upper ice surface. This equation is valid for a two-dimensional glacier in
which the longitudinal stress varies slowly as function of distance down the length of the
glacier.

Figure 1 impressed me with the fact that only two of the data points really disagree
strongly with the relationship in which up is proportional to 7 for a constant value of §.
The most striking “anomalous” data point of Figure 1 (identified by an arrow) was obtained
from Vesl-Skautbreen. This glacier is a small cirque glacier. Its measured sliding velocity,
2.3 m a~', is unusually small for the relatively large basal shear stress of 1.9 bar estimated
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Fig. 1. Plot of measured sliding velocily versus shear stress for data compiled by Paterson (1970) and listed again in Table I.
The arrow points lo the datum point from Vesl-Skautbreen.

from Equation (2). An obvious question to ask is: Does Equation (2), when applied to a
cirque glacier, seriously over-estimate the magnitude of the basal shear stress?

One correction to Equation (2) already exists in the literature. It is the “hydraulic
radius” correction for the transverse cross-section of a valley glacier (Nye, 1965). Equation
(2) is changed to

T = Fpgh sin « (8)
where Fis a correction factor. A typical value for F (Nye, 1965) is 0.7. (For a two-dimensional
glacier F = 1.)

Unfortunately, the use of Equation (3) to correct = does not make the Vesl-Skautbreen

data point any less unusual. All the stress values of the data points in Figure 2 are reduced
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by roughly the same amount (30%,) through the use of the correction factor F. If the Vesl-
Skautbreen point is to be “fixed-up”, a correction factor must be found which is significant
for cirque glaciers but unimportant for valley glaciers.

The length of a cirque glacier is comparable to its maximum thickness. This fact suggests
that a “longitudinal hydraulic radius™ correction to the basal shear stress might be made for
cirque glaciers. It is the purpose of this paper to derive this second correction factor.

2. BASAL SHEAR STRESS OF CIRQUE GLACGIERS

The only cirque glacier whose movement and deformation have been investigated ex-
tensively is Vesl-Skautbreen (McCall, 1952, 1960; the various papers in the book edited by
Lewis, 1960). The results obtained on this glacier show that relatively little differential
deformation occurs within the ice mass. The glacier moves essentially by a rigid-body
rotation over a bed of approximately spherical shape.

Fig. 2. Idealized cross-section of a cirque glacier.

Following McCall, let us idealize a cirque glacier to be as shown in Figure 2. Let a two-
dimensional cirque glacier rest on a bed of cylindrical shape and a three-dimensional cirque
glacier on a bed of spherical shape. The radius of curvature of the bed is taken to be R.
Let R’ be the distance from the center of the cylinder or sphere which describes the bed to
the center of gravity of the glacier. Let 6 be the angle between the vertical and the direction
of R'. For a two-dimensional glacier let 4 be the angle subtended by the glacier surface as
shown in Figure 2. For a three-dimensional glacier let Q be the solid angle subtended. The
total mass of a three-dimensional glacier or the mass per unit length of a two-dimensional
glacier is taken to be equal to M.

Assume that a cirque glacier moves primarily by a rigid body rotation about the center
of the cylinder or sphere which describes its bed. The glacier must slide with approximately
equal velocity at every point on its bed. The area of its bed is equal to R or R2Q). If 7 is
the average shear stress acting across the bed, the work done during sliding when the glacier
rotates through an angle 86, and thus slides by a distance R86, is 7R 430 or 7R3Q86. This
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change in energy must come from the decrease in gravitational energy. The change in
gravitational energy is simply gMR’ sin #30. Equating the two energies gives

7 = (gMsin 0)(R'[R)/(R ) (4)
for a two-dimensional glacier and
7 = (gMsin 0)(R'[R)/(R*Q) (5)

for a three-dimensional glacier.

When, as shown in Figure 2, the upper surface has a constant slope (the situation on
Vesl-Skautbreen), the last two equations can be developed further. Let 4 be the maximum
thickness of the glacier (see Figure 2). The two-dimensional glacier has a mass per unit
length equal to (pR?[2)(4—sin ). The thickness A — R[1—cos(4/2)] and 0 = «. The
ratio R'J/R = [(4/3) sin3(¢/2)]/(h—sin ). Equation (4) reduces to

r = [(pgh sin o) (R'[R) ($—sin $)]/[2 941 —cos(/2)}]. (6)
When i is less than 1, Equation (6) approximates
™ & (2/3)pgh sin «(R'[R). (7)
For Vesl-Skautbreen i — 75.3° and thus R'/R = 0.876. Equation (6) reduces to
7 = (0.63)(R'[R)pgh sin « = (0.55) pgh sin « (8)

when ¢ = 75.3°.

A three-dimensional cirque glacier whose upper surface is planar and which makes a
circular outline where the bed reaches the upper surface has a mass equal to (wph?(3) (3R —A).
The area of the bed in contact with ice is equal to 27Rh. Equation (5) reduces to

r — (1/2)pgh sin (R’ [R) (R¥|R) (9)
where R*R — 1—(hj3R) and R'JR — sind(4f2)/{4[(2/3—cos(/2) + (1/3) cos’(/2)]}.
The angle i in this last expression is the angular opening of the cone which subtends the
glacier surface and whose apex is at the center of the sphere whose surface is the bed. For
Vesl-Skautbreen & = 50 m, R — 240 m,and ¢ ~ 75.3°. Thus R*/R = 0.93and R'/R = 0.86.
Equation (g) reduces to

T = 0.40 pgh sin o (IO)
for these values of R*/R and R’/R. The stress given by Equation (10) is a factor 0.7 smaller
than that given by Equation (8). Thus the transverse hydraulic radius correction for a
three-dimensional cirque glacier is about the same as the correction found by Nye for an
ordinary valley glacier.

The reader should note that, according to Equations (8) and (10), the basal shear stress
under the thickest part of a cirque glacier has a value which is only about one-half that
estimated from the equations in use in the literature (that is, from Equations (2) and (3)).
(Under the thinner parts the stress is larger than the value usually estimated.)

3. APPLICATION

Table I contains the value (labeled: corrected value) of the basal shear stress for Vesl-
Skautbreen estimated through the use of Equation (8). (The value of / given for this glacier
in Table T actually is the maximum thickness of the glacier and can be used directly in
Equation (8).)

In Figure 3 we have made a new plot of the sliding velocity uy versus basal shear stress =
in which the corrected value of up and = given in Table I are used. In Figure 3 and Table 1
we have added a sliding velocity value published since the completion of Paterson’s paper.
This sliding velocity point is that of Shreve and Sharp (1970). (It is an extrapolated value,
as calculated by Paterson (private communication) in their Figure 6, from a depth of oo m

https://doi.org/10.3189/50022143000012971 Published online by Cambridge University Press


https://doi.org/10.3189/S0022143000012971

SHEAR STRESS BENEATH A CIRQUE GLACIER 35

TasLe 1. PATERSON’s (1970) COMPILATION OF PUBLISHED MEASUREMENTS OF SURFACE VELOCITY, SLIDING VELOCITY,
ICE THICKNESS, SURFACE SLOPE AND BASAL SHEAR STRESS WITH AN ADDED CORRECTION AND AN ADDITION

us  wp h @ T (5/So)t (5/S0)%

Glacier maTt ma?! m deg bar Reference

Vesl-Skautbreen 26 2.3 50 25 1.9 MeCall (1g952)

1.0 0.69  o0.71 (corrected value)
T'uyuksu 4.2 28 52 9 0.7 0.89 0.88 Vilesov (1961); Borovinskiy and

Makarevich (1959)

Blue 66 58 26 28 0.7 1.06 1.04 Kamb and LaChapelle (1964)
Athabasca 288 6.5 209 6.3 2.0 0.64  0.71 Savage and Paterson (1963)
Grosser Aletschgletscher g5 17.5 137 4.0 0.8 1.31 1.31 Gerrard and others (1952)
Athabasca 38.9 30 332 3.5 L.75 1.01 1.10 Savage and Paterson (1963)
Salmon 78 34 490 2.0 1.4 1.16  1.24 Mathews (1959)
Blue* 1 120 10 1.85 080 0.87 Shreve and Sharp (1970)

* Not listed in Paterson's table.
T For line of Figure 3 with slope = 2.03.
i For line in Figure 3 with slope = 1.57.

to the depth of the bed which is 120 m.) The value of 7 in Figure 3 is estimated either by
Equation (2) or by Equation (8). It would be desirable to have another plot in which = is
estimated by either Equation (3) or Equation (10). Not enough information exists to make
this transverse hydraulic radius correction for all the shear stresses listed in Table I. The
transverse hydraulic radius correction factor F presumably would reduce most of the shear
stresses listed in Table I by approximately 309,. Most of the data points given in Figure 3
thus would be shifted to the left by roughly the same amount.
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Fig. 3. Plot of measured sliding velocity versus shear stress for corrected dala given in Table I. The straight lines are least-
squares fits to the data points described in the text.
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The two straight lines drawn through the data points in Figure 3 were fitted by the least-
squares technique. In calculating these lines it was assumed that the data point from Athabasca
Glacier for & = 209 m is anomalous. Therefore this point was ignored in the calculation. The
line whose slope m is equal to 2.03 was calculated without the datum point of Shreve and
Sharp; the other line was calculated with this point. The equation describing the lines is

uy = to(7/7o)™ (r1)

where u, is always taken to equal 1 ma~*. Itis to be understood that 7 in Equation (11) is
calculated through use of either Equation (2) or (8). The constant 7, = 0.332 bar for the
line with slope m = 2.03 in Figure 3. The standard error (defined by equation (g9), p. 1295
of Rektorys, 1969) of the slope is equal to 1.18 for this line. For the line of slope m = 1.57
in Figure 3 the constant 7, — 0.256 bar and the error on m is equal t0 0.929. Student’s ¢ test
of significance (Rektorys, 1969, p. 1273) on the regression coefficient (which is equal to m)
gives ¢t = 1.72 for the line of the slope m = 2.03 and ¢ = 1.69 for the slope m = 1.57 when
these lines are compared to a slope m = o. Therefore, no significant relationship is found
between sliding velocity and shear stress by this statistical test. (If the Vesl-Skautbreen,
Shreve and Sharp’s and the Athabasca Glacier & = 209 m data points are ignored the least-
squares straight line fit gives for Equation (11) 4, = 1 ma™', 7, = 0.305 bar, and m = 2.13
with a standard error for m of 0.79 and ¢ = 2.69. A least-squares fit to all eight points of
Figure § gives u, = 1 ma~!, 7, = 0.140 bar, m = 1.05+0.84 and [ = 1.25; a least-squares
fit to all points in Figure 1 gives u, = 1 ma~', 7, = 1.76 X 1073 bar, m = 0.33f1.01, and
t = 0.33.)

The plot of the data shown in Figure 3 takes no account of the smoothness term S in
Equation (1). With one exception this term is not known for the data points. One can look
at the question of the value of § in the inverse sense. Suppose S, is the smoothness defined
such that when § = S, a data point will lie exactly on the least-squares straight line. Table I
lists the value of the ratio $/S,, calculated for p = 4, which is required to account for that
fact each data point of Figure 3 does not lie exactly on the least-squares straight line. It can
be seen that Equation (1) can account for the value of all the data points of Figure g if it is
assumed that the ratio S/S, varies from glacier to glacier in the narrow range of
0.64 < 8/S, < 1.31.

The reader, of course, will form his own judgement on just how much support the data
plotted in Figure g and listed in Table I give to Equation (1).
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