Generalized forms of the Series of Bessel and Legendre.*

By Rev. F. H. Jackson.

$\S 1$.

The object of this paper is to investigate certain series and differential equations, generalizations of the series of Bessel and Legendre.

Throughout the paper

$$
\begin{aligned}
& {[n] \text { denotes } \frac{p^{n}-1}{p-1}} \\
& \text { reducing, when } p=1, \text { to } n .
\end{aligned}
$$

The series discussed are the following :-
$y_{1}=\mathrm{A}\left\{x^{[n]}-\frac{[n][n-1]}{[2][2 n-1]} p^{3} x^{[n-2]}+\frac{[n][n-1][n-2][n-3]}{[2][4][2 n-1][2 n-3]} p^{8} x^{[n-4]}-\ldots\right\}(1)$
a. generalized form of $\mathrm{P}_{n}(x)$,
the relation between coefficients of x in successive terms being

$$
\begin{gather*}
\mathbf{A}_{r+1}=-\mathbf{A}_{r} p^{2 r+1} \frac{[n-2 r+1][n-2 r+2]}{[2 r][2 n-2 r+1]} ; \\
y_{2}=\mathbf{A}\left\{x^{[-n-1]}+\frac{[n+1][n+2]}{[2][2 n+3]} p^{3} x^{[-n-3]}\right. \\
 \tag{2}\\
\left.\quad+\frac{[n+1][n+2][n+3][n+4]}{[2][4][2 n+3][2 n+5]} p^{6} x^{[-n-5]}+\ldots\right\}
\end{gather*}
$$

a generalized form of $\mathrm{Q}_{n}(x)$,
the relation between successive coefficients being

$$
\mathbf{A}_{r+1}=\mathbf{A}_{r} \boldsymbol{p}^{i} \frac{[n+2 r-1][n+2 r]}{[2 r][2 n+2 r+1]}
$$

[^0]\[

$$
\begin{equation*}
y=\mathbf{A}\left\{x^{[n]}+\frac{x^{[n+2]}}{[2][2 n+2]}+\frac{x^{[n+1]}}{[2][4][2 n+2][2 n+4]}+\cdots\right\} \tag{3}
\end{equation*}
$$

\]

a generalized form of $J_{n}(x)$;
$y=\mathbf{A}\left\{1+\frac{x^{[1]}}{[1]\left[a_{1}\right]\left[a_{2}\right]\left[a_{3}\right] \cdot .\left[a_{n}\right]}+\frac{x^{[2]}}{[1][2]\left[a_{1}\right]\left[a_{1}+1\right] \ldots\left[a_{n}\right]\left[a_{n}+1\right]}+\ldots\right\}(4)$

$\$ 2$.

If

$$
\begin{aligned}
y & =x^{[n]} \\
\frac{d y}{d x} & =[n] x^{[1]-1} \\
& =[n] x^{\left(x^{(x u-1]}\right]} .
\end{aligned}
$$

Now differentiate, regarding x^{p} as the independent variable; denoting the result by $\frac{d^{2} y}{d x^{(2)}}$,

$$
\frac{d^{2} y}{d x^{(2)}}=\frac{d}{d\left(x^{\nu}\right)}\left\{\frac{d y}{d x}\right\}=[n][n-1] x^{\nu^{2}(n-2]} .
$$

Similarly,

$$
\frac{d^{3} y}{d x^{31}}=\frac{d}{d\left(x^{2}\right)}\left\{\frac{d^{2} y}{d x^{2}}\right\}=[n][n-1][n-2] x^{x^{2}(n-2)} ;
$$

and generally

$$
\frac{d^{r} y}{d x^{(r)}}=[n][n-1] \ldots[n-r+1] x^{n}(n-r),
$$

that is

$$
x^{1 r} \frac{d^{r} y}{d x^{(r)}}=[n][n-1] \ldots[n-r+1] x^{(n]} .
$$

$\$ 3$.
Denote

$$
\begin{gathered}
\mathrm{C}_{0} y+\mathrm{C}_{1} x \frac{d y}{d x}+\mathrm{C}_{2} x^{(2)} \frac{d^{3} y}{d x^{(2)}}+\ldots+\mathrm{C}_{2} x^{(x)} \frac{d^{d} y}{d x^{(t)}} \\
\text { by } \phi\left[\frac{d y}{d x}\right] .
\end{gathered}
$$

Then if

$$
y=A_{1} x^{\left[w_{1}\right]}+\mathbf{A}_{2} x^{\left[m_{2}\right]}+\ldots+\mathbf{A}_{x} x^{\left[m_{r}\right]}+\ldots
$$

and $\phi[m]$ denote

$$
\begin{gathered}
\mathrm{C}_{0}+\mathrm{C}_{1}[m]+\mathrm{C}_{2}[m][m-1]+\ldots+\mathrm{C}_{0}[m][m-1] \ldots[m-s+1], \\
\phi\left[\frac{d y}{d x}\right]=\mathrm{A}_{1} \phi\left[m_{1}\right] x^{\left[m_{1}\right]}+\mathrm{A}_{2} \phi\left[m_{2}\right] x^{\left[m_{2}\right]}+\ldots+\mathrm{A}_{r} \phi\left[m_{r}\right] x^{\left[x^{\left[m_{1}\right]}\right.}+\ldots .
\end{gathered}
$$

Now choose m_{1} so as to make $\phi\left[m_{1}\right]=0$.
Let a, b, c, etc., be roots of $\phi\left[m_{1}\right]=0$.
Also choose

$$
\begin{array}{cc}
\mathbf{A}_{\mathbf{2}} \phi\left[m_{2}\right]=\mathbf{A}_{1}, & m_{2}=m_{1}+l, \\
\mathbf{A}_{\mathbf{3}} \phi\left[m_{\mathbf{3}}\right]=\mathbf{A}_{2}, & m_{3}=m_{2}+l, \\
\text { etc. } & \text { etc }
\end{array}
$$

Then, giving m_{1} the value a,

$$
\begin{aligned}
& \phi\left[x \frac{d y}{d x}\right]=\mathrm{A}_{1} \mathrm{x}^{(a+1)}+\mathrm{A}_{2} x^{[a+2]}+\mathrm{A}_{3} \mathrm{x}^{[a+2 x]}+\ldots \\
& =A_{1}\left\{x^{[a+l]}+\frac{x^{[a+2]}}{\phi[a+l]}+\frac{x^{[a+x]}}{\phi[a+l] \phi[a+2 l]}+\ldots\right\}
\end{aligned}
$$

and

$$
y=\mathrm{A}\left\{x^{[a]} \quad+\frac{x^{[a+1]}}{\phi[a+l]}+\frac{x^{[a+2]}}{\phi[a+l] \phi[a+2 l]}+\ldots\right\} .
$$

Denoting this series by $\mathrm{F}(x)$, we have

$$
\begin{equation*}
\phi\left[x \frac{d \cdot \mathrm{~F}(x)}{d x}\right]=x^{[l]} \mathrm{F}\left(x^{x^{\alpha}}\right) . \tag{A}
\end{equation*}
$$

In the particular case when $p=1$ this equation becomes

$$
\phi\left[x \frac{d y}{d x}\right]=x^{\prime} y .
$$

The series

$$
y=1+\frac{x^{[1]}}{[1]\left[\alpha_{1}\right]\left[\alpha_{2}\right] \ldots\left[\alpha_{n}\right]}+\ldots \ldots
$$

comes under the preceding form.
If we denote

$$
\frac{\left(p^{a_{1}+m}-1\right)\left(p^{a_{2}+m}-1\right)\left(p^{a_{3}+n}-1\right) \ldots\left(p^{a_{n}+m}-1\right)}{(p-1)^{n}}
$$

by $\Pi[a+m]$,
then

$$
\Pi\left[a_{i} m\right]=\mathbf{A}_{0}+\mathbf{A}_{1}[m]+\mathbf{A}_{\because}[m][m-1]+\ldots+\mathbf{A}_{n}[m][m-1] . .[m-n+1]
$$

the coefficients A_{0}, A_{1}, A_{2}, etc., being independent of m and given by

$$
A_{0}=\Pi[a]
$$

$$
\mathbf{A}_{1}=\Pi[\alpha+1]-\Pi[\alpha]
$$

$$
\mathrm{A}_{2}=\frac{\Pi[a+2]-\frac{p^{2}-1}{p-1} \Pi[a+1]-p \Pi[a]}{\frac{p^{2}-1}{p-1} \cdot \frac{p-1}{p-1}}
$$

$$
\mathrm{A}_{r}=\frac{\Pi[a+r]}{[r]!}-\frac{\Pi[\alpha+r-1]}{[r-1]![1]!}+p^{\Pi[a+r-2]}[r-2]![2]!-\ldots+(-1)^{r} p^{1 r \cdot r-\frac{1}{} \frac{\Pi[a]}{[r]!},}
$$

in which $[r]!$ denotes $\frac{p^{r}-1 \cdot p^{r-1}-1 \cdot p^{r-2}-1 \ldots p^{2}-1 \cdot p-1}{(p-1)^{r}}$.
We write

Now take

$$
A_{r}=\sum_{s=0}^{x=r}(-1)^{s} p^{\frac{1}{s}, s-1} \frac{\operatorname{II}[a+r-s]}{[r-s]![s]!} \cdot *
$$

$$
\phi\left[x \frac{d y}{d x}\right] \equiv \sum_{r=0}^{r=n} \mathrm{~A}, x^{[r+1]} \frac{d^{r+1} y}{d x^{(r+1)}},
$$

$$
A_{r} \text { being } \sum_{s=0}^{s=r}(-1)^{s} p^{k s, s-1} \frac{\Pi[a+r-s]}{[r-s]![s]!} .
$$

Then if we operate with $\phi\left[x \frac{d y}{d x}\right]$ on a series of the form

$$
y=\mathrm{C}_{1} x^{\left[m_{1}\right]}+\mathrm{C}_{2} x^{\left[m_{2}\right]}+\ldots \ldots
$$

$\phi[m]$ will be $\mathbf{A}_{0}[m]+\mathbf{A}_{1}[m][m-1]+\ldots \ldots$ to $n+1$ terms

$$
\begin{aligned}
& \equiv[m]\left\{\mathbf{A}_{0}+\mathbf{A}_{1}[m-1]+\ldots \ldots+A_{n}[m-1][m-2] \ldots[m-n]\right\} \\
& \equiv[m] \Pi[u+m-1] .
\end{aligned}
$$

$\phi\left[m_{1}\right]$ vanishes for the following values of m_{1} :

$$
\begin{gathered}
1 \\
1-a_{1}, \\
1-a_{n}, \\
\vdots \\
1-a_{n} .
\end{gathered}
$$

[^1]By taking $m_{1}=0, l=1$, we have

$$
\begin{align*}
& \sum_{r=0}^{r=n} \mathrm{~A}, a^{r+1+1]} \frac{d^{d+1} y}{d x^{(r+1)}}=\mathbf{A x}\left\{1+\frac{x^{p[1]}}{[1]\left[a_{1}\right]\left[a_{2}\right] \ldots\left[a_{n}\right]}+\ldots \ldots\right\} \quad . \tag{B}\\
& \text { and } y=\mathrm{A}\left\{1+\frac{x^{[1]}}{[1]\left[a_{1}\right]\left[a_{2}\right] \ldots \ldots\left[a_{n}\right]}+\ldots \ldots\right\} \text {, }
\end{align*}
$$

and similar relations for the other values of m_{1}, viz., for

$$
\begin{aligned}
& 1-a_{1}, 1-\alpha_{n}, \text { etc. : } \\
& \sum_{r=0}^{r=n} \mathrm{~A}_{r} x^{[r+1]} \frac{d^{r+1} y}{d x^{(r+1)}} \\
& \left.=\mathrm{A} x^{\left[2-a_{1}\right.}\right\}\left\{1+\frac{x^{p^{2-a_{1}}[1]}}{[1] \cdot\left[2-a_{1}\right]\left[a_{2}-a_{1}+1\right]\left[a_{3}-a_{1}+1\right] \ldots\left[a_{n}-a_{1}+1\right]}\right. \\
& +\frac{x^{p^{2-a_{1}}[2]}}{[1][2]\left[2-a_{1}\right]\left[3-a_{1}\right] \cdot\left[a_{2}-a_{1}+1\right]\left[a_{2}-a_{1}+2\right] \ldots\left[a_{n}-a_{1}+2\right]} \\
& +\ldots . .\} \text {, } \\
& y=A x^{\left[1-a_{1}\right]}\left\{1+\frac{x^{p^{1-a_{1}}(1)}}{[1]\left[2-a_{1}\right]\left[a_{2}-a_{1}+1\right] \ldots\left[a_{n}-a_{1}+1\right]}+\ldots \ldots\right\},
\end{aligned}
$$

and $n-1$ similar equations for the values $1-a_{2}, 1-a_{3}$, etc.

§ 5.

Two interesting special cases of the equation (B) are obtained by substituting

$$
\begin{equation*}
a=a_{1}=a_{2}=a_{3}=a_{4}=\ldots=a_{n} ; \tag{1}
\end{equation*}
$$

(2) $a=a_{1}=a_{2}+1=\alpha_{3}+2=a_{4}+3=\ldots=a_{n}+n-1$.

The series $F(x)$ is in case (1)

$$
\begin{equation*}
\mathbf{A}\left\{1+\frac{x^{[1]}}{[1][a]^{n}}+\frac{x^{[2]}}{[1][2][a]^{n}[a+1]^{n}}+\ldots \ldots\right\} \tag{1}
\end{equation*}
$$

and in case (2)

$$
\begin{equation*}
A\left\{1+\frac{x^{[1]}}{[1][a]_{n}}+\frac{x^{[21}}{[1][2][a]_{n}[a+1]_{n}}+\ldots \ldots\right\} ; \tag{2}
\end{equation*}
$$

the differential equation being

$$
\begin{equation*}
\sum_{r=0}^{r=n} \mathrm{~A}_{r} x^{[r+1]} \frac{d^{r+1} y}{d x^{(r+1)}}=x \mathrm{~F}\left(x^{p}\right) \tag{0}
\end{equation*}
$$

in case (2)

$$
A_{r} \equiv \sum_{r=0}^{r}(-1)^{s t a n-\infty} \frac{[a+r-s]_{n}}{[r-s]![s]!}
$$

where $[a+r-s]_{n} \equiv[a+r-s][a+r-s-1][a+r-s-2] \ldots$.to n factors.
In case (2) A, simplifies, for the $r+1$ terms of the summation are

$$
\equiv p^{p^{(\alpha-n+n+r)}} \frac{p^{n}-1 \cdot p^{n-1}-1 \ldots p^{n-r+1}-1}{p-1 \cdot p^{2}-1 \ldots p^{n}-1}[a]_{n-r} .
$$

The differential equation for series (2) may be written
§ 6.
Consider the equation

$$
\begin{equation*}
p x^{(2)} \frac{d^{2} y}{\left.d x^{2}\right)}+\{1-[n]-[-n]\} x \frac{d y}{d x}+[n][-n] y=x^{[29} \mathrm{F}\left(x^{p^{2}}\right) . \tag{E}
\end{equation*}
$$

The form of the series $\mathrm{F}(x)$ is to be determined.
Assuming

$$
y=A_{1} x^{\left[m_{1}\right]}+A_{2} x^{\left[m_{2}\right]}+\ldots \ldots
$$

as a possible form of solution,

$$
\phi[m] \equiv[n][-n]+\{1-[n]-[-n]\}[m]+p[m][m-1] .
$$

Now

$$
p[m][m-1] \equiv[m]\{[m]-1\} ;
$$

$$
\therefore \phi[m] \equiv\{[m]-[n]\}\{[m]-[-n]\} .
$$

The values of m_{1} for which $\phi\left[m_{1}\right]$ vanishes are

$$
m_{1}=+n \text { and } m_{1}=-n .
$$

Also

$$
\mathbf{A}_{r+1} \phi\left[m_{r+1}\right]=\mathbf{A}_{r}, \text { and } m_{r+1}=m_{r}+2 .
$$

Therefore, for $m_{1}=+n$,

$$
\begin{gathered}
\mathbf{A}_{r+1}\left\{\left[m_{r+1}\right]-[n]\right\}\left\{\left[m_{r+1}\right]-[-n]\right\}=\mathbf{A}_{r}, \\
\mathbf{A}_{r+1}\{[n+2 r]-[n]\}\{[n+2 r]-[-n]\}=\mathbf{A}_{r} ; \\
\therefore \quad \mathbf{A}_{r+1}=\frac{\mathbf{A}_{r}}{[2 r][2 n+2 r]},
\end{gathered}
$$

that is

71

and

$$
\begin{aligned}
y=\mathrm{F}(x) & =\mathrm{A}\left\{x^{[n]}+\frac{x^{[n+2]}}{[2][2 n+2]}+\frac{x^{[n+4]}}{[2][4][2 n+2][2 n+4]}+\cdots\right\} \\
& =\mathrm{J}_{[n]}(x) .
\end{aligned}
$$

We may write the differential equation

$$
\begin{equation*}
p x^{[22]} \frac{d^{4} y}{d x^{(2)}}+\{1-[n]-[-n]\} x \frac{d y}{d x}+[n][-n] y=x^{[2]} \mathrm{J}_{[n]}\left(x^{p^{2}}\right) \tag{F}
\end{equation*}
$$

which reduces to Bessel's Equation when $p=1$.

$$
\S 7
$$

Consider the expression

$$
\begin{equation*}
\mathrm{C}_{0} y+\mathrm{C}_{1} x \frac{d y}{d x}+\mathrm{C}_{2} x^{[2]} \frac{d^{2} y}{d x^{(2)}}-\frac{d^{2} y}{d x^{(2)}} \tag{1}
\end{equation*}
$$

denoted by

$$
\phi\left[x \frac{d y}{d x}\right]-\frac{d^{2} y}{d x^{(2)}} .
$$

Then if

$$
y=\mathbf{A}_{1} x^{\left[m_{1}\right]}+\mathbf{A}_{2} x^{\left[m_{2}\right]}+\ldots+\mathbf{A}_{1} x^{\left[m_{r}\right]}+\ldots,
$$

performing the operations indicated by (1) we have the expression

$$
\begin{aligned}
& \mathbf{A}_{1} \phi\left[m_{1}\right] x^{\left[m_{1}\right]} \\
+ & -\mathbf{A}_{1} x^{p^{2}\left[m_{1}-2\right]}\left[m_{1}\right]\left[m_{1}-1\right] \\
+\mathbf{A}_{2} \phi\left[m_{2}\right] x^{\left[n_{2}\right]} & -\mathbf{A}_{2} x^{x^{2}\left\{m_{2}-2\right]}\left[m_{2}\right]\left[m_{2}-1\right] \\
+ & \mathbf{A}_{3} \phi\left[m_{3}\right] x^{\left[m_{3}\right]} \\
+ & -\mathbf{A}_{5} x^{p^{2}\left[m_{3}-2\right]}\left[m_{3}\right]\left[m_{3}-1\right] \\
+\quad \cdots \cdots & -\cdots \cdots \cdots
\end{aligned}
$$

$$
\begin{gathered}
m_{2}=m_{1}-2, \\
m_{3}=m_{2}-2, \\
\text { etc. },
\end{gathered}
$$

and

$$
\mathbf{A}_{r+1} \phi\left[m_{r+1}\right]=\mathbf{A}_{r}\left[m_{r}\right]\left[m_{r}-1\right] .
$$

Write

$$
\begin{aligned}
& \mathrm{C}_{0}=[n][-n-1], \\
& \mathrm{C}_{1}=1-[n]-[-n-1], \\
& \mathrm{C}_{2}=p .
\end{aligned}
$$

Then $\phi\left[m_{1}\right] \equiv[n][-n-1]+\{1-[n]-[-n-1]\}\left[m_{1}\right]+p\left[m_{1}\right]\left[m_{1}-1\right]$

$$
\equiv\left\{\left[m_{1}\right]-[n]\right\}\left\{\left[m_{2}\right]-[-n-1]\right\} .
$$

The values of m_{1} which make $\phi\left[m_{1}\right]$ vanish are

$$
m_{1}=n \text { and } m_{1}=-n-1
$$

Giving m_{1} the value n, we have

$$
m_{r+1}=n-2 r
$$

and the relation between successive coefficients in the series y is $A_{+1}\{[n-2 r]-[n]\}\{[n-2 r]-[-n-1]\}=[n-2 r+2][n-2 r+1] A_{r}$. which reduces to

$$
\begin{aligned}
& \quad \mathbf{A}_{r+1}=-p^{2 r+1} \frac{[n-2 r+2][n-2 r+1]}{[2 r][2 n-2 r+1]} A_{r} ; \\
& \therefore y \\
& \therefore A\left\{x^{[n]}-\frac{[n][n-1]}{[2][2 n-1]} p^{3} x^{[n-2]}+\frac{[n][n-1][n-2][n-3]}{[2][4][2 n-1][2 n-3]} p^{8} x^{[n-1]}-\ldots\right\} \\
& =
\end{aligned}
$$

which is a solution of

$$
\begin{align*}
& p x^{(n)} \frac{d^{2} y}{d x^{(2)}}-\frac{d^{2} y}{d x^{(2)}}+\{1-[n]-[-n-1]\} x \frac{d y}{d x}+[n][-n-1] y \\
& =\mathrm{P}_{[n-2]}^{\prime}(x)-\mathrm{P}_{[n-2]}^{\prime}\left(x^{p^{2}}\right), \tag{G}
\end{align*}
$$

$\mathbf{P}_{[n-2]}^{\prime}(x)$ denoting

$$
\mathrm{A}[n][n-1]\left\{x^{[n-2]}-p^{s} \frac{[n-2][n-3]}{[2][2 n-1]} x^{[n-4]}+\ldots \ldots\right\} .
$$

Similarly, giving m_{1} the value $-n-1$, we obtain a series in which the relation between successive coefficients is given by $\mathrm{A}_{\mathrm{r}+1}\{[-n-1-2 r]-[n]\}\{[-n-1-2 r]-[-n-1]\}$

$$
=[-n-1-2 r+2][-n-1-2 r+1] A_{r} ;
$$

from which

$$
\dot{A}_{r+1}=\frac{\mathbf{A}_{r} \cdot[n+2 r][n+2 r-1]}{[2 r][2 n+2 r+1]} p^{3}
$$

$\therefore y=\mathbf{A}\left\{x^{(-n-1]}+\frac{[n+1][n+2]}{[2][2 n+3]} p^{3} x^{[-n-3]}\right.$

$$
\left.+\frac{[n+1][n+2][n+3] \mid n+4]}{[2][4][2 n+3][2 n+5]} p^{6} x^{[-n-6)}+\ldots\right\}
$$

$$
=Q_{[m]}(x) .
$$

The equation is
$p x^{[2]} \frac{d^{2} y}{d x^{(2)}}-\frac{d^{3} y}{d x^{(2)}}+\{1-[-n-1]-[n]\} x \frac{d y}{d x}+[n][-n-1] y$
$\mathbf{Q}_{[n+3]}^{\prime}(x)$ denoting

$$
\begin{equation*}
=Q_{[n+3]}^{\prime}(x)-Q_{[n+3]}^{\prime}\left(x^{p^{2}}\right), \tag{H}
\end{equation*}
$$

$$
\mathbf{A}[n+1][n+2]\left\{x^{[-n-3]}+\frac{[n+3][n+4]}{[2][2 n+3]} p^{3} x^{[-n-3]}+\ldots \ldots\right\}
$$

The equations (G) and (H) reduce to Legendre's Equation when $p=1$.

[^0]: * A short paper containing some of the results in this paper was rend at the November meeting of the Society; the paper, in its present form, is dated January 1903.

[^1]: * Vol. XXVIII., Proceedings London Mathematical Society, p. 479.

