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Abstract. The number N of rational points on an algebraic curve of genus g overa ¢nite ¢eld Fq

satis¢es the Hasse^Weil bound NW q� 1� 2g
���
q
p

. A curve that attains this bound is called
maximal. With g0 � 1

2 �qÿ
���
q
p � and g1 � 1

4 �
���
q
p ÿ 1�2, it is known that maximalcurves have

g � g0 or gW g1. Maximal curves with g � g0 or g1 have been characterized up to isomorphism.
A natural genus to be studied is g2 � 1

8 �
���
q
p ÿ 1�� ���

q
p ÿ 3� ; and for this genus there are two

non-isomorphic maximal curves known when
���
q
p � 3 �mod 4�. Here, a maximal curve with

genus g2 and a non-singular plane model is characterized as a Fermat curve of degree 1
2 �

���
q
p � 1�.

Mathematics Subject Classi¢cations (2000): Primary 11Gxx, Secondary 14Gxx.
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1. Introduction

For a non-singular model of a projective, geometrically irreducible, algebraic curve
X de¢ned over a ¢nite ¢eld Fq with q elements, the number N of its Fq-rational
points satis¢es the Hasse^Weil bound, namely (see [We], [Sti, ½V.2])

jN ÿ �q� 1�jW 2g
���
q
p

:

If X is plane of degree d, then this bound implies that

jN ÿ �q� 1�jW �d ÿ 1��d ÿ 2� ���
q
p

: �1:1�

These bounds are important for applications in Coding theory (see, for example,
[Sti]) and in ¢nite geometry (see [H, Ch. 10]). In these subjects, one is often interested
in curves with many Fq-rational points and, in particular, maximal curves, that is,
curves where N reaches the upper Hasse^Weil bound.

The approach of Sto« hr and Voloch [SV] to the Hasse^Weil bound shows that an
upper bound for N can be obtained via Fq-linear series. This upper bound depends
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not only on q and g, as does the Hasse^Weil bound, but also on the dimension and the
degree of the linear series.

In [HK1] an upper bound for N was found in the case that X is a plane curve. It
turns out that this bound is better than the upper bound from (1.1) under certain
conditions on d and q. The bound in [HK1] is not symmetrical in the different types
of points that a non-singular plane curve has. In fact, two types of Fq-rational points
of X are distinguished: (a) regular points (non-in£exion points), and (b) in£exion
points. Let Mq and M0q be the numbers of type (a) and (b) respectively. If d and
q satisfy certain restrictions, then

2Mq �M0q W d�qÿ ���
q
p � 1� ; �1:2�

and equality holds if and only if X is a non-singular plane maximal curve over Fq of
degree d � 1

2 �
���
q
p � 1�. Actually, (1.2) holds true for any (possible singular)

irreducible plane curve C de¢ned over Fq provided that Mq and M0q are introduced
in the following way. Let X be the normalization of C, and let g2d be the linear series
associated to the morphism p : X ! C. For a point P of X let �j0; j1; j2� be the order
sequence of X at P with respect to g2d . If p�P� is centred at an Fq-rational point,
then P is of type (a) or (b) according as j2 � 2j1 or not. In [HK1] the result was
also phrased in terms of branches (or places), in the same terminology as [Wa,
Chapter IV]; a branch p�P� has order a and class b if �0; a; a� b� is the order sequence
of X at P with respect to g2d . The result given by (1.2) is the starting point of our
research.

An example of a curve attaining the equality in (1.2) is provided by the Fermat
curve F (see Section 3) with equation, in homogeneous coordinates �U;V ;W �,

U �
��
q
p �1�=2 � V �

��
q
p �1�=2 �W � ��qp �1�=2 � 0: �1:3�

The main result of the paper is to show the following converse (see Section 5).

THEOREM 1.1. If X is a non-singular plane maximal curve over Fq of degree
1
2 �

���
q
p � 1�; then it is Fq-isomorphic to F when qX 121.

This result is connected to recent investigations on the genus of maximal curves [FT],
[FGT], [FT1]. The genus g of a maximal curve X over Fq is at most 12

���
q
p � ���

q
p ÿ 1� [Ih],

[Sti, ½V.2] with equality holding if and only if X is Fq-isomorphic to the Hermitian
curve with equation

u
��
q
p �1 � v

��
q
p �1 � w

��
q
p �1 � 0 ;

[R-Sti]. In [FT] it was observed that

gW 1
4�

���
q
p ÿ 1�2 if g < 1

2
���
q
p � ���

q
p ÿ 1� ;
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a result conjectured in [Sti-X]. Also, if q is odd and

1
4�

���
q
p ÿ 1�� ���

q
p ÿ 2� < gW 1

4�
���
q
p ÿ 1�2 ;

then g � 1
4 �

���
q
p ÿ 1�2 and X is Fq-isomorphic to the non-singular model of the curve

with af¢ne equation yq � y � x�
��
q
p �1�=2 [FGT, Thm. 3.1], [FT1, Prop. 2.5]. In general,

the situation for either q odd and gW 1
4�

���
q
p ÿ 1�� ���

q
p ÿ 2� or q even and

gW 1
4
���
q
p � ���

q
p ÿ 2� is unknown. In the latter case, an example where equality holds

is provided by the non-singular model of the curve with af¢ne equation

Xt
i�1

y
��
q
p
=2i � xq�1 ;

���
q
p � 2t ;

and it seems that this example may be the only one up to Fq-isomorphism
[AT].

In [FGT, ½2] the maximal curves obtained from the af¢ne equation y
��
q
p � y � xm;

where m is a divisor of � ���
q
p � 1�, are characterized by means of Weierstrass

semigroups at an Fq-rational point; the genera of these curves are given by
g � 1

2�
���
q
p ÿ 1��mÿ 1�. If m � 1

4�
���
q
p � 1� and ���

q
p � 3 �mod 4�, we ¢nd two curves

of genus 1
8 �

���
q
p ÿ 1�� ���

q
p ÿ 3�, namely the curve with af¢ne equation

y
��
q
p � y � x�

��
q
p �1�=4 and the curve F of our main result. It turns out that these curves

are not �Fq-isomorphic (see Remark 4.1(ii)). As far as we know, this is the ¢rst
example of two maximal curves of a given genus that are not Fq-isomorphic for
in¢nitely many values of q. It is an interesting open problem to decide if the
two examples of maximal curves with genus g2 are the only ones.

As in [HK], [HK1], [FT], [FGT], [FT1], the key tool used to carry out the research
here is the approach of Sto« hr and Voloch [SV] to the Hasse^Weil bound applied to
suitable Fq-linear series on the curve.

Convention. From now on, the word curve means a projective, geometrically

irreducible, non-singular, algebraic curve.

2. Background

In this section we summarize background material concerning Weierstrass points
and Frobenius orders from [SV, ½½1^2].

Let X be a curve of genus g de¢ned over �Fq equipped with the action of the
Frobenius morphism FX over Fq. Let D be a grd on X and suppose that it is de¢ned
over Fq. Then associated to D there exist two divisors on X , namely the rami¢cation
divisor, denoted by R � RD, and the Fq-Frobenius divisor, denoted by
S � SD � S�D;q�. Both divisors describe the geometrical and arithmetical properties
of X ; in particular, the divisor S provides information on the number #X�Fq� of
Fq-rational points of X .
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For P 2 X , let ji�P� be the ith �D;P�-order, ei � eDi be the ithD-order (i � 0; . . . ; r),
and ni � n�D;q�i be the ith Fq-Frobenius order of D (i � 0; . . . ; rÿ 1). The curve X is
D-classical, or D is classical, if �e0; . . . ; er� � �0; . . . ; r�. Similarly, X is D-Frobenius
classical, or D is Frobenius classical, if �n0; . . . ; nrÿ1� � �0; . . . ; rÿ 1�. Then the
following properties hold:

(1) deg�R� � �2gÿ 2�Pr
i�0 ei � �r� 1�d;

(2) ji�P�X ei for each i and each P;
(3) vP�R�X

Pr
i�0� ji�P� ÿ ei� and equality holds if and only if det�� ji�P�ej

�� 6�
0 �mod p�;

(4) �ni� is a subsequence of �ei�;
(5) deg�S� � �2gÿ 2�Prÿ1

i�0 ni � �q� r�d;
(6) ni W ji�1�P� ÿ j1�P�, for each i and each P 2 X�Fq�;
(7) vP�S�X

Prÿ1
i�0 � ji�1�P� ÿ ni�, for each P 2 X�Fq�, and equality holds if and only if

det��ji�1�P�nj
�� 6� 0 �mod p�.

Therefore, if P 2 X�Fq�, properties (6) and (7) imply

(8) vP�S�X rj1�P�.

Consequently, from (5) and (8), we obtain the main result of [SV], namely,

(9) #X�Fq�W deg�S�=r.

3. Plane Maximal Curves of Degree � ���
q
p � 1�=2

Throughout this section we use the following notation:

(a) S1 is the linear series on a plane curve over Fq obtained from lines ofP2�Fq�, and
S2 is the series obtained from conics;

(b) for i � 1; 2, the divisor Ri is the rami¢cation divisor and Si is the Fq-Frobenius
divisor associated to Si;

(c) jin�P� is the nth �Si;P�-order;
(d) ein � eSi

n and nin � n�Si;q�
n ;

(e) p � char�Fq�.

LEMMA 3.1. Let X be a plane non-singular curve over Fq of degree d. If
d 6� 1 �mod p�; then X is classical for S1.

Proof. See [Par, Corollary 2.2] for p > 2 and [Ho, Corollary 2.4] for pX 2 .
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COROLLARY 3.2. Let X be a plane non-singular maximal curve over Fq of degree d
with d 6� 1 �mod p� and 2 < dW � ���

q
p � 1�2=3. Then there exists P0 2 X�Fq� whose

�S1;P0�-orders are 0; 1; 2.
Proof. Suppose that j12�P� > 2 for each P 2 X�Fq�. Then by Section 2(3) and the

previous lemma we would have vP�R1�X 1 for such points P. Consequently, by Sec-
tion 2(1) and the maximality of X , it follows that

deg�R1� � 3�2gÿ 2� � 3dX#X�Fq� � � ���
q
p � 1�2 � ���

q
p �2gÿ 2�;

so that

0X � ���
q
p � 1� ���

q
p � 1ÿ 3d���

q
p � 1

� �
� �2gÿ 2�� ���

q
p ÿ 3� ;

a contradiction.
Note that the hypothesis on d rules out the possibility q � 4.

Throughout the remainder of the paper, let X be a plane non-singular maximal
curve of degree d. We have the following relation between �S1;P�-orders and
�S2;P�-orders for P 2 X .

Remark 3.3 [GV, p. 464]. For P 2 X , the set

f j11�P�; j12�P�; 2j11�P�; j11�P� � j12�P�; 2j12�P�g

is contained in the set of �S2;P�-orders.
Now suppose that d satis¢es the hypotheses in Corollary 3.2 and let P0 2 X�Fq� be

as in this corollary. Then, by Remark 3.3 and the fact that dim�S2� � 5, the
�S2;P0�-orders are 0; 1; 2; 3; 4 and j :� j25�P0� with 5W jW 2d. Therefore, by Section
2(2), (6), (4),

(a) the S2-orders are 0; 1; 2; 3; 4 and e :� e25 with 5W eW j;
(b) the Fq-Frobenius orders are 0; 1; 2; 3 and n :� n24 with n 2 f4; eg.

COROLLARY 3.4. Let X be a plane non-singular maximal curve over Fq of degree
d � 1

2 �
���
q
p � 1�. If ���

q
p

X 11; then

(1) the S2-orders are 0; 1; 2; 3; 4;
���
q
p

;

(2) the Fq-Frobenius orders of S2 are 0; 1; 2; 3;
���
q
p

.

Proof. The curve X satis¢es the hypotheses in Corollary 3.2. So, with the above
notation, we have to show that e � n � ���

q
p

.
(a) First it is shown that n � e.
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We have already seen that n 2 f4; eg. From Section 2(5), (8) and the maximality of
X we have that

deg�S2� � �6� n��2gÿ 2� � �q� 5�� ���
q
p � 1�

X 5#X�Fq�
� 5� ���

q
p � 1�2 � 5

���
q
p �2gÿ 2�;

so that

� ���
q
p ÿ 5�� ���

q
p ÿ 6ÿ n�W 0 : �3:1�

Then, if n � 4, we would have
���
q
p

W 10, a contradiction.
(b) Now, p divides e (see [G-Ho, Corollary 3]). From Section 2(6) and (a),

n � eW j5�P0� ÿ j1�P0�W ���
q
p

:

Therefore, from (3.1), the fact that
���
q
p

> 5, and (a),

e 2 f ���
q
p ÿ 6;

���
q
p ÿ 5;

���
q
p ÿ 4;

���
q
p ÿ 3;

���
q
p ÿ 2;

���
q
p ÿ 1;

���
q
p g :

Since p > 2 and p divides e, the possibilities are reduced to the following:

e 2 f ���
q
p ÿ 6;

���
q
p ÿ 5;

���
q
p ÿ 3;

���
q
p g :

If e � ���
q
p ÿ 6, then p � 3 and by the p-adic criterion [SV, Corollary 1.9] e � 6 and

so
���
q
p � 12, a contradiction.
If e � ���

q
p ÿ 5, then p � 5. Since �

��
q
p ÿ5

5 � 6� 0 �mod 5�, by the p-adic criterion we
would have that 5 is also a S2-order, a contradiction.

If e � ���
q
p ÿ 3, then p � 3 and so

���
q
p � 9, which is eliminated by the hypothesis

that
���
q
p

X 11.
Hence e � ���

q
p

, which completes the proof.

Now the main result of this section can be stated.We recall that a maximal curveX
over Fq is equipped with the Fq-linear series DX :� j� ���

q
p � 1�P0j, P0 2 X�Fq�, which

is independent of P0 and provides a lot of information about the curve (see [FGT,
½1]).

THEOREM 3.5. Let X be a plane maximal curve over Fq of degree 1
2 �

���
q
p � 1�. Sup-

pose that
���
q
p

X 11. Then the linear series DX is the linear series S2 cut out by conics.
Proof. First it is shown that, for P 2 X�Fq�, the intersection divisor of the

osculating conic C�2�P and X satis¢es

C�2�P :X � �
���
q
p � 1�P: �3:2�

To show this, let P 2 X�Fq�; then, by Corollary 3.4(1) and Section 2(6), we have that
n � ���

q
p

W j5�P� ÿ j1�P�W ���
q
p

(recall that deg�S2� � ���
q
p � 1). Consequently

j25�P� �
���
q
p � 1 and so (3.2) follows.
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This implies that S2 � DX . Then to show the equality it is enough to show that
n� 1 :� dim�DX�W 5. To see this we use Castelnuovo's genus bound for curves
in projective spaces as given in [FGT, p. 34]: the genus g of X satis¢es

2gW
�2 ���

q
p ÿ n�2=�4n� if n is even,
��2 ���

q
p ÿ n�2 ÿ 1�=�4n� if n is odd.

(
Suppose that n� 1X 6. Then, since 2g � � ���

q
p ÿ 1�� ���

q
p ÿ 3�=4, we would have

� ���
q
p ÿ 1�� ���

q
p ÿ 3�=4W ��2 ���

q
p ÿ 5�2 ÿ 1�=20 � � ���

q
p ÿ 3�� ���

q
p ÿ 2�=5 ;

a contradiction. This ¢nishes the proof.
Next we compute the �S1;P�-orders for P 2 X .

LEMMA 3.6. Let X be a plane maximal curve over Fq of degree 1
2 �

���
q
p � 1� and let

P 2 X .

(1) Two types of Fq-rational points of X are distinguished:

(a) regular points; that is; points whose �S1;P�-orders are 0; 1; 2; so that
vP�R1� � 0;

(b) in£exion points; that is; points whose �S1;P�-orders are 0; 1; 12 �
���
q
p � 1�; so

that vP�R1� � � ���
q
p ÿ 3�=2.

(2) If P 62 X�Fq�; the �S1;P�-orders are 0; 1; 2; so that vP�R1� � 0.

Proof.For each P 2 X we have that j11�P� � 1 becauseX is non-singular. So we just
need to compute j�P� :� j12�P�.

We know that DX � S2 � 2S1, dim�S2� � 5, and that j25�P� �
���
q
p � 1 provided

that P 2 X�Fq� (see proof of Theorem 3.5). In addition, by [FGT, Thm. 1.4(ii)],
j25�P� �

���
q
p

for P 62 X�Fq�.
Suppose that j�P� > 2. Then from Remark 3.3 we must have j25�P� � 2j�P�. Since���
q
p

is odd, this is the case if and only if 2j�P� � ���
q
p � 1 and P 2 X�Fq�, because

of the above computations.
The computations for vP�R1� follow from Section 2(3).
Let

Mq �Mq�X� :� #fP 2 X�Fq� : j12�P� � 2g;
and

M0q �M0q�X� :� #fP 2 X�Fq� : j12�P� � 1
2�

���
q
p � 1�g:

THEOREM 3.7. Let X be a plane maximal curve over Fq of degree 1
2 �

���
q
p � 1�. Sup-

pose that
���
q
p

X 11. Then

(1) Mq � � ���
q
p � 1��qÿ ���

q
p ÿ 2�=4;

(2) M0q � 3� ���
q
p � 1�=2.
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Proof. By Lemma 3.6,

Mq �M0q � #X�Fq�: �3:3�

From this result, Lemma 3.1 and ½2(1),

deg�R1� � 3�2gÿ 2� � 3� ���
q
p � 1�

2
�

���
q
p ÿ 3

2
M0q : �3:4�

The result now follows from (3.3) and (3.4), by taking into consideration the
maximality of X and that 2gÿ 2 � � ���

q
p ÿ 5�� ���

q
p � 1�=4.

4. The Example

In this section we study an example of a plane maximal curve of degree 1
2 �

���
q
p � 1�. In

the next section we will see that this example is, up to Fq-isomorphism, the unique
plane maximal curve of degree 1

2 �
���
q
p � 1�.

Let q be a square power of a prime pX 3, and let F be the Fermat curve given by
(1.3). Then F is non-singular and maximal. This is because F is covered by the
Hermitian curve with equation u

��
q
p �1 � v

��
q
p �1 � w

��
q
p �1 � 0 via the morphism

�u; v;w� 7! �U;V ;W � � �u2; v2;w2� (La, Prop. 6).

Remark 4.1. (i) The in£exion points of F relative to S1 are the ones over U � l,
over V � l and over W � l for l a � ���

q
p � 1�=2th root of ÿ1. To see this we observe

that the morphismU : F ! P1� �Fq� has � ���
q
p � 1�=2 points, sayQ1; . . . ;Q� ��qp �1�=2 over

U � 1 and it has just one point, say Pi, over U � li with l�
��
q
p �1�=2
i � ÿ1. Hence, for

each i � 1; . . . ; � ���
q
p � 1�=2, div�U ÿ ai� � 1

2 �
���
q
p � 1�Pi ÿ

P
j Qj. A similar result

holds for div�V ÿ ai� and div�W ÿ ai�.
(ii) The Weierstrass semigroup at any of the 3� ���

q
p � 1�=2 points above is

h2� ���
q
p ÿ 1�; 2� ���

q
p � 1�i.

The fact that � ���
q
p ÿ 1�=2 is a non-gap at an in£exion point is explained as follows.

In (i), the af¢ne functions U;V ;W are really the projective functions
U=W ;V=W ;W=U . Hence div�1=�U=W � ÿ ai� �

P
j Qj ÿ 1

2 �
���
q
p � 1�Pi and

div�V=W � �Pj Pj ÿ
P

j Qj. Then by using the product of both functions we ¢nd
that � ���

q
p ÿ 1�=2 is a Weierstrass non-gap at Pi.

Since this semigroup cannot be the Weierstrass semigroup at a point of the
non-singular model X of y

��
q
p � y � x�

��
q
p �1�=4,

���
q
p � 3 �mod 4�, [G-Vi], we conclude

that F is not �Fq-isomorphic to X ; hence these curves are not Fq-isomorphic.
Let l1; . . . ; l� ��qp ÿ1�=2; l :� l� ��qp �1�=2 be the roots of T � ��qp �1�=2 � ÿ1, and so each li is

in Fq. Let Y be the non-singular model of the af¢ne curve with equation

X �
��
q
p �1�=2 � F �Y � ; �4:1�

with F �Y � 2 Fq�Y � satisfying the following properties:
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(a) degF � � ���
q
p ÿ 1�=2;

(b) the roots of F are cj :� �lj ÿ l�ÿ1, j � 1; . . . ; � ���
q
p ÿ 1�=2;

(c) either F �0�
��
q
p ÿ1 � 1 or F �0�

��
q
p ÿ1 � ÿ1.

PROPOSITION 4.2. The curve F is Fq-isomorphic to Y.
Proof. Write f � U �

��
q
p �1�=2 �P� ��qp �1�=2j�0 Aj�U ÿ l� j with Aj � �D j

U f ��l� and D j
U

the jth Hasse derivative. We have that A0 � ÿ1 and A� ��qp �1�=2 � 1, so that

U �
��
q
p �1�=2 � 1

�U ÿ l��
��
q
p �1�=2 �

X� ��qp �1�=2
j�1

Aj
1

�U ÿ l��
��
q
p �1�=2ÿj : �4:2�

Also, Equation (1.3) with W � 1 is equivalent to

V
U ÿ l

� �� ��qp �1�=2
�

X� ��qp �1�=2
j�1

ÿAj

�U ÿ l��
��
q
p �1�=2ÿj :

Consequently, for X � V=�U ÿ l� and Y � 1=�U ÿ l� we obtain an equation of type
(4.1). From (4.2),

F �Y � �
X� ��qp �1�=2
j�1
�ÿAj� � ÿY �

��
q
p �1�=2 1

Y
� l

� �� ��qp �1�=2
�1

" #

belongs to Fq�Y �, it has degree � ���
q
p ÿ 1�=2, its roots are �lj ÿ l�ÿ1

( j � 1; . . . ; � ���
q
p ÿ 1�=2), and F �0� � A� ��qp �1�=2 2 F ��

q
p .

Conversely, let us start with (4.1). Writing F �Y � � k
Q� ��qp ÿ1�=2

j�1 �Y ÿ cj�with k 2 F�q,
cj :� lj ÿ l, and setting X � V=�U ÿ l� and Y � 1=�U ÿ l�, from (4.1) we ¢nd
that

V �
��
q
p �1�=2 � k�ÿ1��

��
q
p ÿ1�=2Y

j

cj�U �
��
q
p �1�=2 � 1� :

Since k�ÿ1��
��
q
p ÿ1�=2Q

j cj � F �0� �: cÿ1, we then have an equation of type

cV �
��
q
p �1�=2 � U �

��
q
p �1�=2 � 1 with c2�

��
q
p ÿ1� � 1: �4:3�

Let e 2 �Fp such that ce�
��
q
p �1�=2 � ÿ1. Then (4.3) implies that e 2 F�q. Then setting

V � eV 0 we obtain an equation of type (1.3) with W � 1.

5. Proof of the Main Result

Throughout the whole section we let qX 121 and ¢x the following notation:

(a) X is a non-singular plane maximal curve over Fq of degree 1
2 �

���
q
p � 1�;

(b) f � 0 is a minimal equation of X with f 2 Fq�X ;Y �.
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From Lemma 3.1 and Corollary 3.4, X has the following properties:

(i) X is classical for S1;

(ii) X is non-classical for S2;

(iii) X is Frobenius non-classical for S2:

Plane curves satisfying (i), (ii), (iii) above have been characterized in terms of their
equations [GV], [HK1].

LEMMA 5.1. There exist h; s; z0; . . . ; z5 2 Fq�X ;Y � such that

hf � z
��
q
p
0 � z

��
q
p
1 X � z

��
q
p
2 Y � z

��
q
p
3 X2 � z

��
q
p
4 XY � z

��
q
p
5 Y 2 �5:1�

and

sf � z0 � z1X
��
q
p � z2Y

��
q
p � z3X 2

��
q
p � z4�XY �

��
q
p
� z5Y 2

��
q
p
: �5:2�

For a point P � �a; b; 1� 2 X such that zi�a; b� 6� 0 for at least one index i; 0W iW 5;
the conic with equation

z0�a; b� � z1�a; b�X � z2�a; b�Y � z3�a; b�X 2 � z4�a; b�XY � z5�a; b�Y 2 � 0

is the osculating conic of X at P.

Note that Equation (5.2) is invariant under any change of projective coordinates. To
see how the polynomials zi change, we introduce the matrix

D�z0; . . . ; z5� �
2z0 z1 z2
z2 2z3 z4
z3 z4 2z5

0@ 1A ; �5:3�

and use homogeneous coordinates �X � � �X0;X1;X2�. Now, if the change from �X �
to �X 0� is given by �X � � A�X 0� where A is a non-singular matrix over �Fq, then (5.2)
becomes, again in non-homogeneous coordinates,

HF � Z
��
q
p
0 � Z

��
q
p
1 X 0 � Z

��
q
p
2 Y 0 � Z

��
q
p
3 X 02 � Z

��
q
p
4 X 0Y 0 � Z

��
q
p
5 Y 02; �5:4�

where H;F ;Z0; . . . ;Z5 2 �Fq�X 0;Y 0� and F � 0 is the equation of X with respect to
the new coordinate system. Also,

D�Z0; . . .Z5� � BtrD�z0; . . . ; z5�B ; �5:5�

where B is the matrix satisfying B
��
q
p � A. If A is a matrix over Fq, then

Z0; . . . ;Z5 2 Fq�X 0;Y 0�, and (5.1) becomes

SF � Z0 � Z1X 0
��
q
p
� Z2Y 0

��
q
p
� Z3X 0

2
��
q
p
� Z4�X 0Y 0�

��
q
p
� Z5Y 0

2
��
q
p
: �5:6�
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For a rational function u 2 �Fq�X�, the symbol vP�u� denotes the order of u at
P 2 X . Note that zi, for 0W iW 5, can be viewed as a rational function of
�Fq�X�. We de¢ne eP :� ÿmin0W iW 5vP�zi�.

LEMMA 5.2. For P 2 X ; the order vP�det�D�z0; . . . ; z5��� is either 2� eP or eP accord-
ing as P is an in£exion point or not.

Proof. Take P as the origin and the tangent to X at P as the X -axis. Since P is a
non-singular point of X , there exists a formal power series y�x� 2 �Fq��x�� of order
X 1, such that f �x; y�x�� � 0. For 0W iW 5, put mi � zi�x; y�x��xeP , so that
vP�mi�x��X 0. From (5.1),

m0�x�
��
q
p
�m1�x�

��
q
p
x�m2�x�

��
q
p
y�x��

�m3�x�
��
q
p
x2 �m4�x�

��
q
p
xy�x� �m5�x�

��
q
p
y�x�2 � 0 :

Putting y � csxs � . . ., with cs 6� 0 and ki � vP�mi�x��, the left-hand side is the sum of
six formal power series in the variable x whose orders are as follows:

k0
���
q
p
; k1

���
q
p � 1; k2

���
q
p � s; k3

���
q
p � 2; k4

���
q
p � s� 1; k5

���
q
p � 2s:

At least two of these orders are equal, and they are less than or equal to the remaining
four. Because of Lemma 3.6 we have two possibilities:

(1) s � 1
2 �

���
q
p � 1�, that is, P is an in£exion point, and k0 X 2; k1 � 1; k2 X 1;

k3 X 1; k4 X 1; k5 � 0;
(2) s � 2, that is, P is a regular point, and k0 X 1; k1 X 1; k2 � k3 � 0;

k4 X 0; k5 X 0.

In case (1), det�D�z0�x�; . . . ; z5�x��� � xeP �cx2 � . . .�, where c � ÿc5c21 with
m5�x� � c5 � . . . and m1�x� � c1x� . . .. In case (2), det�D�z0�x�; . . . ; z5�x��� �
xeP �c� . . .�, where c � ÿc3c4 with m3�x� � c3 � . . ., and m4�x� � c4 � . . .. This com-
pletes the proof of the lemma.

Following [SV, ½1], let f : X ! P5� �Fq� be the morphism where
f�Q� � �z0; . . . ; z5�, for a point Q 2 X , and zi 2 �Fq�X�. Since P 2 X is a non-singular
point of X , there exists a formal power series y�x� 2 �Fq��x�� of order X 1 such that
f �x� a; y�x� � b� � 0, where P � �a; b; 1�. Let

mi�x� � zi�x� a; y�x� � b�xeP ;

with i � 0; . . . ; 5. Then we have

f�P� � �m0�x�; . . . ;m5�x�� ;

which is a primitive branch representation of f�P�.
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LEMMA 5.3. The degree of f�X� is ���
q
p � 1.

Proof. Let S denote the cubic hypersurface in P5� �Fq� given by (5.3). By the pre-
vious lemma, the intersection multiplicity I�f�X�;S;f�P�� of f�X� and S at
f�P� is either 2 or 0 according as P is an in£exion point or a regular point of
X . This shows that f�X� is not contained in S. From Bëzout's theorem and Theorem
3.7(2), we obtain 3 deg�f�X�� � 2:3� ���

q
p � 1�=2, whence deg�f�X�� � ���

q
p � 1.

LEMMA 5.4. For a generic point P 2 X ; there exists a hyperplane H such that

(1) I�f�X�;H;f�P��X ���
q
p

;

(2) the Frobenius image F�f�P�� lies on H.

Proof.Choose a point P � �a; b; 1� 2 X such that zi�a; b� 6� 0 for at least one index
i, with 0W iW 5. Then

f�P� � �z0�a; b�; z1�a; b�; z2�a; b�; z3�a; b�; z4�a; b�; z5�a; b��:
Note that all points of X , apart from a ¢nite number of them, are of this kind. Let
X0 � aX1 � bX2 � a2X3 � abX4 � b2X5 � 0 be the equation of the hyperplane H,
where a � a

��
q
p
; b � b

��
q
p
. There exists a formal power series y�x� of order X 1 such

that f �x� a; y�x� � b� � 0. Putting zi�x� � zi�x� a; y�x� � b�, we have

I�f�X�;S;f�P��
� ordfz0�x� � az1�x� � bz2�x� � a2z3�x� � abz4�x� � b2z5�x�g:

From (5.2) we have

z0�x� � z1�x��x� a�
��
q
p
� z2�x��y�x� � b�

��
q
p
� z3�x��x� a�2

��
q
p
�

� z4�x���x� a��y�x� � b��
��
q
p
� z5�x��y�x� � b�2

��
q
p
� 0:

Since y�x� has order X 1, that is, y�x� � cx� . . ., then

z0�x� � z1�x�a
��
q
p � z2�x�b

��
q
p �

� z3�x�a2
��
q
p � z4�x��ab�

��
q
p
� z5�x�b2

��
q
p � x

��
q
p �. . .� � 0;

which proves (1).
To check (2), note that (5.1) yields

z0�a; b�
��
q
p
� z1�a; b�

��
q
p
a�

� z2�a; b�
��
q
p
b� z3�a; b�

��
q
p
a2 � z4�a; b�

��
q
p
�ab� � z5�a; b�

��
q
p
b2 � 0 :

Thus

z0�a; b�q � z1�a; b�qa
��
q
p � z2�a; b�qb

��
q
p �

� z3�a; b�qa2
��
q
p � z4�a; b�q�ab�

��
q
p
� z5�a; b�qb2

��
q
p � 0 :
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Since

F�f�P�� � �z0�a; b�q; z1�a; b�q; z2�a; b�q; z3�a; b�q; z4�a; b�q; z5�a; b�q�;
and a � a

��
q
p
; b � b

��
q
p
, so (2) follows.

Now, the linear series of hyperplanes sections of f�X� is equivalent to
the base-point-free linear series Dÿ E, where D � P�hz0; . . . ; z5i� and E :�P

P2X ePP. By Lemma 5.3, this linear series is contained in DX � j� ���
q
p � 1�P0j,

P0 2 X�Fq�, because X is maximal; hence � ���
q
p � 1�P0 � ���

q
p

P � FX �P� ([FGT,
Corollary 1.2]). Note that we do not assert that equality holds. In fact, this is
the case if and only if f�X� is not degenerate, that is, z0; . . . ; z5 are �Fq-linearly
independent. This gives the following result.

LEMMA 5.5. The base-point-free linear series ofX generated by the curves z0; . . . ; z5
is contained in DX .

The next step is to determine the degrees of the zi.

LEMMA 5.6. The degrees satisfy max0W iW 5 deg�zi� � 2.
Proof. As before, the base-point-free linear series

P5
i�0 cizi ÿ E on X is contained

in DX ; hence it is contained in the linear series cut out by conics on X , by Theorem
3.5. This implies the existence of constants dj �i� such that div�zi� ÿ E � div�di�,
i � 0; . . . ; 5, where

di � di�X ;Y � � d0�i� � d1�i�X � d2�i�Y � d3�i�X2 � d4�i�XY � d5�i�Y 2 :

Choose an index k such that zk�X ;Y � 6� 0 �mod f �X ;Y ��. Then
div�zi=zk� � div�di=dk�:

Thus zi�X ;Y �dk�X ;Y � � zk�X ;Y �di�X ;Y � �mod f �X ;Y ��. Now, re-write (5.1) in
terms of di�X ;Y �:

hfdk � zk
��
q
p �d0

��
q
p
� d

��
q
p
1 X � d

��
q
p
2 Y � d

��
q
p
3 X2 � d

��
q
p
4 XY � d

��
q
p
5 Y 2� :

Since zk�X ;Y � 6� 0 �mod f �X ;Y ��, so f �X ;Y � must divide the other factor on the
right-hand side, and hence there exists g 2 �Fq�X ;Y � such that

gf � d0
��
q
p
� d

��
q
p
1 X � d

��
q
p
2 Y � d

��
q
p
3 X 2 � d

��
q
p
4 XY � d

��
q
p
5 Y 2 ;

with deg�di�W 2, for i � 0; . . . 5. Thus we may assume that g � h and
di�X ;Y � � zi�X ;Y � all i. It remains to show that at least one of the polynomials
zi�X ;Y � has degree 2. However, if deg�zi�X ;Y ��W 1 for all i, then the linear series
generated by z0; . . . ; z5 would be contained in the linear series cut out by lines.
But this would imply that deg�f�X��W � ���

q
p � 1�=2, contradicting Lemma 5.3.

LEMMA 5.7. The polynomials h and s in Lemma 5.1 may be assumed to be equal.
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Proof. Since deg�zi�W 2 for all i, we can re-write

z0 � z1X
��
q
p � z2Y

��
q
p � z3X2

��
q
p � z4�XY �

��
q
p
� z5Y 2

��
q
p

in the form

w
��
q
p
0 � w

��
q
p
1 X � w

��
q
p
2 Y � w

��
q
p
3 X2 � w

��
q
p
4 XY � w

��
q
p
5 Y 2 ;

where wi 2 Fq�X ;Y � and max0W iW 5 deg�wi� � max0W iW 5 deg�zi�. Comparing this
with (5.1) we see that zi and wi only differ by a constant in Fq independent of i,
0W iW 5. Substituting czi for wi then gives

w
��
q
p
0 � w

��
q
p
1 X � w

��
q
p
2 Y � w

��
q
p
3 X2 � w

��
q
p
4 XY � w

��
q
p
5 Y 2

� c
��
q
p �z0

��
q
p � z

��
q
p
1 X � z

��
q
p
2 Y � z

��
q
p
3 X 2 � z

��
q
p
4 XY � z

��
q
p
5 Y 2�

� c
��
q
p
hf : �5:7�

Now, by the previous lemma we can write zi explicitly in the form

zi � t�i�0 � t�i�1 X � t�i�2 Y � t�i�3 X 2 � t�i�4 XY � t�i�5 Y 2 ; �5:8�
for i � 0; . . . 5. Let t :� c

��
q
p
h; then (5.7) yields that �t�i�j �

��
q
p
� cti� j� for 0W i; jW 5.

Putting i � j, this gives c
��
q
p �1 � 1. Choose an element k in �Fq such that

k
��
q
p ÿ1 � c, and put di � kÿ1zi, 0W iW 5. Then (5.1) and (5.2) become respectively

hkÿ
��
q
p
f � d

��
q
p
0 � d

��
q
p
1 X � d

��
q
p
2 Y � d

��
q
p
3 X 2 � d

��
q
p
4 XY � d

��
q
p
5 Y 2;

tkÿ1f � k�d0 � d1X
��
q
p � d2Y

��
q
p � d3X2

��
q
p � d4�XY �

��
q
p
� d5Y 2

��
q
p
:

Put h0 � hkÿ
��
q
p

and t0 � tkÿ1. Then h0 � t0, and this completes the proof.
Next we determine explicitly the coef¢cients t�i�j given in (5.8) or, equivalently, the

6� 6 matrix T � �t�i�j �. From Lemma 5.7 we can assume that

�t�i�j �
��
q
p
� t�j�i : �5:9�

for 0W i; jW 5. In other words, we can assume that T is a Hermitian matrix over
F ��

q
p .
To obtain further relations between elements of T , we go back to (5.3) and note

that

�det�D�z0; . . . ; z5���
��
q
p
� 0

can actually be regarded as the equation of the Hessian curveH�Z� associated to the
algebraic curve Z with equation

z
��
q
p
0 � z

��
q
p
1 X � z2

��
q
p
Y � z3

��
q
p
X2 � z4

��
q
p
XY � z5

��
q
p
Y 2 � 0;

here zi � zi�X ;Y �. Hence H�Z� is ���
q
p

-fold covered by the curve C with equation
det�D�z0; . . . ; z5�� � 0, and Lemma 5.2 can be interpreted in terms of intersection
multiplicities between C and X ; namely, I�C;X;P� is either 2� eP or eP according
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as P 2 X is an in£exion point or not. Now, I�H�X�;X;P� � s�P� ÿ 2, where H�X� is
the Hessian of X and s�P� :� I�X ; l;P�, with l the tangent to X at the point P; see,
for example, (Wa, Ch.4, ½6)) and, for a characteristic-free approach to Hessian
curves, see (OO, Ch.17)). Comparing the intersection divisors C:X and H�X�:X ,
we see that �nÿ 2�=2 C:XXH�X�:X with n � 1

2 �
���
q
p � 1�. Hence, by Noether's

``AF � BG'' Theorem, (Sei, p. 133), we obtain

�det�D�z0; . . . ; z5����nÿ2�=2 � AF � BG ;

with F the projectivization of f and A, B, G homogeneous polynomials in
�Fq�X0;X1;X2�, where G � 0 is the equation of H�X�. As det�D�z0; . . . ; z5�� is a poly-
nomial of degree 6 (cf. Lemma 5.6), while deg�G� � 3�nÿ 2�, so Bmust be a constant.
This yields that eP � 0 for each P 2 X . For an in£exion point P 2 X , we can now
infer from the proof of Lemma 5.2 that if P � �0; 0; 1� and l is the X^axis, then
zi�0; 0� � 0, i � 0; . . . 4, and thus det�D�z0; . . . ; z5�� has no terms of degree W 2. This
shows that each in£exion point P of X is a singular point of C.

By a standard argument depending on the upper bound for the number of singular
points of an absolutely irreducible algebraic curve of degree m, namely
�mÿ 1��mÿ 2�=2, it can be shown that C is doubly covered by an absolutely
irreducible cubic curve U of equation u � 0, with u homogeneous in
�Fq�X0;X1;X2�. Hence,

det�D�z0; . . . ; z5�� � u2 : �5:10�

Consider now a minor Dij of D�z0; . . . ; z5�, and suppose that Dij is not the zero
polynomial. Then Dij � 0 can be regarded as the equation of a quartic curve V ij.
Since V ij also passes through each in£exion point of X , so V ij and U have at least
3n common points. On the other hand, deg�V ij� deg�U� � 12, and because
3n > 12, so U is a component of V ij. This shows the existence of linear homogeneous
polynomials l0; . . . ; l5 2 �Fq�X0;X1;X2� such that

4z3z5 ÿ z24 � ul0; 2z1z5 ÿ z2z4 � ÿul1; z1z4 ÿ 2z2z3 � ul2; �5:11�

4z0z5 ÿ z22 � ul3; 2z0z4 ÿ z1z2 � ÿul4; 4z0z3 ÿ z21 � ul5: �5:12�
Let L denote the matrixD�l0; l1; l2; l3; l4; l5�. From elementary linear algebra, D� � uL
where D� is the adjoint of D�z0; . . . ; z5�, and hence �det�D�z0; . . . ; z5���2 � u3 det�L�.
Comparison with (5.10) gives u � det�L�. Thus D� � det�L�L. Also, D�z0; . . . ; z5�
� det�L�Lÿ1; that is,

2z0 � l3l5 ÿ l24 ; z1 � ÿ�l1l5 ÿ l2l4�; z2 � l1l4 ÿ l2l3; �5:13�

2z3 � l0l5 ÿ l22 ; z4 � ÿ�l0l4 ÿ l1l2�; 2z5 � l0l3 ÿ l21 : �5:14�
Note that we have also seen that U has equation det�L� � 0.
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Set

li � aiX � biY � ci; for i � 0; 2; 3; 5;
li � ÿaiX ÿ biY ÿ ci; for i � 1; 4:

Nowwe take an in£exion point P onX to be the origin and the tangent ofX at P to
be theX -axis. Also, I�U;X;P� � 1, so P is a non-singular point of U, and the tangent
to U at P is not the X -axis. We take this tangent to be the Y -axis. We are going to
prove that the Y -axis is a component of U. A direct computation shows that (5.11)
yields

z0�X ;Y � � kY 2 ; �5:15�
l5 � a5X ; with a5 6� 0 : �5:16�

By (5.9) we also have

l4 � ÿb4Y ; b4 6� 0 : �5:17�

The ¢rst relation in (5.11), again with u � det�L�, together with (5.15) and (5.16)
yields

l3 � 0 : �5:18�

Then, with the unit point suitably chosen, we may also assume that

z0�X ;Y � � ÿ1
2Y

2 ; �5:19�

Again, a certain amount of computation shows that (5.9) yields

b0b4 ÿ 2b1b2 � 0; �5:20�
c0b4 ÿ 2c1b2 � 0: �5:21�

LEMMA 5.8. If P 2 X is an in£exion; then U has a linear component through P.
Proof. We prove that the Y -axis is a linear component of U. Equivalently, we

can show that X is a factor of det�L�. By (5.16) and (5.18), we must check that
X divides l0l4 ÿ 2l1l2. By (5.16) and c2 � 0, this occurs if the polynomial
�b0b4 ÿ 2b1b2�Y 2 � �c0b4 ÿ 2c1b1�Y is identically zero. Hence the result is a conse-
quence of (5.20) and (5.21).

It was shown in Theorem 3.7 that X has 3� ���
q
p � 1�=2 in£exion points altogether,

and each one lies on a linear component of U.

COROLLARY 5.9. The cubic U splits into three distinct lines.
Some more computations depending on (5.9) together with a suitable change of

coordinates give the following result.
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LEMMA 5.10. There exist a0; a2; a5 2 F ��
q
p such that

l0 � a0X ; l1 � 1; l2 � ÿa2X ; l3 � 0; l4 � ÿY ; l5 � a5X ; �5:22�
z0 � ÿ1

2Y
2; z1 � ÿa5X � a2XY ; z2 � ÿY ; �5:23�

z3 � 1
2�a0a5 ÿ a22�X2; z4 � a0XY ÿ a2X ; z5 � ÿ1=2: �5:24�

Now we want to show that, if R � �0; Z� is any further in£exion point of X lying on
the Y -axis, then the tangent line r to X at R has equation Y � Z. To do this it is
suf¢cient to check that the curve Z with equation

z
��
q
p
0 � z

��
q
p
1 X � z

��
q
p
2 Y � z

��
q
p
3 X2 � z

��
q
p
4 XY � z

��
q
p
5 Y 2 � 0

has a cusp at R, that is, a double point with only one tangent, such that the tangent is
the horizontal line Y � Z. Applying the translation X 0 � X , Y 0 � Y ÿ Z, the curve Z
is transformed into the curve with equation

ÿ1
2�Z

��
q
p � Z�2 � �Z ��

q
p � Z�Y ÿ 1

2Y
2 � a � 0 ;

where a represents terms of degree at least 3. Since this curve passes through the
origin, we have Z

��
q
p � Z � 0. Hence, the lowest degree term isÿ 1

2Y
2 and so the origin

is a cusp with tangent line Y � 0, as required. This gives the following situation.

THEOREM 5.11. There exists a triangle such that the in£exion points of X lie
1
2 �

���
q
p � 1� on each side; none a vertex; and the in£exional tangents pass

1
2 �

���
q
p � 1� through each vertex; none being a side.
We are now in a position to prove the main result, Theorem 1.1, stated in Section 1.
Let n � � ���

q
p � 1�=2. We choose the triangle T of Theorem 5.11 as triangle of

reference, and denote the in£exions on the X -axis by �xi; 0�, i � 1 . . . n, and those
on the Y -axis by �0; Zi�, i � 1 . . . n. Also, without loss of generality, we may assume
that x1

n � 1 � 0 and Z1
n � 1 � 0. Write f �X ;Y � in the form

f � a0�X �Yn � . . .� aj�X �Ynÿj � . . .� an�X �;
with ai�X � of degree i in Fq�X �.

Since �xi; 0� lies onX , so an�xi� � 0. Since the line x � xi is the in£exional tangent at
�xi; 0�, so

a0�xi�Yn � . . .� anÿ1�xi�Y � 0

has n repeated roots. So

a1�xi� � . . . � anÿ1�xi� � 0: �5:25�
Since (5.25) is true for all xi,

a1�X � � . . . � anÿ1�X � � 0:

Hence it follows that f �X ;Y � � a0Yn � an�X �. A similar argument shows that
f �X ;Y � � b0Xn � bn�Y �. Thus f �X ;Y � � a0Xn � b0Yn � c0, and it only remains
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to compute the coef¢cients. Since f �x1; 0� � 0 and x1
n � 1 � 0, we have a0 � c0.

Similarly, from Z1
n � 1 � 0 we infer b0 � c0. This completes the proof.
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