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Abstract. The number N of rational points on an algebraic curve of genus g overa finite field I,
satisfies the Hasse—Weil bound N < ¢+ 1+ 2g,/q. A curve that attains this bound is called
maximal. With go = 1(¢ — /9) and g1 =1(/g— 1)%, it is known that maximalcurves have
g = goor g < g;. Maximal curves with g = g, or g; have been characterized up to isomorphism.
A natural genus to be studied is g, = %(\/q — 1)(4/q — 3), and for this genus there are two
non-isomorphic maximal curves known when,/q = 3 (mod 4). Here, a maximal curve with
genus g» and a non-singular plane model is characterized as a Fermat curve of degree % (Vg+1).
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1. Introduction

For a non-singular model of a projective, geometrically irreducible, algebraic curve
& defined over a finite field I, with ¢ elements, the number N of its I,-rational
points satisfies the Hasse—Weil bound, namely (see [We], [Sti, §V.2])

IN —(¢+ DI <2g4.
If X is plane of degree d, then this bound implies that

IN—=(g+DI<(d-1d-2)/q. (L.

These bounds are important for applications in Coding theory (see, for example,
[Sti]) and in finite geometry (see [H, Ch. 10]). In these subjects, one is often interested
in curves with many F,-rational points and, in particular, maximal curves, that is,
curves where N reaches the upper Hasse-Weil bound.

The approach of Stohr and Voloch [SV] to the Hasse-Weil bound shows that an
upper bound for N can be obtained via [F,-linear series. This upper bound depends
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not only on ¢ and g, as does the Hasse—Weil bound, but also on the dimension and the
degree of the linear series.

In [HK 1] an upper bound for N was found in the case that X is a plane curve. It
turns out that this bound is better than the upper bound from (1.1) under certain
conditions on d and ¢. The bound in [HK 1] is not symmetrical in the different types
of points that a non-singular plane curve has. In fact, two types of [,-rational points
of X are distinguished: (a) regular points (non-inflexion points), and (b) inflexion
points. Let M, and M; be the numbers of type (a) and (b) respectively. If d and
g satisfy certain restrictions, then

2M,+ M, <d(g— Jq+1), (1.2)

and equality holds if and only if X is a non-singular plane maximal curve over I, of
degree d = %(ﬂ +1). Actually, (1.2) holds true for any (possible singular)
irreducible plane curve C defined over F, provided that M, and M| are introduced
in the following way. Let X be the normalization of C, and let g3 be the linear series
associated to the morphism n: X — C. For a point P of X let (jy, j1,j») be the order
sequence of X at P with respect to g3. If n(P) is centred at an [,-rational point,
then P is of type (a) or (b) according as j» = 2j; or not. In [HK1] the result was
also phrased in terms of branches (or places), in the same terminology as [Wa,
Chapter I'V]; a branch n(P) has order o and class §if (0, o, « + f3) is the order sequence
of X at P with respect to g3. The result given by (1.2) is the starting point of our
research.

An example of a curve attaining the equality in (1.2) is provided by the Fermat
curve F (see Section 3) with equation, in homogeneous coordinates (U, V', W),

U(ﬁ+l)/2 + V(ﬂ+l)/2 + W(ﬂ+l)/2 = 0. (13)
The main result of the paper is to show the following converse (see Section 5).

THEOREM 1.1. If X is a non-singular plane maximal curve over T, of degree
1(/q+ 1), then it is Fy-isomorphic to F when q > 121.

This result is connected to recent investigations on the genus of maximal curves [FT],
[FGT], [FT1]. The genus g of a maximal curve X over I, is at most % JVa(/q — 1) [1h],

[Sti, §V.2] with equality holding if and only if & is F;-isomorphic to the Hermitian
curve with equation

WA 4 VAL VL —
[R-Sti]. In [FT] it was observed that

g<iVa-1 if g<iJaa-1,
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a result conjectured in [Sti-X]. Also, if ¢ is odd and
Wa-DWa-2) <g<iJq—-17,

then g = %(\/5—1 —1*and Xis F 4-1somorphic to the non-singular model of the curve
with affine equation y? + y = xv4+V/2 [FGT, Thm. 3.1], [FT1, Prop. 2.5]. In general,
the situation for either ¢ odd and g < %(\/6 - 1(/q—2) or g even and
g< %\/q(\/c_] — 2) is unknown. In the latter case, an example where equality holds
is provided by the non-singular model of the curve with affine equation

‘ .
N B i 1
=1

i=

and it seems that this example may be the only one up to IF,-isomorphism
[AT].

In [FGT, §2] the maximal curves obtained from the affine equation yv7 4+ y = x™,
where m is a divisor of (,/g+ 1), are characterized by means of Weierstrass
semigroups at an [, -rational point; the genera of these curves are given by
g=3y/a—Dm—=1). If m=4/g+1) and /g =3 (mod 4), we find two curves
of genus %(\/ﬁ —1)(/g—3), namely the curve with affine equation
yVi + y = xVa+D/4 and the curve F of our main result. It turns out that these curves
are not Fq-isomorphic (see Remark 4.1(ii)). As far as we know, this is the first
example of two maximal curves of a given genus that are not I',-isomorphic for
infinitely many values of ¢. It is an interesting open problem to decide if the
two examples of maximal curves with genus g, are the only ones.

As in [HK], [HK1], [FT], [FGT], [FT1], the key tool used to carry out the research
here is the approach of Stohr and Voloch [SV] to the Hasse—Weil bound applied to
suitable I -linear series on the curve.

Convention. From now on, the word curve means a projective, geometrically
irreducible, non-singular, algebraic curve.

2. Background

In this section we summarize background material concerning Weierstrass points
and Frobenius orders from [SV, §§1-2].

Let X be a curve of genus g defined over }Fq equipped with the action of the
Frobenius morphism ®y over I,. Let D be a g; on X and suppose that it is defined
over [,. Then associated to D there exist two divisors on X, namely the ramification
divisor, denoted by R =RP, and the y-Frobenius divisor, denoted by
S = SP = S(P:9_ Both divisors describe the geometrical and arithmetical properties
of X in particular, the divisor S provides information on the number #X(IF,) of
F,-rational points of X.
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For P € X, let ji(P) be the ith (D, P)-order, ¢; = ¢P be the ith D-order (i = 0, .. ., r),
and v; = vg-D"’) be the ith [F,-Frobenius order of D (i =0, ...,r —1). The curve X is
D-classical, or D is classical, if (g, ..., &) =(0,...,r). Similarly, X is D-Frobenius
classical, or D is Frobenius classical, if (vo,...,v,—1) =(0,...,r—1). Then the
following properties hold:

(1) deg(R) = Qg —2) Yg e + (r + 1)d:

(2) Jji(P) = ¢ for each i and each P;

(3) vp(R) = Y1 o(ji(P) — &) and equality holds if and only if det((")) %
0 (mod p); ’

(4) (v;) is a subsequence of (g;);

(5) deg(S) = (28 —2) Xim vi + (g + 1d;

(6) vi <Jjiy1(P)—j1i(P), for each i and each P € X(IF,);

(7) vp(S) = er;é (Ji+1(P) — v;), for each P € X(IF,), and equality holds if and only if
det(("1\")) # 0 (mod p).

Therefore, if P € X(I;), properties (6) and (7) imply

(8) vp(S) = rji(P).

Consequently, from (5) and (8), we obtain the main result of [SV], namely,

9) #X(Fy) < deg(S)/r.

3. Plane Maximal Curves of Degree (,/q +1)/2

Throughout this section we use the following notation:

(a) X isthelinear series on a plane curve over I, obtained from lines of P2 (F,), and
Y, is the series obtained from conics;

(b) fori=1,2, the divisor R; is the ramification divisor and S; is the I,-Frobenius
divisor associated to X;;

(c) Jji(P)is the nth (X;, P)-order;

(d) & =e& and vi = vFD;

(e) p = char(F,).

LEMMA 3.1. Let X be a plane non-singular curve over [, of degree d. If
d # 1 (mod p), then X is classical for Z,.
Proof. See [Par, Corollary 2.2] for p > 2 and [Ho, Corollary 2.4] for p > 2 .
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COROLLARY 3.2. Let X be a plane non-singular maximal curve over [, of degree d
with d # 1 (mod p) and 2 <d < (/g + 1)?/3. Then there exists Py € X(F,) whose
(21, Py)-orders are 0,1, 2.

Proof. Suppose that ji(P) > 2 for each P € X(Iy). Then by Section 2(3) and the
previous lemma we would have vp(R;) > 1 for such points P. Consequently, by Sec-
tion 2(1) and the maximality of A, it follows that

deg(R)) = 3(2g — 2) + 3d = #X(F,)) = (Jg+ 1)’ + /q(2g — 2),

so that

0>(x/5+1)(\/§+1— )+(2g—2)(\/51—3),

3d
Ja+1

a contradiction.
Note that the hypothesis on d rules out the possibility ¢ = 4.

Throughout the remainder of the paper, let X’ be a plane non-singular maximal
curve of degree d. We have the following relation between (X;, P)-orders and
(X,, P)-orders for P e X.

Remark 3.3 [GV, p. 464]. For P € X, the set

{1(P), 5(P), 271 (P), j1(P) + ja(P), 2j5(P)}

is contained in the set of (X, P)-orders.

Now suppose that d satisfies the hypotheses in Corollary 3.2 and let Py € X(I,)) be
as in this corollary. Then, by Remark 3.3 and the fact that dim(Z,;) =5, the
(X2, Py)-orders are 0, 1,2, 3,4 and j := j2(Py) with 5 < j < 2d. Therefore, by Section
2(2), (6), (4,

(a) the X,-orders are 0,1,2,3,4 and ¢ := 8§ with 5 <& <
(b) the F,-Frobenius orders are 0,1, 2,3 and v := vﬁ with v € {4, ¢}.

COROLLARY 3.4. Let X be a plane non-singular maximal curve over I, of degree
d=%(/q+1). If Jg =11, then

(1) the Zy-orders are 0,1,2,3,4, . /q;
(2) the Fy-Frobenius orders of X5 are 0, 1,2, 3, V4

Proof. The curve X satisfies the hypotheses in Corollary 3.2. So, with the above

notation, we have to show that e =v = /q.
(a) First it is shown that v = e.
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We have already seen that v € {4, ¢}. From Section 2(5), (8) and the maximality of
X we have that

deg($2) = (6+v)(2g—2) + (¢ +5)(Vg+ 1)
> S#X(F,)
=5(J/q+ 1)* 4+ 5./q(2g — 2),

so that
Vq4-5(q—-6-v)<0. (3.1)

Then, if v =4, we would have /g < 10, a contradiction.
(b) Now, p divides ¢ (see [G-Ho, Corollary 3]). From Section 2(6) and (a),

v=¢<js(Po) —1i(Po) < /q.
Therefore, from (3.1), the fact that /g > 5, and (a),
ee{/q9—6,V9—-5V9—4 V9-3, /92, J9—-1,q}.

Since p > 2 and p divides ¢, the possibilities are reduced to the following:

ee{/q—6,/9—-5 9-3,Jq}.

If ¢ = /g — 6, then p = 3 and by the p-adic criterion [SV, Corollary 1.9] & = 6 and
so ,/q = 12, a contradiction.

If e= /g —5, then p =5. Since (*/55_5) # 0 (mod 5), by the p-adic criterion we
would have that 5 is also a X,-order, a contradiction.

If e = /g — 3, then p =3 and so ,/g =9, which is eliminated by the hypothesis
that /g > 11.

Hence ¢ = /g, which completes the proof.

Now the main result of this section can be stated. We recall that a maximal curve X
over I, is equipped with the I -linear series Dy := |(,/q + 1)Po|, Py € X(I,), which
is independent of Py and provides a lot of information about the curve (see [FGT,

§1D).

THEOREM 3.5. Let X be a plane maximal curve over I, of degree %(\/5 +1). Sup-
pose that \/q = 11. Then the linear series Dy is the linear series X, cut out by conics.

Proof. First it is shown that, for P € X(IF,), the intersection divisor of the
osculating conic Cg) and X satisfies

CR.x =(Jg+1)P. (3.2)

To show this, let P € X(IF,); then, by Corollary 3.4(1) and Section 2(6), we have that

v=,q<js(P)—jh(P)<.q (recall that deg(Z;)=,/g+1). Consequently
J2(P) = /g + 1 and so (3.2) follows.
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This implies that £, € Dy. Then to show the equality it is enough to show that
n+1:=dim(Dy) < 5. To see this we use Castelnuovo’s genus bound for curves
in projective spaces as given in [FGT, p. 34]: the genus g of X satisfies

2./ — n)*/(4n) if n is even,
(2/g—n)* — 1)/(4n) if nis odd.

Suppose that n+ 1 > 6. Then, since 2g = (/g — 1)(,/g — 3)/4, we would have
(V7 - DG —3)/4 < (VG- 5" - 1)/20 = (VG- 3)(/T—2)/5,

a contradiction. This finishes the proof.
Next we compute the (X, P)-orders for P € X.

2¢ <

LEMMA 3.6. Let X be a plane maximal curve over I, of degree %(\/ﬁ + 1) and let
PeX.

(1) Two types of I4-rational points of X are distinguished:
(a) regular points, that is, points whose (X1, P)-orders are 0,1,2, so that
vp(R1) = 0;
(b) inflexion points, that is, points whose (X1, P)-orders are 0, 1, %(\/c—] + 1), so
that vp(R1) = (/g9 — 3)/2.
(2) If P& Xy, the (X1, P)-orders are 0, 1,2, so that vp(R;) = 0.

Proof. For each P € X we have thatjl(P) = 1 because X’ is non-singular. So we just
need to compute j(P) :=ji(P).

We know that Dy = X = 2%, dim(X,) = 5, and that j3(P) = /g + 1 provided
that P € X(Iy) (see proof of Theorem 3.5). In addition, by [FGT, Thm. 1.4(ii)],
J3(P) = /q for P & X(IF,).

Suppose that j(P) > 2. Then from Remark 3.3 we must have j2(P) = 2j(P). Since
/4 is odd, this is the case if and only if 2j(P) = ,/g+ 1 and P € X(I,), because
of the above computations.

The computations for vp(R;) follow from Section 2(3).

Let

My = My(X) :=#{P € X(F,) : j(P) =2},
and
M) = M(X) :=#{P € X(F,) : j(P) = X/q + D}.

THEOREM 3.7. Let X be a plane maximal curve over I, of degree %(ﬂ + 1). Sup-
pose that /g = 11. Then

1) My;=(/9+Dg—/q-2)/4%
2) M, =3(/g+1)/2.
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Proof. By Lemma 3.6,
M, + M, = #X(F,). (3.3)

From this result, Lemma 3.1 and §2(1),

1 _
deg(R)) = 32g —2) + 3(‘@; ) _ */E’z 3 M. (3.4)

The result now follows from (3.3) and (3.4), by taking into consideration the
maximality of X" and that 2¢g — 2 = (/g — 5)(\/q9 + 1)/4.

4. The Example

In this section we study an example of a plane maximal curve of degree % (Vg+1).In
the next section we will see that this example is, up to I -isomorphism, the unique
plane maximal curve of degree %(\/6 +1).

Let g be a square power of a prime p > 3, and let F be the Fermat curve given by
(1.3). Then F is non-singular and maximal. This is because F is covered by the
Hermitian curve with equation uvé+! 4 yv@+l 4 @+l = via the morphism
(u, v, w) = (U, V, W) = (u*,v*, w?) (La, Prop. 6).

Remark 4.1. (i) The inflexion points of F relative to X; are the ones over U = 4,
over V' =/ and over W = A for Aa (,/q + 1)/2th root of —1. To see this we observe
that the morphism U : F — Pl(]l_?q) has (/g + 1)/2 points, say Oy, ..., Q(z+1)/2 Over
U = oo and it has just one point, say P;, over U = /; with Aﬁﬁ“’/z = —1. Hence, for
each i=1,...,(/g+1)/2, div(U —o;) = %(\/ﬁ—i— P; — Zj O;. A similar result
holds for div(V — o;) and div(W — ;).

(ii) The Weierstrass semigroup at any of the 3(,/g+1)/2 points above is
2(y/q—1),2(/g+1)).

The fact that (/g — 1)/2 is a non-gap at an inflexion point is explained as follows.
In (i), the affine functions U, V,W are really the projective functions
u/w,v/w,w/U. Hence div(1/(U/W)—ua;)= Zj 0 — %(\/qjt 1)P; and
div(V/W)=3_;P; — 3, 0;. Then by using the product of both functions we find
that (,/g — 1)/2 is a Weierstrass non-gap at P;.

Since this semigroup cannot be the Weierstrass semigroup at a point of the
non-singular model X of yv7 + p = xWatD/4 " /G = 3 (mod 4), [G-Vi], we conclude
that F is not Fq—isomorphic to X; hence these curves are not I,-isomorphic.

Let 21, ..., A(jg—1)2. 4 := A g+1)2 be the roots of TW7H/2 = —1, and so each /; is
in I,. Let Y be the non-singular model of the affine curve with equation

XWAD2 Z pyy, (4.1)

with F(Y) e IF,[Y] satisfying the following properties:
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(a) degF =(/q—1)/2
(b) the roots of F are ¢; := (4; — Nhi=1,..., Wg—1/2;
(c) either F(0)Y9 ! =1 or F(O)V9 ! = —1.

PROPOSITION 4.2. The curve F is F%—isomorphic to Y. ' '
Proof. Write f = UVIHD/2 = WD 4,(U — J)J) with 4; = (D’ £)(2) and D/,
the jth Hasse derivative. We have that 49 = —1 and A z+1)2 = 1, so that

UWath/2 4 q (Va+1)/2 1

U R 21: S ek (42)
J=

Also, Equation (1.3) with W =1 is equivalent to

1% (ﬁ+1)/2_ (Vq+1)/2 _Aj
U-1 -

— (U_l)(«/ﬁﬂ)/z*j ’
J=

Consequently, for X = V' /(U — A)and Y = 1/(U — 1) we obtain an equation of type
(4.1). From (4.2),

WVa+D)/2 1 (Va+D/2
F(Y)= (—4)) = — YW [(7 + A) +1]

Jj=1

belongs to I [Y], it has degree (/g—1)/2, its roots are (/lj—i)*l

(]:1,,(ﬂ—1)/2), andF(O):A(ﬁ+1)/zeFﬁ. n

Conversely, let us start with (4.1). Writing F(Y) = k ]_[;‘:/?_ 4 (Y —¢j)withk € F,
¢j:=4;— 4, and setting X = V/(U—4) and Y =1/(U — 1), from (4.1) we find
that

Va2 _ k(_l)(ﬂfl)ﬁ Hci(U(ﬁH)ﬁ +1).
J

Since k(—1)W4~12 ]_[j ¢ = F(0) =: ¢”!, we then have an equation of type
YV Wath2 — gWath2 1 with AWV = 1, 4.3)

Let ¢ € T, such that ce+)/2 = —1. Then (4.3) implies that ¢ € ¥, Then setting
V = ¢V’ we obtain an equation of type (1.3) with W = 1.

5. Proof of the Main Result

Throughout the whole section we let ¢ > 121 and fix the following notation:

(a) X is a non-singular plane maximal curve over I, of degree %(ﬂ +1);
(b) f =0 1is a minimal equation of X with f € T,[X, Y].
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From Lemma 3.1 and Corollary 3.4, X has the following properties:

(i) X is classical for Z;
(i) X is non-classical for X,;
(i) X is Frobenius non-classical for X,.

Plane curves satisfying (i), (ii), (iii) above have been characterized in terms of their
equations [GV], [HK1].

LEMMA 5.1. There exist h, s, zo, ..., zs € Fy[X, Y] such that

W=z + 23X 4 27Y + X 42Xy + 27y (5.1)
and

Sf =20+ 21 XVI 4 2 YV 4 2 X2V9 4 2y (XY)V9 4 25 Y2VA, (5.2)

For a point P = (a, b, 1) € X such that z;(a, b) # 0 for at least one index i, 0 <i <5,
the conic with equation

zo(a, b) + zi(a, b)X + z2(a, b)Y + z3(a, b)X? + z4(a, )XY + zs(a, b)Y?> = 0
is the osculating conic of X at P.

Note that Equation (5.2) is invariant under any change of projective coordinates. To
see how the polynomials z; change, we introduce the matrix

220 Z1 )
A(Zo, ey Z5) = z 223 Z4 , (53)

z3 Z4 225

and use homogeneous coordinates (X) = (Xo, X1, X2). Now, if the change from (X)
to (X”) is given by (X) = A(X") where 4 is a non-singular matrix over I, then (5.2)
becomes, again in non-homogeneous coordinates,

HF =7"+ 2)'x' + 2)"Y + Z{"x* + "X’ Y’ + 2" Y, (5.4)

where H,F,Zy,...,Zs5 € Fq[X’, Y]l and F = 0 is the equation of X with respect to
the new coordinate system. Also,

A(Z(), .. .Zs) = BtrA(Zo, ey Z5)B, (55)

where B is the matrix satisfying BvY = A. If 4 is a matrix over F,, then
Zy, ..., Zs e F[X', Y'], and (5.1) becomes

SF=Zy+ Z\ X'V + Z, YV + Z; X'V 4 Zy(X' Y)W+ Z5Yy'™V9 . (5.6)
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For a rational function u € R(X), the symbol vp(u) denotes the order of u at
P e X. Note that z;, for 0 <i <5, can be viewed as a rational function of
F,(X). We define ep := —ming < < svp(2)).

LEMMA 5.2. For P € X, the order vp(det(A(zy, . . ., z5))) is either 2 + ep or ep accord-
ing as P is an inflexion point or not.

Proof. Take P as the origin and the tangent to X at P as the X-axis. Since P is a
non-singular point of X, there exists a formal power series y(x) € Fq[[x]] of order
> 1, such that f(x,y(x))=0. For 0<i<5, put m; = z;(x, y(x))x*, so that
vp(m;(x)) = 0. From (5.1),

Mo (X)V7 ++ my (xX)VIx 4 ma(x)V7p(x)+
+ m3()VIX? + ma(x)Vxp(x) + ms(x)VIp(x)* = 0.

Putting y = ¢, x* + ..., with ¢; # 0 and k; = vp(m;(x)), the left-hand side is the sum of
six formal power series in the variable x whose orders are as follows:

koﬁ, k1ﬁ+l, kzﬁ-f-s, k3ﬂ+2, k4ﬁ+s+l, ksﬁ-l—ZS.

At least two of these orders are equal, and they are less than or equal to the remaining
four. Because of Lemma 3.6 we have two possibilities:

(1) s :%(\/64— 1), that is, P is an inflexion point, and ko =2, k1 =1, kp > 1,
ky=1, ka=1, ks =0;

(2) s=2, that is, P is a regular point, and ko =1, k; =1, kry =k; =0,
ks =0, ks = 0.

In case (1), det(A(zo(x),...,z5(x))) = x?[ex? +...], where ¢= —cs¢} with
ms(x) =cs+... and my(x) =cix+.... In case (2), det(A(zo(x),...,zs5(x))) =
x?[c+ ...], where ¢ = —c3¢q4 With m3(x) = ¢3 + ..., and my(x) = ¢4 + . ... This com-
pletes the proof of the lemma.

Following [SV, §1], let ¢:X— P° (Fq) be the morphism where
¢(Q) = (29, ...,25), forapoint Q € X,and z; € Iﬁ‘q()(). Since P € X is a non-singular
point of X, there exists a formal power series y(x) € ]Fq[[x]] of order > 1 such that
f(x+a, y(x)+b) =0, where P = (a, b, 1). Let

mi(x) = zi(x + a, y(x) + b)x",
with i =0,...,5. Then we have

d(P) = (mo(x), ..., ms(x)),

which is a primitive branch representation of ¢(P).
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LEMMA 5.3. The degree of ¢(X) is /g + 1.

Proof. Let T denote the cubic hypersurface in PS(]I_?,{) given by (5.3). By the pre-
vious lemma, the intersection multiplicity I(¢(X), X; ¢(P)) of ¢(X) and T at
¢(P) is either 2 or 0 according as P is an inflexion point or a regular point of
X. This shows that ¢(X) is not contained in £. From Bézout’s theorem and Theorem
3.7(2), we obtain 3 deg(¢(X)) = 2.3(,/q + 1)/2, whence deg(4(X)) = /g + 1.

LEMMA 5.4. For a generic point P € X, there exists a hyperplane H such that

() I(p(X), H; $(P)) = /g
(2) the Frobenius image ®(Pp(P)) lies on H.

Proof. Choose a point P = (a, b, 1) € X such that z;(a, b) # 0 for at least one index
i, with 0 <i < 5. Then

d(P) = (z0(a, b), z1(a, b), z2(a, b), z3(a, b), z4(a, b), z5(a, b)).

Note that all points of X, apart from a finite number of them, are of this kind. Let
Xo +oXi + BXo + o2 X3 + aff Xy + BZXS =0 be the equation of the hyperplane H,
where o = av4, B = bv4. There exists a formal power series y(x) of order > 1 such
that f(x + a, y(x) + b) = 0. Putting z;(x) = z;(x + a, y(x) + b), we have

I(H(X), Z; $(P))
= ord{zo(x) + az1(x) + Bz2(x) 4+ 0?23(x) + o fza(x) + f>z5(x)}.

From (5.2) we have

20(x) + 21(x)(x + @)V + 22(X)((x) + b)Y + z3(x)(x + @)Y+
+ 24()((x + @)(W(x) + D)V + z5(x)(p(x) + b)Y = 0.

Since y(x) has order > 1, that is, y(x) = cx +..., then

zo(x) + zl(x)aﬁ + Zz(x)bﬂ+
+ 23(x)a?V? + z4(x)(ab)V? + zs(x)b*V1 + xVi[.. ] = 0,

which proves (1).
To check (2), note that (5.1) yields

zo(a, b)Y + z1(a, b)Y9a+
+ zo(a, bV + z3(a, b)Va® + zu(a, b)V4(ab) + zs(a, b)YIb* = 0.

Thus

zo(a, b)Y + z1(a, b)?a¥? + z5(a, b)1bVi+
+ 23(a. )@V + zy(a, b)(ab)V" + z5(a. BT = 0.
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Since
O(P(P)) = (z0(a, b)!, z1(a, b)?, za(a, b)?, z3(a, b)?, z4(a, b), zs(a, b)?),

and o = av9, p = bV4, so (2) follows.

Now, the linear series of hyperplanes sections of ¢(X) is equivalent to
the base-point-free linear series D — E, where D = P({zp,...,zs5)) and FE :=
Y pexepP. By Lemma 5.3, this linear series is contained in Dy = |(,/q + 1)Pol,
Py € X(Iy), because X is maximal; hence (,/q+ )Py~ /gP + ®x(P) ([FGT,
Corollary 1.2]). Note that we do not assert that equality holds. In fact, this is
the case if and only if ¢(X) is not degenerate, that is, zgp,...,zs are Iﬁ‘q—linearly
independent. This gives the following result.

LEMMA 5.5. The base-point-free linear series of X generated by the curves zy, . . ., zs
is contained in Dy.

The next step is to determine the degrees of the z;.

LEMMA 5.6. The degrees satisfy maxg < ;<5deg(z;) = 2.

Proof. As before, the base-point-free linear series 3> ¢;z; — E on X is contained
in Dy; hence it is contained in the linear series cut out by conics on X, by Theorem
3.5. This implies the existence of constants d/(” such that div(z;) — £ = div(d)),
i=0,...,5, where

di=d(X,Y)=d"" +d\ "X + Y + O X* + d" XY +dsV ¥
Choose an index k such that zx(X, Y) # 0 (mod f(X, Y)). Then
div(z;/zx) = div(d;/dy).

Thus z;(X, Y)d(X, Y) = z; (X, Y)di(X, Y) (mod f(X, Y)). Now, re-write (5.1) in
terms of di(X, Y):

hde = z¥%(doVT + &YX + dYTY + dY" X + d)' XY +dY'Y?) .

Since zx(X, Y) # 0 (mod f (X, Y)), so f(X, ¥) must divide the other factor on the
right-hand side, and hence there exists g € IF,[X, Y] such that

& =d T+ X+ &Y + "X+ ) XY + a7 Y2,

with deg(d)) <2, for i=0,...5. Thus we may assume that g=+/ and
di(X,Y)=1zi(X, Y) all i. It remains to show that at least one of the polynomials
z;(X, Y) has degree 2. However, if deg(z;(X, Y)) < 1 for all i, then the linear series
generated by zg,...,zs would be contained in the linear series cut out by lines.
But this would imply that deg(¢(X)) < (/g + 1)/2, contradicting Lemma 5.3.

LEMMA 5.7. The polynomials h and s in Lemma 5.1 may be assumed to be equal.
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Proof. Since deg(z;) < 2 for all i, we can re-write
20+ 0 XY+ 2 YV + 5 XV 4 (XYY + 25 YV
in the form
wa/q—l—wlﬂX—i—wa—i—wgﬁXz +w2‘/qXY—i—w§/qY2,
where w; € IFj[X, Y] and maxo <;<5deg(w;) = maxo <, <sdeg(z;). Comparing this
with (5.1) we see that z; and w; only differ by a constant in IY, independent of i,
0 < i < 5. Substituting cz; for w; then gives
W VX 7Y+ wYIX 4T XY + Y72
= VA(zoV7 + z}ﬁX + zgﬁY + zgﬁX2 + z;/qXY + zg/qu)
= VIt . (5.7)
Now, by the previous lemma we can write z; explicitly in the form
=+ X+ Y + X+ )XY + 47?2, (5.8)
for i=0,...5. Let t :== ¢V4h; then (5.7) yields that (l}i))ﬂ =ct;Y) for 0 <i,j <5
Putting i=j, this gives ¢v7"! =1. Choose an element k in F, such that
kv~ = ¢, and put d; = k~'z;, 0 <i < 5. Then (5.1) and (5.2) become respectively
nkf = dy" + &YX + &Y + &YX+ dY XY + a7,
th™f = k(dy + di XV9 + dy YV + ds XV + dy(X Y)WV + ds YV,
Put #// = hk=v4 and ¢ = tk~'. Then /' = ¢, and this completes the proof.

Next we determine explicitly the coefficients t}i) given in (5.8) or, equivalently, the
6 x 6 matrix T = (tf-’)). From Lemma 5.7 we can assume that

=, 9

for 0 < i,j < 5. In other words, we can assume that 7" is a Hermitian matrix over

F

ﬁ.

To obtain further relations between elements of 7', we go back to (5.3) and note
that

(det(A(zo, . .., z5))V4 =0

can actually be regarded as the equation of the Hessian curve H(Z) associated to the
algebraic curve Z with equation

Za/q+ZT/qX+ZzﬂY+Z3‘/§X2+Z4\/Z]XY+ZS‘/§Y2 =0;

here z; = z(X, Y). Hence ‘H(Z) is ,/g-fold covered by the curve C with equation
det(A(zg, ..., z5)) =0, and Lemma 5.2 can be interpreted in terms of intersection
multiplicities between C and X; namely, I(C, X; P) is either 2 + ep or ep according
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as P € X is an inflexion point or not. Now, I(H(X), X; P) = s(P) — 2, where H(X) is
the Hessian of X and s(P) := I(X, [; P), with / the tangent to X at the point P; see,
for example, (Wa, Ch.4, §6)) and, for a characteristic-free approach to Hessian
curves, see (OO, Ch.17)). Comparing the intersection divisors C.X and H(X).X,
we see that (n—2)/2 C.X = H(X).X with n= %(ﬂ+ 1). Hence, by Noether’s
“AF + BG” Theorem, (Sei, p. 133), we obtain

(det(A(zo, . . ., z5)))" 2> = AF + BG ,

with F the projectivization of f and A4, B, G homogeneous polynomials in
R[Xo, X1, X»], where G = 0 is the equation of H(X). As det(A(zo, . .., zs)) is a poly-
nomial of degree 6 (cf. Lemma 5.6), while deg(G) = 3(n — 2), so B must be a constant.
This yields that ep = 0 for each P € X. For an inflexion point P € X', we can now
infer from the proof of Lemma 5.2 that if P = (0,0, 1) and / is the X-axis, then
z#0,0)=0,i=0,...4, and thus det(A(zo, ..., z5)) has no terms of degree < 2. This
shows that each inflexion point P of X" is a singular point of C.

By a standard argument depending on the upper bound for the number of singular
points of an absolutely irreducible algebraic curve of degree m, namely
(m — 1)(m —2)/2, it can be shown that C is doubly covered by an absolutely
irreducible cubic curve U of equation u=0, with u homogeneous in

F,[Xo, X1, X»]. Hence,
det(A(zo, ..., z5) = u>. (5.10)

Consider now a minor A; of A(zo, ..., z5), and suppose that A; is not the zero
polynomial. Then A; =0 can be regarded as the equation of a quartic curve Vj;.
Since V;; also passes through each inflexion point of &, so V;; and U have at least
3n common points. On the other hand, deg(V;)deg(lf) =12, and because
3n > 12, so U is a component of V;;. This shows the existence of linear homogeneous
polynomials /y, ..., /s € Fq[Xo, X1, X3] such that

4z3z5 — zi =uly, 2zi1z5— z0z4 = —uly, z1z4 — 22223 = uby, (5.11)

dzyz5 — Z% =uly, 2z0z4 — 2127 = —uly, 4zpzz — Z% = uls. (5.12)

Let L denote the matrix A(ly, /1, bk, I3, I, Is). From elementary linear algebra, A* = ulL
where A* is the adjoint of A(zo, ..., zs), and hence (det(A(zo, . . ., z5)))> = u° det(L).
Comparison with (5.10) gives u = det(L). Thus A* = det(L)L. Also, A(z, ..., zs)
= det(L)L™!; that is,

220 = 1315 — li, Z1 = —(1115 — 1214), Zy = 1114 — 1213, (513)

223 =lols — B,  z4 = —(loly — hilh), 2z5 = lply — 3. (5.14)

Note that we have also seen that I/ has equation det(L) = 0.
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Set

l,-:a,—X+bl-Y+c,-, fOFiZO,2,3,5,
lj:—Cle—biY—C[, fori= 1,4

Now we take an inflexion point P on X to be the origin and the tangent of X at P to
be the X-axis. Also, I(U, X; P) = 1, so Pis a non-singular point of I/, and the tangent
to U at P is not the X-axis. We take this tangent to be the Y-axis. We are going to
prove that the Y-axis is a component of /. A direct computation shows that (5.11)
yields

z20(X,Y)=kY?, (5.15)
Is=asX, withas#0. (5.16)

By (5.9) we also have

Iy ==bsY, by#0. (5.17)
The first relation in (5.11), again with u = det(L), together with (5.15) and (5.16)
yields

3 =0. (5.18)

Then, with the unit point suitably chosen, we may also assume that
z0(X,Y) =172, (5.19)
Again, a certain amount of computation shows that (5.9) yields

bobs — 2b1by = 0, (5.20)
C0b4 — 2C]b2 =0. (5.21)

LEMMA 5.8. If P € X is an inflexion, then U has a linear component through P.

Proof. We prove that the Y-axis is a linear component of U{. Equivalently, we
can show that X is a factor of det(L). By (5.16) and (5.18), we must check that
X divides Ilyly — 2415, By (5.16) and ¢, =0, this occurs if the polynomial
(bobg — 2b1by) Y?* + (cobsy — 2¢1b1)Y is identically zero. Hence the result is a conse-
quence of (5.20) and (5.21).

It was shown in Theorem 3.7 that X" has 3(,/g + 1)/2 inflexion points altogether,
and each one lies on a linear component of .

COROLLARY 5.9. The cubic U splits into three distinct lines.
Some more computations depending on (5.9) together with a suitable change of
coordinates give the following result.
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LEMMA 5.10. There exist ay, a», as € Fﬁ such that

10 = Cl()X, 11 = 1,12 = —azX, 13 = 0, 14 = —Y, 15 = a5X, (522)
0= —3Y 21 = —asX + XY,z = -7, (5.23)
z3 = Yaoas — @3)X?, zs = aXY — ax X, z5 = —1/2. (5.24)

Now we want to show that, if R = (0, ) is any further inflexion point of X lying on
the Y-axis, then the tangent line » to X at R has equation Y = 7. To do this it is
sufficient to check that the curve Z with equation

ZG/E+ZI/EX+ZE/EY+Z§MX2+ZfXY+z§/EY2=O

has a cusp at R, that is, a double point with only one tangent, such that the tangent is
the horizontal line Y = 5. Applying the translation X’ = X, Y’ = Y — 5, the curve Z
is transformed into the curve with equation

T+ 0T+ — 1Y +a =0,

where o represents terms of degree at least 3. Since this curve passes through the
origin, we have nv? + 5 = 0. Hence, the lowest degree term is —% Y? and so the origin
is a cusp with tangent line Y = 0, as required. This gives the following situation.

THEOREM 5.11. There exists a triangle such that the inflexion points of X lie
%(\/?1+ 1) on each side, none a vertex, and the inflexional tangents pass
%(\/c’[ + 1) through each vertex, none being a side.
We are now in a position to prove the main result, Theorem 1.1, stated in Section 1.
Let n = (/g + 1)/2. We choose the triangle 7 of Theorem 5.11 as triangle of
reference, and denote the inflexions on the X-axis by (£;,0), i =1...n, and those
on the Y-axis by (0,#,), i =1...n. Also, without loss of generality, we may assume
that " +1 =0 and ;" + 1 = 0. Write f(X, Y) in the form
f=aX)Y"+... +a(X)Y"7 + ...+ a,(X),

with a,(X) of degree i in IV [X].
Since (&;, 0) lies on X, so a,,(¢;) = 0. Since the line x = £; is the inflexional tangent at

(¢, 0), so

aEHY"+... +a1(&)Y =0
has n repeated roots. So

ai($) = ... = ap-1(&) = 0. (5.25)
Since (5.25) is true for all &,

aX)=...=a,_1(X)=0.

Hence it follows that f(X,Y)=aoY" + a,(X). A similar argument shows that
f(X,Y)=boX"+b,(Y). Thus f(X,Y)=apX"+byY" + ¢y, and it only remains
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to compute the coefficients. Since f(&,0) =0 and &," +1 =0, we have ay = ¢.
Similarly, from #n,” + 1 = 0 we infer by = cp. This completes the proof.
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