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Abstract

Given two sets A, B ⊆ Fq of elements of the finite field Fq of q elements, we show that the product set

AB = {ab | a ∈A, b ∈ B}

contains an arithmetic progression of length k ≥ 3 provided that k < p, where p is the characteristic of
Fq , and #A#B ≥ 3q2d−2/k . We also consider geometric progressions in a shifted product set AB + h,
for f ∈ Fq , and obtain a similar result.
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1. Introduction

There is a very extensive variety of results establishing the existence of long arithmetic
progressions that occur in various sets. One of the most celebrated special cases of this
problem is the question about arithmetic progressions that occur in sufficiently dense
sets of integers; see [9, Chs 10 and 11] for an exhaustive treatment of this problem.

Furthermore, this problem has also been considered for sum sets

A+ B = {a + b | a ∈A, b ∈ B}.

One can find a detailed outline of recent achievements in this direction
in [9, Ch. 12].

For the set of primes a striking result, due to Green and Tao [5], asserts that there
are arbitrary long arithmetic progressions of primes.

Although most commonly these questions have been considered for sets of integers,
there are also several very significant results for sets of elements of finite fields and
residue rings. For example, Green [4] has shown that for some absolute constant c > 0
and two subsets A, B ⊆ Z/mZ of the residue ring modulo a sufficiently large positive
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358 I. E. Shparlinski [2]

integer m, of cardinalities #A≥ αm and #B ≥ βm, the sum set A+ B contains a
k-term arithmetic progression with

k ≥ exp 3(c((αβ log m)1/2 − log log m)).

It has also been shown by Ruzsa [8] that for any ε > 0 and sufficiently large prime
p there is a set A⊆ Z/pZ of cardinality #A≥ (0.5− ε)p such that A+A does not
have an arithmetic progression of length

k ≥ exp((log p)2/3+ε).

It also follows from a result of Croot et al. [3, Corollary 1] that if A, B ⊆ Z/mZ
are such that

#A#B ≥ 6m2−2/(k−1) (1)

for some integer k ≥ 3, then set A+ B contains an arithmetic progression λ+ jµ,
j = 0, . . . , k − 1, with λ ∈ Fq , µ ∈ F∗q , of length at least k (provided that N is large
enough).

Here we consider product sets

AB = {ab | a ∈A, b ∈ B},

where A, B ⊆ Fq are sets of elements of the finite field Fq of q elements. We show
that if

#A#B ≥ 2q2−1/(k−1), (2)

then AB contains a k-term geometric progression, that is, there are k pairwise distinct
elements of the form λµ j , j = 0, . . . , k − 1, for some λ, µ ∈ F∗q . Note that the
bound (2) is of the same shape as (1) even if they are based on different techniques;
in particular, they are nontrivial up to the values of k of order log m and log q ,
respectively.

Furthermore, Borenstein and Croot [2] have studied the existence of long geometric
progressions in sufficiently ‘massive’ subsets S ⊆A+ B of a sum set. For the easier
case when S =A+ B stronger results are given by Ahmadi and Shparlinski [1], where
several variations of this problem are also considered.

Certainly the existence of long geometric progressions in product sets AB for
A, B ⊆ Fq is essentially equivalent to the problem of the existence of long geometric
progressions in sum sets in the residue ring Z/(q − 1)Z. However, the question about
geometric progressions in shifted product sets

AB + h = {ab + h | a ∈A, b ∈ B},

where h ∈ Fq , seems to be more interesting and we address it as well.
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2. Arithmetic progressions in product sets

THEOREM 1. For any integer k with p > k ≥ 3, where p is the characteristic of Fq ,
and any two sets A, B ⊆ Fq with

#A#B ≥ (k − 1)2/(k−1)q2−1/(k−1),

the product set AB contains a k-term arithmetic progression.

PROOF. It is enough to show that the system of equations

λ+ ( j − 1)µ= a j b j , λ ∈ Fq , µ ∈ F∗q , a j ∈A, b j ∈ B, j = 1, . . . , k, (3)

has a solution.

Let X be the set of all q − 1 multiplicative characters of Fq ; see [7, Ch. 3] for a
background. Using the orthogonality property of characters (see [7, Section 3.1]), we
write the following for the number of solutions T to Equation (3):

T =
1

(q − 1)k
∑
λ∈Fq

∑
µ∈F∗q

∑
a1,...,ak∈A

∑
b1,...,bk∈B

k∏
j=1

∑
χ j∈X

χ j (λ+ ( j − 1)µ)χ j (a j b j )

=
1

(q − 1)k
∑
λ∈Fq

∑
µ∈F∗q

∑
a1,...,ak∈A

∑
b1,...,bk∈B

∑
χ1,...,χk∈X

×

k∏
j=1

χ j (λ+ ( j − 1)µ)χ j (a j b j ),

where χ is the complex conjugate character. After changing the order of summation
and separating the term q(q − 1)(#A#B)k/(q − 1)k corresponding to the case when
all characters χ1, . . . , χk are principal, we obtain

T −
q(#A#B)k

(q − 1)k−1 =
1

(q − 1)k
∑
∗

χ1,...,χk∈X

(∑
λ∈Fq

∑
µ∈F∗q

k∏
i=1

χi (λ+ (i − 1)µ)
)

×

k∏
j=1

(∑
a j∈A

χ j (a j )
∑
b j∈B

χ j (b j )

)
,

where
∑
∗ means that the term where all characters χ1, . . . , χk are principal is

excluded from the summation.
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Furthermore,∑
λ∈Fq

∑
µ∈F∗q

k∏
i=1

χi (λ+ (i − 1)µ) =
∑
µ∈F∗q

∑
λ∈Fq

k∏
i=1

χi (λ+ (i − 1)µ)

=

∑
µ∈F∗q

∑
λ∈Fq

k∏
i=1

χi (λµ+ (i − 1)µ)

=

∑
µ∈F∗q

k∏
i=1

χi (µ)
∑
λ∈Fq

k∏
i=1

χi (λ+ i − 1).

Again, the orthogonality property of characters, see [7, Section 3.1], implies that the
sum over µ vanishes unless χ1, . . . , χk is the trivial character χ0, in which case it is
equal to q − 1.

Since k < p we see that the Weil bound applies to the sum over λ (see [7,
Theorem 11.23]) and yields the inequality∣∣∣∣∑

λ∈Fq

k∏
i=1

χi (λ+ i − 1)

∣∣∣∣≤ (k − 1)q1/2.

Therefore,∣∣∣∣T − q(#A#B)k

(q − 1)k−1

∣∣∣∣≤ (k − 1)q1/2

(q − 1)k−1

∑
∗

χ1,...,χk∈X
χ1...χk=χ0

k∏
j=1

(∣∣∣∣∑
a j∈A

χ j (a j )

∣∣∣∣∣∣∣∣∑
b j∈B

χ j (b j )

∣∣∣∣).
Since χk is uniquely defined when χ1 . . . χk−1 are fixed, then, using the trivial estimate∣∣∣∣∑

a j∈A
χ j (a j )

∣∣∣∣∣∣∣∣∑
b j∈B

χ j (b j )

∣∣∣∣≤ #A#B,

we obtain∣∣∣∣T − q(#A#B)k

(q − 1)k−1

∣∣∣∣
≤
(k − 1)q1/2#A#B
(q − 1)k−1

∑
∗

χ1,...,χk−1∈X

k−1∏
j=1

(∣∣∣∣∑
a j∈A

χ j (a j )

∣∣∣∣∣∣∣∣∑
b j∈B

χ j (b j )

∣∣∣∣)

≤
(k − 1)q1/2#A#B
(q − 1)k−1

∑
χ1,...,χk−1∈X

k−1∏
j=1

(∣∣∣∣∑
a j∈A

χ j (a j )

∣∣∣∣∣∣∣∣∑
b j∈B

χ j (b j )

∣∣∣∣).
Since the last sum is the (k − 1)th power of the same sum,∣∣∣∣T − q(#A#B)k

(q − 1)k−1

∣∣∣∣≤ (k − 1)q1/2#A#B
(q − 1)k−1

(∑
χ∈X

∣∣∣∣∑
a∈A

χ(a)

∣∣∣∣∣∣∣∣∑
b∈B

χ(b)

∣∣∣∣)k−1

. (4)
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Applying the Cauchy inequality, we derive(∑
χ∈X

∣∣∣∣∑
a∈A

χ(a)

∣∣∣∣∣∣∣∣∑
b∈B

χ(b)

∣∣∣∣)2

≤

∑
χ∈X

∣∣∣∣∑
a∈A

χ(a)

∣∣∣∣2 ∑
χ∈X

∣∣∣∣∑
b∈B

χ(b)

∣∣∣∣2
=

∑
a1,a2∈A

∑
χ∈X

χ(a1)χ(a2)
∑

b1,b2∈B

∑
χ∈X

χ(b1)χ(b2).

Now, using the orthogonality property of characters yet one more time, we see that
each of the inner sums is equal to q − 1 for a1 = a2 and b1 = b2, respectively, and is
equal to 0 otherwise. Therefore,

∑
χ∈X

∣∣∣∣∑
a∈A

χ(a)

∣∣∣∣∣∣∣∣∑
b∈B

χ(b)

∣∣∣∣≤ (q − 1)
√

#A#B,

which, after substitution in (4), yields the inequality∣∣∣∣T − q(#A#B)k

(q − 1)k−1

∣∣∣∣≤ (k − 1)q1/2(#A#B)(k+1)/2.

We now see that T > 0 provided that

q(#A#B)k

(q − 1)k−1 > (k − 1)q1/2(#A#B)(k+1)/2

or

(#A#B)(k−1)/2 > (k − 1)(q − 1)k−1q−1/2,

which concludes the proof. 2

Since

(k − 1)2/(k−1)
≤ 2

for k ≥ 3, we see that (2) implies the condition of Theorem 1.
We notice that Theorem 1 implies that product sets of dense sets contain long

arithmetic progressions.

COROLLARY 2. Let q = p be prime. For any α, β > 0 there exists κ > 0 such that,
for a sufficiently large prime q = p and any sets A, B ⊆ Fp with

#A≥ αp, #B ≥ βp,

the product set AB contains a k-term arithmetic progression of length k ≥ κ log p.
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3. Geometric progressions in shifted product sets

THEOREM 3. For any integer k ≥ 3, any two sets A, B ⊆ Fq with

#A#B ≥ (4k − 4)2/(k−1)q2−1/(k−1),

and any h ∈ F∗q , the shifted product set AB + h contains a k-term geometric
progression.

PROOF. We can assume that

k ≤ 1
4q1/2

+ 1 (5)

since otherwise the result is trivial. Since we also have k ≥ 3 this implies that

q ≥ 67. (6)

Let M be the set of µ ∈ F∗q for which 1, µ, . . . , µk−1 are pairwise distinct. Clearly

q − 1≥ #M= q − 2−
k−1∑
j=2

( j − 1)= q − 2−
(k − 1)(k − 2)

2
. (7)

As in the proof of Theorem 1, we note that it is enough to show that the system of
equations

λµ j−1
= a j b j + h, λ ∈ F∗q , µ ∈M, a j ∈A, b j ∈ B, j = 1, . . . , k, (8)

has a solution.
Arguing as in the proof of Theorem 1, we obtain the following result for the number

of solutions Q to Equation (3):

Q −
(#A#B)k#M
(q − 1)k−1 =

1
(q − 1)k

∑
∗

χ1,...,χk∈X

( ∑
λ,µ∈F∗q

k∏
i=1

χi (λµ
i−1
− h)

)

×

k∏
j=1

(∑
a j∈A

χ j (a j )
∑
b j∈B

χ j (b j )

)
. (9)

We note that

∑
λ∈F∗q

∑
µ∈M

k∏
i=1

χi (λµ
i−1
− h)=

∑
λ∈F∗q

χ1(λ− h)
k∏

i=2

χi (λ)
∑
µ∈M

k∏
i=2

χi (µ
i−1
− h/λ).
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Using (7), we derive∣∣∣∣∑
λ∈F∗q

∑
µ∈M

k∏
i=1

χi (λµ
i−1
− h)

∣∣∣∣
≤

∑
λ∈F∗q

(∣∣∣∣∑
µ∈F∗q

k∏
i=2

χi (µ
i−1
− h/λ)

∣∣∣∣+ (k − 1)(k − 2)
2

)

≤

∑
λ∈F∗q

∣∣∣∣∑
µ∈F∗q

k∏
i=2

χi (µ
i−1
− h/λ)

∣∣∣∣+ (k − 1)(k − 2)
2

(q − 1).

We see that the polynomial X − h/λ has a common root with the polynomial
X i−1

− h/λ, i = 3, . . . , k, if and only if (h/λ)i−2
= 1, which happens for at most

i − 2 values of λ ∈ F∗q . Therefore, for all but

k∑
i=3

(i − 2)=
(k − 1)(k − 2)

2

values of λ ∈ F∗q , the Weil bound applies to the sums over µ (which we estimate
trivially as q − 1 for the other values of λ). Therefore,∣∣∣∣∑

λ∈F∗q

∑
µ∈M

k∏
i=1

χi (λµ
i−1
− h)

∣∣∣∣
≤ (k − 1)(q − 1)q1/2

+ (k − 1)(k − 2)(q − 1) < 2(k − 1)(q − 1)q1/2

under the conditions (5) and (6).
Inserting this bound into (9), we obtain∣∣∣∣Q − (#A#B)k#M

(q − 1)k−1

∣∣∣∣= 2(k − 1)q1/2

(q − 1)k−1

∑
∗

χ1,...,χk∈X

k∏
j=1

(∑
a j∈A

χ j (a j )
∑
b j∈B

χ j (b j )

)
.

Now, as in the proof of Theorem 1, we obtain∣∣∣∣Q − (#A#B)k#M
(q − 1)k−1

∣∣∣∣< 2(k − 1)q1/2(#A#B)(k+1)/2.

Using (5) and (6), we derive from (7) that #M≥ (q − 1)/2, so

Q >
(#A#B)k

2(q − 1)k−2 − 2(k − 1)q1/2(#A#B)(k+1)/2,

which concludes the proof. 2

We remark that
(4k − 4)2/(k−1)

≤ 8

for k ≥ 3.
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Similarly to Corollary 2, we also derive that shifted product sets of dense sets
contain long geometric progressions.

COROLLARY 4. For any α, β > 0 there exists κ > 0 such that for any sets A,
B ⊆ Fq with

#A≥ αq, #B ≥ βq,

and any h ∈ F∗q , the shifted product set AB + h contains a k-term geometric
progression of length k ≥ κ log q.

4. Comments

It is certainly interesting to understand how tight the results of Corollaries 2 and 4
are. For example, using the Burgess bound (see [7, Theorem 12.6]) one sees that if
q = p is prime and A= B are the sets of quadratic residues modulo p, then the longest
arithmetic progression contained in AB is of length at most p1/4+o(1).

The above method can easily be adopted to study arithmetic and geometric
progressions where one of the parameters λ or µ is fixed. It can also be used to study
more general polynomial structures in product sets.

The same technique also applies to sets in residue rings Z/mZ; however, unless m
is square-free, or almost square-free, instead of the Weil bound we only have a much
weaker bound of Ismoilov [6] at our disposal. Thus the final results will be weaker
than those of Theorems 1 and 3.

It would be interesting to relax the condition k < p in Theorem 1 and thus extend
Corollary 2 to arbitrary finite fields.
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