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RINGS WHOSE ADDITIVE ENDOMORPHISMS
ARE RING ENDOMORPHISMS

MANFRED DUGAS, JUTTA HAUSEN AND JOHNNY A. JOHNSON

A ring R is said to be an AE-iing if every endomorphism of its additive group R+

is a ring endomorphism. Clearly, the zero ring on any abelian group is an AE-ring.
In a recent article, Birkenmeier and Heatherly characterised the so-called standard
AE-lings, that is, the non-trivial AE-lings whose maximal 2-subgroup is a direct
summand. The present article demonstrates the existence of non-standard AE-
rings. Four questions posed by Birkenmeier and Heatherly are answered in the
negative.

1. INTRODUCTION

In 1977, Sullivan posed the problem of characterising all rings R with the property
that every endomorphism of its additive group R+ is, in fact, a ring homomorphism [9].
It is convenient to call such a ring an AE-ring [3]. In 1981, Kim and Roush characterised
all finite AE-rm.gs [7], and in a recent paper Feigelstock extended this characterisation
to the AE-rings R whose additive group is a torsion group [3]. Birkenmeier and
Heatherly solved Sullivan's problem for the case that the 2-component R2 of R+ is a
direct summand [1]. Without explicitly addressing the problem, they hinted that this
need not always be the case [1, Theorem 8(ii)], and posed four questions:

QUESTION I. Are all -AJE-rings commutative?

QUESTION II. Is every subdirectly irreducible homomorphic image of an .4.E-ring also
an >l.E-ring?

QUESTION III. Is every homomorphic image of an AE-ring an AE-ring?

QUESTION IV. If R is an AE-ring in which x2 = 0 for each x G R, is R2 — 0?
We will show that the answer to each of these questions is negative. For this,

we need to consider j4J5-rings R whose 2-component is not a direct summand (we
will term such .A.E-rings non-standard). It is shown that any non-standard j4i5-ring
R must be close to a zero ring in the sense that R • (tR + 2R) - 0 = (tR + 2R) • R
where tR denotes the maximal torsion subgroup of R+ , and R3 = 0. An example will
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be constructed which demonstrates that non-standard .4.E-rings exist which are not
zero rings. It should be noted that a similar construction yields an abelian group G

which supports 22 ° pairwise non-isomorphic AE-rings. Thus, there is little hope for
a complete solution to Sullivan's problem.

Abelian group notation will follow Fuchs' monographs [4, 5]. In particular, o(a)

denotes the order of an element a in the group A, and \A\ is the order of A; the
subgroup of A consisting of all elements of 2-power order is denoted by A2, and A[2]

is the subgroup consisting of all elements of order at most 2. As is customary, 2"A =

P| 2nA, and R = I + J denotes the ring direct sum of the ideals I and J. For ease
n<a>

of reference, we collect some results due to Feigelstock:

LEMMA 1 . 1 . [3] Let R be an AE-ring. Then

(1) If R+ =A@B then A and B are ideals of R and R = A + B.

(2) R2 C R[2].

(3) If R2 ^ 0 then R2 is reduced.

2. STANDARD AE-RIUGS

Given an abelian group A, a ring on A is a ring R such that R+ = A. The zero
ring on A is the ring R on A with trivial multiplication: R? = 0. Obviously, the zero
ring on any abelian group A is an AE-ring. By a non-trivial AE-ring we shall mean
an .A-E-ring R with R2 ^ 0.

Birkenmeier and Heatherly characterised the .AiJ-rings R whose 2-component is a
direct summand [1, Theorem 4]. We have an alternate condition:

PROPOSITION 2 . 1 . Let R be an AE-ring such that R2 ^ 0. Then R2 is a
direct summand of R if and only if R2 £ 2UR.

PROOF: By [1, Theorem 4], R2 being a direct summand of R implies R2 bounded
so that 2"R = 0. Conversely, assume R2 <£ 2"R. Frequent use will be made of 1.1. Let
x and y be elements of R such that xy $. 2UR. Then xy £ R[2] has finite 2-height
n - 1 ^ 0. If xy = 2n~1c for some c £ R then c has order 2n and [4, p.117, 27.1]
implies R+ = (c) @ W. Hence R = (c)-f W. Let p and q be integers and v,w £ W

such that x = pc + v and y = qc + w. Then 2n~1c — xy = pqc2 + vw which implies
pq is odd and c2 = 2 n - 1 c . Assume, by way of contradiction, that R2 is unbounded.
Since R2 is reduced, there exists a decomposition W = (d) © X with o(d) = 2m for
some m ^ 2n. It follows that there is / £ End(R+) such that /(<£) = c and /(c) = 0.
Lemma l(ii) of [1] implies c2 — 0 which is a contradiction. By [1, Corollary 5], R2 is
a direct summand. U

THEOREM 2 . 2 . Let R be a ring. Then R is an AE-ring with R2 <£ 2UR if and
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only if

R={c)+S + N

with o(c) = 2 n , n a positive integer, c2 - 2n~1c, 5 and N zero rings with 2n~1S = 0,
N2 = 0 and N = 2N.

PROOF: Again, 1.1 will be used without mention. Assume, firstly, that R is an
AE-ring such that R2 <£ 2"R . By 2.1, we may apply Theorem 4 of [1]. Using the
notation of [1], it remains to show that N is 2-divisible. Since N2 = 0, the torsion
subgroup tN of N is 2-divisible. Assume N ^ 2N. Then N/tN is a torsion-free
abelian group which is not 2-divisible and as such has a quotient group isomorphic
to Z(2n) ~ C. Let g e Hom(N+,R+) with g(N) = C. By [1, Theorem 4(iii)],
g(N) • R2 = 0 contradicting C • C ^ 0. Thus N = 2N. For the reverse implication,
assume R is as stated. Then R2 is a direct summand, R2 is bounded, and the 2-
divisibility of N implies Hom(N+,R£) = 0. By [1, Theorem 4] R is an AE-ring. D

We shall call the .AiJ-rings described in 2.1 the standard AE-rings. Thus R is
standard if R2 <£ 2WR. Every non-trivial torsion AE-ring is standard [3].

One verifies that an abelian group A which supports one standard j425-ring will
support no other .4..E-ring except for the zero ring. This will be different in the case of
non-standard AE-rings.

3. NON-STANDARD 4-E-RINGS

An .A.E-ring R is called non-standard if R2 C 2WR and R is not trivial, that is,
R2 ^ 0. We have the following result.

PROPOSITION 3 . 1 . Let R be a non-standard AE-ring. Then necessarily R •
{tR + 2R) = 0 = (tR + 2R) • R. In particular, Rs = 0.

PROOF: Assume, by way of contradiction, there exist elements x 6 tR and r £ R
such that R • (x + 2r) ^ 0. Since 2R2 = 0 it follows that Rx^Q and R • x = R • a
for some a £ R of 2-power order. Pick c £ R2 of minimal order satisfying R • c ^ 0.
Let o(c) — 2n . Then n is positive and, by 1.1(2), c has height zero. We claim
that (c) is a direct summand of R+. By [4, p.117, 27.1], it suffices to show that
(c) D 2nR = 0. Assume there exists an integer m and an element s G R such that
2mc = 2ns ^ 0. Then 1 ^ m < n which implies c - 2n"ma G R2 of order at most
2m. Since R • (c - 2n~ma) = Rc^O, this contradicts the minimality of the order of
c. Thus (c) is a direct summand of R+. From 1.1(1) we have 0 ^ R • c C (c). Since
(c) D 2"R - 0, this is a contradiction. Similarly, (tR + 2R) • R = 0. D

In order to demonstrate the existence of non-standard j4JE-rings the following the-
orem is needed. Given two abelian groups G and H, the set of all homomorphisms
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<f> : G —> H with Im<j> a bounded torsion group is denoted by Homi,(G, H). Through-
out, P denotes Priifer's 2-group and a G P has the property that (a) = 2UP ~ Z{2) [4,
p. 150]. The set of all endomorphisms of a group G which are integral multiplications
is denoted by Z • \G •

THEOREM 3 . 2 . Let G be an abelian group such that tG = P, G ^ tG + 2G,
and assume that EndG = Z • 1Q © Homb(G,P). Then G supports a non-standard
AE-ring. In fact:

(1) if K is a subgroup of G containing tG + 2G and X is a set of elements
in G which is minimal with respect to the set {x + K \ x G X} being a
basis of G/K, then, given any map f : X X X —» 2UP, there exists an
AE-ring R with R+ = G such that R K - 0 = KR and xy = f(x,y)
for all (x,y)<E X xX;

(2) if G/(tG + 2G) has infinite dimension 8 over Z 2 , tien there exist 26

pairwise non-isomorphic AE-rings on G.

PROOF: Let n : G —» G/K denote the natural epimorphism, and consider any
77 G Hom(G/K <8> G/K^P). Define p: G®G -+ 2WP by fi = rj o (TT <g> n). Then \i
is a homomorphism and, defining a multiplication -,, on G by g -v h = /j.(g ® h) for all
g,h G. G makes G into a ring R — Rr, (which, in general, need not be associative) [5,
p. 281]. In our case, gvh = r][(g + K)®(h + K)] which implies RVK -0 = KVR; by
construction, RVR C Imt] < 2"P < K Hence, R3 = 0 which implies that R, in fact, is
associative. We claim that, for every 77 G Hom(G/K <8» G/K,2UP), the ring R = R^, is
an AE-ring. Let e be an endomorphismof R+ = G. By hypothesis, e = n-la+P with
n e Z and Im/3 bounded. It follows that (3(2UP) = 0 and 0(G) C K. Let g, h G G.
Then, skipping the subscript 77, we have e(^) • e(h) = (ng + /3(g)) • (nh + P(h)) = n2gh,
and e(gh) = ngh + P{gh) = ngh. Since gh G 2UP = (a) and na — n2a for all integers
n, we have shown that R is an .A.E-ring. In order to verify (1), let / : X x X —> 2UP
be a map. Since the set B = {n(x) ® n(y)\(x,y) G X x X} is a basis for the vector
space G/K ®G/K [5, p.255, (I) and (H)] and (x,y) •-> ir(x) <g> n(y) defines a bijection
between X x X and B, there exists a homomorphism a : G/K <g> G/K -> 2"P ~ Z(2)
such that, for all (x,y) G X x X, <r[ir(x) ® w(y)] = f(x,y). If 5 = Ra then 5 is an
.A.E-ring on G and, for all x,y G X, we have x -a y = <r[ir(x) ® ir(y)] = f(x,y) as
claimed. In order to verify (2), note that

Hom{G/K ® G/K,2UP) ~ [ ] Hom((n(x)) ® (7r(j/)), (a))

which has cardinality 2s if \X\ = 6 is infinite. Let i],<r G Hom(G/K ® G/K,{a)).
Assume the resulting .AJE-rings R,, and Ra are isomorphic and let a be a ring isomor-
phism between them. Then a would have to be an automorphism of the underlying

https://doi.org/10.1017/S0004972700037047 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700037047


[5] Ring endomorphisms 95

additive group, G, in particular a = n • \Q + /? with /3(G) bounded. It follows that
/3(a) = 0, P{G) ^ K and a = a(a) = n(a) so that n is odd. Being a ring isomorphism,
we have a(g -v h) — a(g) -a <x(h) for all g, h £ G and consequently r){ir^g) ® 7r(/i)) =
n77(7r(5) ® ir(h)) = n(g •„ ft) = a(</ -, A) = {ng + 0(g)) •, (nfc + /?(/»)) = (n$) . , (nh) =
n2(g •„ h) = (g-a h) — <r(ir(g) ® ir(h)). It follows that TJ = a. This completes the
proof. D

The last section of our paper is devoted to the proof of

PROPOSITION 3 . 3 . TAere exists an abelian group G satisfying the hypothesis
of 3.2 such that G/(tG + 2G) has rank two.

Proposition 3.3 enables us to answer all four question posed in the Introduction in
the negative:

COROLLARY 3 . 4 . Not every AE-ring is commutative.

COROLLARY 3 . 5 . There exists an AE-ring R such that r2 = 0 for all r G R
but R2 ^ 0 .

PROOF OF 3.4 AND 3.5: Let G be the group of 3.3. Put tG + 2G = K and let
x,y e G such that G/K = (x + K) ® (y + K). By 3.2, there exists an AE-rmg R
with R+ = G such that x • y — a and y • x = 0. Thus R is not commutative, proving
3.4. Similarly, there exists and AE-ring S with S+ = G such that x2 = 0 = y2 and
x • y = a — y • x. Let r G R. Then r — mx +ny + k for some integers m and n and
some k £ K, and

r • r = m x + mnx • y + nmy • x + n y = 2mna = 0

proving 3.5. u

Thus, Questions I and IV of [1] have negative answers. As pointed out by Birken-
meier and Heatherly, an affirmative answer to II would imply that every AE-ring is
commutative. This follows from the fact that every subdirectly irreducible AE-ring is
commutative [1, Theorem 13(iii)] and the well known theorem that every ring it! is a
subdirect sum of a product of subdirectly irreducible quotient rings of itself [8, p. 129,
Theorem 34]. It thusly follows from 3.4 that Question II has a negative answer as well
(and, hence, so does III).

In order to give a concrete example we include

PROPOSITION 3 . 6 . Not every subdirectly irreducible homomorphic image of
an AE-ring is an AE-ring.

PROOF: Let G be the group of 3.3. Then there exists x e G and a subgroup A of
G such that tG + 2G < A and G/A = {x + A) ~ Z(2). By 3.2, there exists an AE-ring
R on G with x2 = a and R • A — 0 = A • R. Let B be a basic subgroup of P such
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that P/B ~ Z{2°°). Then (P/B)[2] = (a + B). Since x £ A, the order of x must be
infinite so that (x + B) t~\ P/B = 0. Divisible subgroups are absolute direct summands.
Thus G/B = P/B © C/B for some subgroup C of G with B < C and x £ C. Put
4 n C = / . Then 7 is an ideal of R and x £ I since x £ A. Also, since a G P \ B,
we have a £ C so that a £ I. By construction, (x -(- 7) = x 2 + 7 = a + 7 ^ 0 which
shows that / ? / / is not a zero ring. Since G = A + (x) = A + C we have

A/I = A/{A HC)~(A + C)/C = G/C ~ (G/B)/(C/B) ~ P/£ ~ Z(2°°) .

Thus {R/I)+ = G/7 = A/I + (x + 1} and x $ I but 2x £ 4 H C = I which implies
(R/I)+ = A/I ® (x + I) ~ Z(2°°) © Z(2). It follows from 1.1(3) that R/I cannot be
an AE-ring. In order to verify that R/I is subdirectly irreducible, it suffices to show
that every nonzero ideal of R/I contains (a + I). Since a • R = 0 — R • a, (o + /) is
clearly an ideal and a + I ^ 0. Let J be a nonzero ideal of R/I. Then there exist
y G A and an integer n such that O ^ y + n x + J e J , and we can choose n = 1 or
n = 0. If n = 1 then (y + x + /)(x +J ) = a + / G J as claimed. Suppose n = 0.
Then y £ i \ C and G = P + C with P < A implies y = z + i with 0 ̂  z G P and
i = y - z £ C n A r / . Since y <£ I we have z g £ . From (P/B)[2] = {a + B) we
infer 2mz + B = a + B for some positive integer m. Thus

a + 7 = 2mz + / = 2m(z + i) + 7 = 2my + 7 G J

completing the proof. D

4. THE PROOF OF 3.3

Throughout, we let T = ®n<uZ(2n), and f denotes the 2-adic completion of
T. Then T < f < EL-cw^2") ' a n d e v e ry endomorphism <f> of T can be extended
uniquely to an endomorphism of T. Let ir :T —* T/T denote the natural epimorphism.
Note that the group f/T is divisible.

We start with a general construction using ideas from [2].
A. Let B be any torsion-free group such that EndB = Z • l g , and let / : B —> T

be a set function. If TT o / G Hom(B,T/Tj is a homomorphism we say that / is
eligible. Assume / is eligible. Define

Bf = {(< + /(&),b)\t €T,beB}CT®B.

One verifies the following. We will identify f with T© 0.
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4 . 1 . Bf is a subgroup off®B with torsion part tBj = T, and Bf/tBf ~ B.

4 . 2 . EndBf = Z • lB, ® Hom(Bf, T).

4 . 3 . If g : B —> T is a set function such that irog — no f then Bg = Bj.

4 . 4 . Bf splits if and only if there exists a homomorphism rj: B —• T such that
IT o f = ir orj.

For <f> £ Hom(T, T), its unique extension to T will be denoted by <f>. Note that /

eligible implies <f> o / eligible.

4 . 5 . Given <f> £ Hom(T,T), there exists 0 £ Hom(Bf,T) extending tj> if and
only if B-?o , splits.

PROOF: Suppose, firstly, that B-?o. splits. It follows that there exists a homomor-
phism <r : B-y . —> T such that a o i = IT where i : T —» Br- , denotes the inclusion
*- 4,0] *• ^0/

map. One verifies that <j>® 1 B £ EndiT® B) induces a homomorphism from Bf to

5 j o . . Let 9 = a o [<f>@\B\\Bf. Conversely, suppose there exists a 0 as stated. In

particular, 0(*,O) = 4>{t) for all t £ T . Define 77: fi -> f by 77(6) = £(/(&)) - 6{f{b),b)

for all 6 £ B. Then iror) = iro<t>o f. By (4), it suffices to show TJ is a homomorphism.
Let b,b' £B. There exists t £ T such that f{b + b') = f(b) + f(b') + t. Hence

r,(b + b') = £ ( / ( * ) + /(&') + 0 ~ « ( / ( * ) + / ( * ' ) + t,b + b')= 7,(6) + 7,(6')-

a
B . We now specify the torsion-free group B. Let 3i denote the ring of 2-adic

integers, and let p £ J2 be transcendental over the rational integers Q . For each
natural number n we have

p = sn + 2npn

with sn £ Z and p n £ J2. Let

and let fl be a subring of Z(2), the integers localised at 2, containing Z. The set
RB — {rb\r £ R, b £ 5 } C J2 is an additive group.

4.6 . End(RB) = RlRB.

PROOF: Let e be an endomorphism of RB and 7 = e(l) £ i2B. Since, for each

n, p = sn + 2n
Pn, e{P) = e(sn) + 2ne(Pn) = sne{l) + 2np'n = anl + 2n

P'n. Hence e(p) =
limn-xx, Snf = />7. It follows that e is the multiplication by 7 . There exists a positive

integer k such that 2*7 = r + tp with r and t in R. Then e(2*p) = 2*^y = rp + tp2.

Since /> is transcendental over Q , we have t = 0 and 7 £ R . Q

https://doi.org/10.1017/S0004972700037047 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700037047


98 M. Dugas, J. Hausen and J.A. Johnson [8]

Let $ = EndT \ Homb(T, T) denote the set of all endomorphisms of T with
unbounded image. Then $ has cardinality 2K° so that we can fix an enumeration

4 . 7 . For each a < 2", there exists an eligible set function fa:B-*T such that
<f>a € $ cannot be extended to a homomorphism from (B), to T.

PROOF: Let <f> = <f>a £ $• First of all, note that there exists an element x = xa in
T such that <f>(x) € T\T: being an unbounded subgroup of T, the image of <f> contains
a subgroup C = ©«„,(#*<)} with 22V(*<) ^ 0 and o(#t,)) < o{<f>{ti+1)) for all i; if
x = lim.n-.oo (2<i + • • • + 2ntn) then <f>(x) has infinite order. Since F = (l,p) is a free
subgroup of B, there exists a homomorphism y. from F to T such that /x(l) = 0 and
/x(p) = x. Then TTO/I : F —> T/T is a homomorphism which, since T/T is divisible, can
be extended to a homomorphism ij> 6 Hom\B,f/T\. For each 6 G 2?\.F choose tb e T

such that ^(6) = Tr(tfc). The mapping 6»-» i(, extends /* to a function f = fa : B —> T
with / I F = fi which is eligible. Assume <f> can be extended to a homomorphism from
BftoT. By 4.4 and 4.5, there exists i\ £ .ffom(B,T'J such that Tzo<f>of = TTOTJ. Hence,

7C7)(1) = ir<f>f(l) = 7r^(0) = 0 which implies 77(1) = s 6 T; similarly, irij(p) = Tr<f>(x) so
that 7j(p) = ^(a;)+< for some < € T. As before, ?;(p) = T)(sn + 2npn) — snr}(l)+2np'n for
all n . It follows that <f>(x)+t = limn_oosna = sp E T which contradicts ^(a;) $ T. D

C. Let .Kj denote the field of 2-adic numbers. Since K2 has transcendence de-
gree 2"° over the rationals, there exists a subset II C J2 of cardinality 2N° which is
algebraically independent over Z. Fix an enumeration

H = {7ra I a < 2"},

and let, for each a and each natural number n, ira = s* + 2np° with s° 6 Z and
/>° € J2 • For each a < 2", let Ba be the group £ constructed in B with p = ira. Well
known set theoretical arguments show the existence of a family T of sets of rational
primes with the following properties: (i) no set in T contains the prime 2 or the prime
3; (ii) no set in T is properly contained in another one; and (iii) T has cardinality
2K° [6]. (The following argument shows that every countably infinite set 5 has a
family T of subsets satisfying (ii) and (iii): given n £ N, let Sn denote the set of
all functions / : { l , . . . , n} —> N . Then each 5 n is countable and so is their union
5 = UneN S»- L e t T = N N be the set of all functions from N to N. Then \T\ - 2*°.
For g e T, let I(g) = {/ £ S\f\{l,...,n} = g\{l,...,n} for some n g N } . Let

f = {I(g)\g £ T}.) Again, choose an indexing T = {A a | a < 2W}. As customary, for
p a prime, Q^p^ denotes the set of all rational numbers with denominator a power of
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p . For each a < 2", let Q a = £ { Q ( y ) | p € A a } , a subring of Q . Define a subgroup
H of the external direct sum 0 a < 2 « -^2 as follows: if ep denotes the vector with 1 in
the beta-th coordinate and zeros elsewhere, we let

QaBaea + £ Q<2>(ea - e0) + Q<s>(ei - e0).

Let a = <(Q(2)) denote the type of Q<2>, let T = t(Q(s )) and let r a = <(Qa). One
verifies the following. For t a type, H(t) denotes the (fully invariant) subgroup of
H consisting of all elements of type greater than or equal to t. The pure subgroup
generated by a subgroup A is denoted by A*.

4 . 8 . Tie following hold:

(1) H(<r) = I V
l<o<2"

(2) H(T) =
(3) For each a<2w, H(TO) = QaBaea .

PROOF OF (1): Put A = £ Q(2)(ea - e0). Then A ^ H(a). Let w £ H be

an element of infinite 2-height. Without loss of generality, we may assume that w is

an element of © a < 2 u Qa-SaCa + Q^SHei ~ eo)- In generalised vector notation,

w =

with ra,ta e Q a i na positive integers, pa E Q^3\ po + Pi = 0 and pa — 0 for all
a > 1. In fact, we may assume that all of ra,ta>pa are integers, and pa — 0 for all o.
Also, since only finitely many components of w are nonzero, it is possible to write w

such that na = np = n £ N for all a and /3. By hypothesis, given any m £ N , there
exists ym 6 H such that 2mym — w, and

with r;,(™ G QQ, C € Q( 2 ) , <tf* = 0, E C = 0, P? € Q( 3 ) , p?1 +p? = 0 and

p£ = 0 for all a > 1. Thus, for all a and all m,

(ra + *a Pnra + 9c, + Pa ) = r a + l"Pn

which implies

The linear independence of the ira over Q implies, for all a and all m,
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and, substituting,

(ii) 2
m + n + n m ( C + q£ + p%) - 2nmtas°m = 2n + n -"r a

Assume, by way of contradiction, that tp ^ 0 for some /?. Then tp = (2kp)/q for
some integers A: ^ 0 and p and q odd. Since Vp has odd denominator, (i) implies
wm + k ^ m -\- n. Note that n and fc are fixed. Thus

(iii) lim nm = oo.
m—»oo

From (ii) we obtain

iv) 2 ^ qa =2 ra - tasn + tasnm - 2 * ( r a + p Q ) .

Since, for all m, the denominator of r™ + p£* is odd, (iii) and (iv) imply

(v) lim (2n+mqZ) = 2nra-tasZ+ta*a.
m—>oo

For each m, let sm = ~E,2n+mq™. Since £ g ™ = 0 , each s m is zero. Using (v) one
o a

verifies
0 = lim sm = V (2nrQ - ta8° + tana),

7n—>oo * *
a

and the linear independence of the {7ra} over Q implies ta = 0 for each a . Because of

(i), all t £ are zero and from (iv) we infer 0 = 2 m X) C = E »*a - 2 m X) ( C + Pa) • J t

a a a

follows that Y^ra has infinite 2-height in the ring Q ^ + X ) Q a which implies ]T)r<* = 0-
n a a

Thus, w = E r a e o i = Er<*(e« — eo) = z + fc(ei — e0) with z = ^ ra(ea — eo) G
a a l<a<2"

X) Z(e a - e0) ^ H(<r) and fc = n e Z . Hence, for all m , ifc/2m £ Qi + Q ( S ) which
Ka<2"

implies fc = 0. We have shown that w E A. u

PROOF OF (2): Obviously, Q( s ) (e! - e0) < H[T). Let w - {ra+tap° + qa) G
H(T) with integers r a , < a , g a ; we may assume each qa is zero. We use the same
notation as before: there exist ym = (r™ + C/>£m + 9™ + P™) e -^ s u c n t h a t

3TOyTO = to. Corresponding to (i) we obtain 3m2nf™ = 2nmta which shows that each
ta has infinite 3-height in Q a + Q^2^. Hence ta = 0 for each a and w = ( rQ) ,
ym = ( C +9S* +P™)- F o r " > 1, Pa = 0 which implies that ra = 3m(r™ + q£)

has infinite 3-height in QQ + Q(2>. It follows that ra = 0 for a > 1. Hence

= 3 m E C
a
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has infinite 3-height in 53 Qa • Thus, r<j + Ti = 0 and w = r i (ei — eo) G Z(ej — eo) as
a

desired. U

PROOF OF (3): Fix 0 < 2W and let w G Hfo). Assume, by way of contradiction,

there exists an a ^ belonging to the support of w. By hypothesis, there exists

a prime p such that p G A^ but p £ A a , and p ^ 2 ,3 . For each positive integer

m, there exists j / m G H such that p m y m = w. Using the same notation as before,

letting ™ = (ra + tap
a + qa + pa) and ym = (r™ + O ° r o + ?™ + P?) • t h e equation

corresponding to (i) is pm2nf™ = 2nmta for all m which shows that ta = 0 = t%, and

r a + 9a +Pa = P m ( C +q£ + Po ) has infinite p-height in Q a + Q^2) + Q<s>. Thus, the

a-th component of w is zero and w — (rft + tfipZ + Iff +P^*)e^- Since, for a ^ /?,

fa + 9a + Pa = 0, both qa and pQ are integers. Hence, so are qp — — J3 9a and

pp — — ^2 pa. It follows that w G QpBpep. u

4 . 9 . EndJT = Z • l w .

PROOF: Let e G EndH. By 4.8(3), for each a , e induces an endomorphism in
QaBaea which, by 4.6, must be the multiplication by some rQ G Q a - Pick /3 > 1. By
4.8(1), we have

- e0) =

Thus, there exists a nonzero integer n such that n{rpep — roeo) = 53 9a(ea — eo)-
Ka

It follows that r^ = n~1qp = ro. Similarly, using 4.8(2), ri = ro. It follows that t

restricted to © a < 2 u QaBaea is the multiplication by ro G Z. The latter subgroup

being full in H shows e = r0 • \H • D

4 . 1 0 . H = (eo) + (e1) + 2 J , and H/2H has rank two.

PROOF: Let R be a subring of Q such that every element in R has odd de-
nominator. Then R = Z + 2R. Since p% = 2p°+1, it follows that Q( 3 ) (e! - e0) C
(e0) + (ei) + 2H and, for each o < 2",

Qa-BQea = Q a ( l , ^ ) e a C Q a e Q + 2H C (ea) + 2H.

If a > 1, e a = e0 + (e a - e0) G (e0) + 2ff. Thus, H = (e0) + (ex) + 2JI. In order to
show eo and e\ are linearly independent modulo 2H, let a and 6 be integers such that
aeo+bei G 2H. Using the same symbolism as above, aeo+bei = 2(ro + taPn + 9o + Pa)

and as before we must have ta = 0 for all a and ra + qa = 0 if a > 1 so that qa
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must be an integer. This implies go = — 53 la is an integer and 2qo is even. Since

qi = 0, 2pi = b — 2T*I 6 Q ( S ) D Q I = Z which implies pi = — po is an integer. Since
r0 = (o — 2qo — 2po)/2 has odd denominator, a must be even. Similarly, 6 must be
even. 0

4 . 1 1 . For every <j> 6 Hom(H,T), Im<j> is bounded.

PROOF: There exists a positive integer n such that 2n<f>[ei) = 0 for i = 1,2. By
4.10, <t>{H) = (<f>(eQ)) + (^(ej)} + 2tf>(H) which implies 2n<j>(H) = 2n+1<f>(H) = 0 since

T is reduced. D

D . We are getting ready to construct our group G. By 4.7, for each a < 2",

there exists an eligible map fa : Ba —* T such that <f>a E $ does not extend to a

homomorphism from (Ba)ja to T. It follows that @fa '• © a < 2 " ^ a —» T is an eligible

map which, in turn, extends to an eligible map / : H —> T since T/T is divisible,

hence injective. By 4.9, H satisfies the same hypotheses as the group B in part A. Let

K = H}. Then

4.12. EndK= Z \K @ Homb{K,T).

P R O O F : By 4.2, it suffices to show every homomorphism from K to T has bounded
image. Let <f> £ Hom(K,T). By 4.1, tK = T; let ij> = <j>\tK be the restriction map
and assume, by way of contradiction, that x/> has unbounded image. Then i{> — <j>a for
some a < 2 U . By construction, <f>a cannot be extended to (Ba)fa • Since T ^ (B<*)fa

and

(Ba)fa = {(* + f(b),b)\t eT,b£Ba}^Hf = K,

<j>a does not extend to K which is a contradiction. Hence 2n<j>{T) = 0 and 2n<f> induces
a homomorphism T) : K/T —> T given by r\{x + T) = 2nx. It follows from 4.1 and 4.11
that r\ is bounded and, hence, so is <j>. U

Let P be the Priifer 2-group with 2UP = (a) as above. Then there is an exact
sequence 0 —> (a) —> P —> T —> 0 the epimorphism of which induces an epimorphism
Ext(H,P) —* Ext(H,T). Thus, there exists a group G and homomorphisms such that
the following diagram is commutative with exact rows:

> H * 0

By the Five Lemma, rj is an epimorphism, and (a) is the kernel of TJ . Hence K ~ G/(a).

One verifies that G/(tG + 2G) ~ H/2H which, by 4.10, has rank two. The group G

will satisfy the hypothesis of 3.2 if it has the property that EndG = Zla®Borrn{G, P).
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Let e be an endomorphism of G. Since (a) = 2utG is fully invariant in G, e induces

an endomorphism e in G/{a) ~ K. By 4.12, there exist integers m and n such that

2me = 2mn • 1G/<O) and "» is positive. Hence 2m + 1(e - n • 1G) = 0 as desired.

REMARK. A more elaborate construction along the same lines yields a group G

with G/(tG + 2G) of dimension 2N° .
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