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RINGS WHOSE ADDITIVE ENDOMORPHISMS
ARE RING ENDOMORPHISMS

MANFRED DUGAS, JUTTA HAUSEN AND JOHNNY A. JOHNSON

A ring R is said to be an AE-ring if every endomorphism of its additive group R*
is a ring endomorphism. Clearly, the zero ring on any abelian group is an AE-ring.
In a recent article, Birkenmeier and Heatherly characterised the so-called standard
AE-rings, that is, the non-trivial AE-rings whose maximal 2-subgroup is a direct
summand. The present article demonstrates the existence of non-standard AE-
rings. Four questions posed by Birkenmeier and Heatherly are answered in the
negative.

1. INTRODUCTION

In 1977, Sullivan posed the problem of characterising all rings R with the property
that every endomorphism of its additive group R is, in fact, a ring homomorphism [9].
It is convenient to call such a ring an AE-ring [3]. In 1981, Kim and Roush characterised
all finite AE-rings [7], and in a recent paper Feigelstock extended this characterisation
to the AE-rings R whose additive group is a torsion group [3]. Birkenmeier and
Heatherly solved Sullivan’s problem for the case that the 2-component R; of Rt isa
direct summand [1]. Without explicitly addressing the problem, they hinted that this
need not always be the case {1, Theorem 8(ii)], and posed four questions:

QUESTION I. Are all AE-rings commutative?

QUESTION II. Is every subdirectly irreducible homomorphic image of an AE-ring also
an AE-ring?

QUESTION III. Is every homomorphic image of an AE-ring an AE-ring?

QUESTION IV. If R is an AE-ring in which z? = 0 for each z € R, is R? = 07

We will show that the answer to each of these questions is negative. For this,
we need to consider AE-rings R whose 2-component is not a direct summand (we
will term such AE-rings non-standard). It is shown that any non-standard AE-ring
R must be close to a zero ring in the sense that R- (tR+2R) = 0 = (tR+2R) R
where tR denotes the maximal torsion subgroup of R*, and R® = 0. An example will
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be constructed which demonstrates that non-standard AE-rings exist which are not
zero rings. It should be noted that a similar construction yields an abelian group G
which supports 92" pairwise non-isomorphic AE-rings. Thus, there is little hope for
a complete solution to Sullivan’s problem.

Abelian group notation will follow Fuchs’ monographs (4, 5]. In particular, o(a)
denotes the order of an element a in the group A, and |A4] is the order of A; the
subgroup of A consisting of all elements of 2-power order is denoted by A;, and A[2]
is the subgroup consisting of all elements of order at most 2. As is customary, 2“4 =

M 2"A4, and R = I+ J denotes the ring direct sum of the ideals I and J. For ease

n<w
of reference, we collect some results due to Feigelstock:

LEMMA 1.1. (3] Let R be an AE-ring. Then

(1) If R* = A® B then A and B areideals of R and R= A+ B.
(2) R?CR[2].
(3) If R* #0 then R, is reduced.

2. STANDARD AE-RINGS

Given an abelian group A, e ring on A is a ring R such that Rt = A. The zero
ring on A is the ring R on A with trivial multiplication: R? = 0. Obviously, the zero
ring on any abelian group A is an AE-ring. By a non-trivial AE-ring we shall mean
an AE-ring R with R? #0.

Birkenmeier and Heatherly characterised the AE-rings R whose 2-component is a
direct summand [1, Theorem 4]. We have an alternate condition:

PROPOSITION 2.1. Let R be an AE-ring such that R® # 0. Then Ry is a
direct summand of R if and only if R* ¢ 2“R.

PROOF: By [1, Theorem 4], R, being a direct summand of R implies R, bounded
so that 2“R = 0. Conversely, assume R?  2“R. Frequent use will be made of 1.1. Let
z and y be elements of R such that zy ¢ 2“R. Then zy € R[2] has finite 2-height
n—12>0. If zy = 2" ¢ for some ¢ € R then ¢ has order 2" and {4, p.117, 27.1]
implies Rt = (c)® W. Hence R = (c)+ W. Let p and g be integers and v,w € W
such that £ = pc +v and y = gc + w. Then 2""!¢c = zy = pgc? + vw which implies
pq is odd and ¢? = 2"~1¢. Assume, by way of contradiction, that R; is unbounded.
Since R; is reduced, there exists a decomposition W = (d) & X with o(d) = 2™ for
some m > 2n. It follows that there is f € End(R*) such that f(d) =c and f(c) = 0.
Lemma 1(ii) of [1] implies ¢ = 0 which is a contradiction. By [1, Corollary 5], R, is
a direct summand.

THEOREM 2.2. Let R be a ring. Then R is an AE-ring with R?> ¢ 2R if and
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only if
R=(c)+S+N

with o(c) = 2™, n a positive integer, ¢ = 2" ¢, § and N zero rings with 2"~'§ =0,
N;=0and N=2N.

PROOF: Again, 1.1 will be used without mention. Assume, firstly, that R is an
AE-ring such that R? ¢ 2“R . By 2.1, we may apply Theorem 4 of {1]. Using the
notation of [1], it remains to show that N is 2-divisible. Since N, = 0, the torsion
subgroup tN of N is 2-divisible. Assume N # 2N. Then N/tN is a torsion-free
abelian group which is not 2-divisible and as such has a quotient group isomorphic
to Z(2") ~ C. Let ¢ € Hom(N*,Rf) with g(N) = C. By [1, Theorem 4(iii)],
g(N): Ry = 0 contradicting C - C # 0. Thus N = 2N . For the reverse implication,
assume R is as stated. Then R, is a direct summand, R; is bounded, and the 2-
divisibility of N implies Hom(N+,R}) = 0. By (1, Theorem 4] R is an AE-ring. 0

We shall call the AE-rings described in 2.1 the standard AE-rings. Thus R is
standard if R? ¢ 2“R. Every non-trivial torsion AE-ring is standard [3].

One verifies that an abelian group A which supports one standard AE-ring will
support no other AE-ring except for the zero ring. This will be different in the case of

non-standard AE-rings.

3. NON-STANDARD AE-RINGS

An AE-ring R is called non-standard if R2 C 2R and R is not trivial, that is,
R? # 0. We have the following result.

PropPosITION 3.1. Let R be a non-standard AE-ring. Then necessarily R -
(tR+2R)=0=(tR+2R)- R. In particular, R® = 0.

PRrROOF: Assume, by way of contradiction, there exist elements z € tR and r € R
such that R-(z +2r) # 0. Since 2R? =0 it follows that R-z# 0 and R-z=R-a
for some a € R of 2-power order. Pick ¢ € R; of minimal order satisfying R-c # 0.
Let o(c) = 2". Then n is positive and, by 1.1(2), ¢ has height zero. We claim
that (c) is a direct summand of R*. By [4, p.117, 27.1], it suffices to show that
{¢c) N2"R = 0. Assume there exists an integer m and an element s € R such that
2™c = 2"3 # 0. Then 1 < m < n which implies ¢ — 2*~™s € R, of order at most
2™. Since R-(c—2""™s) = R-¢ # 0, this contradicts the minimality of the order of
c. Thus (c) is a direct summand of R*. From 1.1(1) we have 0 # R-c C {c). Since
(¢)N2“R = 0, this is a contradiction. Similarly, (tR+ 2R)- R =0.

In order to demonstrate the existence of non-standard AE-rings the following the-
orem is needed. Given two abelian groups G and H, the set of all homomorphisms
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¢ : G —» H with Im¢ a bounded torsion group is denoted by Hom,(G, H). Through-
out, P denotes Priifer’s 2-group and e € P has the property that (a) = 2“P ~ Z(2) [4,
p- 150]. The set of all endomorphisms of a group G which are integral multiplications
is denoted by Z - 14.

THEOREM 3.2. Let G be an abelian group such that tG = P, G # tG + 2G,
and assume that EndG = Z -1g © Hom,(G,P). Then G supports a non-standard
AE-ring. In fact:

(1) if K is a subgroup of G containing tG + 2G and X is a set of elements
in G which is minimal with respect to the set {x + K |z € X} being a
basis of G/K, then, given any map f : X x X — 2P, there exists an
AE-ring R with Rt = G suchthat R- K =0=K-R and z-y = f(z,y)
for all (z,y) € X x X;

(2) if G/(tG + 2G) has infinite dimension § over Za, then there exist 2°
pairwise non-isomorphic AE-rings on G.

PROOF: Let w : G — G/K denote the natural epimorphism, and consider any
7 € Hom(G/K ® G/K,2“P). Define p: G® G - 2*P by p=no(r® ). Then p
is a homomorphism and, defining a multiplication -, on G by g -, h = u(g ® k) for all
g,h € G makes G into a ring R = R, (which, in general, need not be associative) [5,
p. 281]. In our case, g-,h = n[(g + K)®(h + K)] which implies R-, K =0 = K-, R; by
construction, R, R C Imn < 2°P < K Hence, R® = 0 which implies that R, in fact, is
associative. We claim that, for every n € Hom(G/K @ G/K,2¥P), thering R = R, is
an AE-ring. Let € be an endomorphism of Rt = G. By hypothesis, ¢ = n-1g+8 with
n € Z and ImfB bounded. It follows that §(2“P) =0 and B(G) C K. Let g,h € G.
Then, skipping the subscript 17, we have e(g)-£(h) = (ng + B(g)) - (nh + B(k)) = n?gh,
and ¢(gh) = ngh + B(gh) = ngh. Since gh € 2“P = (a) and na = n?a for all integers
n, we have shown that R is an AE-ring. In order to verify (1), let f: X x X — 2“P
be a map. Since the set B = {n(z) ® n(y)|(z,y) € X x X} is a basis for the vector
space G/K @ G/K (5, p.255, (I) and (H)] and (z,y) +— m(z) ® 7(y) defines a bijection
between X x X and B, there exists a homomorphism ¢ : G/K @ G/K — 2“P ~ Z(2)
such that, for all (z,y) € X x X, o[n(z) ® n(y)] = f(z,y). If S = R, then S is an
AE-ring on G and, for all z,y € X, we have z . y = o[n(z) ® n(y)] = f(z,y) as
claimed. In order to verify (2), note that

Hom(G/K ® G/K,2°P)~ [] Hom((n(2))® (x(y)),(a))
(z,y)EXxX

which has cardinality 2% if |[X| = § is infinite. Let 5,0 € Hom(G/K @ G/K,{a)).
Assume the resulting AE-rings R, and R, are isomorphic and let a be a ring isomor-
phism between them. Then a would have to be an automorphism of the underlying
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additive group, G, in particular @ = n-1g + # with §(G) bounded. It follows that
B(e) =0, B(G) < K and a = a(a) = n(a) so that n is odd. Being a ring isomorphism,
we have a(g -y k) = a(g) -« a(h) for all g,h € G and consequently 7(7(g) ® =(h)) =
nn(n(9) ® (k) = 1(g -n B) = (g -y b) = (ng + B(5)) » (mh + B(h)) = (ng) -0 (nh) =
n*(g-o h) = (g 0 h) = o(w(g) ® w(h)). It follows that n = . This completes the
proof. 0

The last section of our paper is devoted to the proof of

ProOPOSITION 3.3. There exists an abelian group G satisfying the hypothesis
of 3.2 such that G/(tG + 2G) has rank two.

Proposition 3.3 enables us to answer all four question posed in the Introduction in
the negative:

COROLLARY 3.4. Not every AE-ring is commutative.

COROLLARY 3.5. There exists an AE-ring R such that r2 =0 for all » € R
but R? #£0.

PROOF OF 3.4 AND 3.5: Let G be the group of 3.3. Put {G + 2G = K and let
2,y € G such that G/K = (z + K) @ (y + K). By 3.2, there exists an AE-ring R
with Rt = G such that z-y =a and y-z = 0. Thus R is not commutative, proving
3.4. Similarly, there exists and AE-ring § with §* = G such that 22 = 0 = y% and
z-y=a=y-z. Let » € R. Then r = mz + ny + k for some integers m and n and
some k € K, and

r-r=m?2® + mnz-y+nmy-z+ny? =2mna =0

proving 3.5. 1]

Thus, Questions I and IV of [1] have negative answers. As pointed out by Birken-
meier and Heatherly, an affirmative answer to II would imply that every AE-ring is
commutative. This follows from the fact that every subdirectly irreducible AE-ring is
commutative [1, Theorem 13(iii)] and the well known theorem that every ring R is a
subdirect sum of a product of subdirectly irreducible quotient rings of itself [8, p. 129,
Theorem 34]. It thusly follows from 3.4 that Question II has a negative answer as well
(and, hence, so does III).

In order to give a concrete example we include
PROPOSITION 3.6. Not every subdirectly irreducible homomorphic image of
an AE-ring is an AE-ring.

PROOF: Let G be the group of 3.3. Then there exists £ € G and a subgroup A4 of
G such that tG+2G < A and G/A = (z+ A) ~ Z(2). By 3.2, there exists an AE-ring
R on G with z2 =a and R-A =0= A- R. Let B be a basic subgroup of P such
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that P/B ~ Z(2*). Then (P/B)[2] = (a + B). Since ¢ ¢ A, the order of z must be
infinite so that (z + B) N P/B = 0. Divisible subgroups are absolute direct summands.
Thus G/B = P/B & C/B for some subgroup C of G with B < C and z € C. Put
ANC =1I. Then I is anideal of R and z ¢ I since z ¢ A. Also, since a € P\ B,
we have a ¢ C so that a ¢ I. By construction, (z + I)? =22 + I = a+ I # 0 which
shows that R/I is not a zero ring. Since G = A + (z) = A + C we have

A/l = AJ(ANC)~ (A + C)/C = G/C ~ (G/B)/(C/B) ~ P|B ~ Z(2).

Thus (R/I)* = G/I = A/T +{(z+1I)and z ¢ I but 2z € ANC = I which implies
(R/D)Y = A/T & (z+ 1)~ Z(2®) ® Z(2). It follows from 1.1(3) that R/I cannot be
an AE-ring. In order to verify that R/I is subdirectly irreducible, it suffices to show
that every nonzero ideal of R/I contains (a + I). Since a- R=0=R-a, (a+1I) is
clearly an ideal and a + I # 0. Let J be a nonzero ideal of R/I. Then there exist
y € A and an integer n such that 0 #y + nz + I € J, and we can choose n =1 or
n=0. Ifn=1then (y+2z+I)(z+I) =a+ 1€ J as claimed. Suppose n = 0.
Then y € A\C and G = P + C with P < A implies y = z+ 1 with 0 # z € P and
i=y—2€CNA=1I. Since y ¢ I we have z ¢ B. From (P/B)[2] = (a + B) we
infer 2™z + B = a + B for some positive integer m. Thus

a+I=2"z4+1=2"z+1)+I=2"y+1I€J

completing the proof. 0

4. THE ProoOF OF 3.3

Throughout, we let T' = @, ., Z(2"), and T denotes the 2-adic completion of
T. Then T < T < [I, <w Z(2™), and every endomorphism ¢ of T can be extended
uniquely to an endomorphism of T. Letw:T — f/ T denote the natural epimorphism.
Note that the group T/T is divisible.

We start with a general construction using ideas from [2].

A. Let B be any torsion-free group such that EndB=2:1p,andlet f: B — T
be a set function. If ro f € H om(B, ff/T) is a homomorphism we say that f is
eligible. Assume f is eligible. Define

By={(t+ f(b),b)|te T,be BYCTo®B.

One verifies the following. We will identify T with T @0.
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4.1. By is a subgroup of T @ B with torsion part tBy =T, and By/tBy ~ B.

4.2. EndBy=12- lgf ® Hom(B;,T).

4.3. Ifg:B— T is a set function such that wog=mof then By = By.

4.4. By splits if and only if there exists a homomorphism n: B — T such that
wof=mon.

For ¢ € Hom(T,T), its unique extension to T will be denoted by ¢. Note that f
eligible implies $ o f eligible.

4.5. Given ¢ € Hom(T,T), there exists 6 € Hom(By,T) extending ¢ if and
only if B}?of splits.

PROOF: Suppose, firstly, that Bf;o s splits. It follows that there exists a homomor-
phism o : B;To P T such that oot =17 where ¢ : T — B;o p denotes the inclusion

map. One verifies that $ ®1lp € End (fEB B) induces a homomorphism from By to

B;o e Let 8 =00 (a o1 B)]B r. Conversely, suppose there exists a 6 as stated. In

particular, 8(2,0) = 4(t) for all t € T. Define n: B — T by n(b) = $(£(8)) — 6(f(b),)
forall b€ B. Then mrop=mwo $o f. By (4), it suffices to show 7 is a homomorphism.
Let b,' € B. There exists t € T such that f(b+ ') = f(b) + f(b') +¢. Hence

n(b+5') = $(F(6) + F(¥') +t) — 6(F(8) + F(¥') +t,b+ ') = n(8) + n(¥).

B. We now specify the torsion-free group B. Let J, denote the ring of 2-adic
integers, and let p € J, be transcendental over the rational integers Q. For each
natural number n we have

p =38+ 2"[)1;

with s, € Z and p,, € J,. Let

B = ({1}U {5 In <w}),

and let R be a subring of Z(,), the integers localised at 2, containing Z. The set
RB = {rblr € R,b € B} C J; is an additive group.

4.6. E‘nd(RB) =R-1gpp.

PROOF: Let ¢ be an endomorphism of RB and v = ¢(1) € RB. Since, for each
n, p=3n+2"pn, €(p) = €(8n) +2"e(pn) = sne(1)+2"p}, = 8n7+2"p},. Hence ¢(p) =
lim, .o 8ny = py. It follows that ¢ is the multiplication by 7. There exists a positive
integer k such that 2%y = r +#p with r and ¢t in R. Then e(2"p) = 2%py = rp + tp?.
Since p is transcendental over Q, we have £ =0 and v € R. 0
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Let & = EndT \ Homy(T,T) denote the set of all endomorphisms of T with
unbounded image. Then ® has cardinality 2%¢ so that we can fix an enumeration

& = {pala < 2°}.

4.7. Foreach a < 2%, there exists an eligible set function f, : B — T such that
¢ € @ cannot be extended to a homomorphism from (B), to T.

PROOF: Let ¢ = ¢o € &. First of all, note that there exists an element z = z, in
T such that $(z) € T\T: being an unbounded subgroup of T, the image of ¢ contains
a subgroup C = @, (#(t:)) with 2%¢(t;) # 0 and o(¢(t:)) < o(@(ti+1)) for all i; if
z =limp .o (2¢1 + - - + 2"¢,) then $(:c) has infinite order. Since F = (1,p) is a free
subgroup of B, there exists a homomorphism g from F to T such that #(1) =0 and
u(p) = z. Then wop: F — T/T is a homomorphism which, since f/ T is divisible, can
be extended to a homomorphism ¥ € Hom (B,f/ T) . For each b € B\ F choose t; € T

such that (b) = n(¢;). The mapping b+ t; extends p to a function f= fo: B — T
with f|F = p which is eligible. Assume ¢ can be extended to a homomorphism from

By to T. By 4.4 and 4.5, there exists 7 € Hom (B,f) such that 1ro$o_f = mwon. Hence,

wn(1) = 1r$f(1) = 1r$(0) = 0 which implies (1) = s € T; similarly, m(p) = 7r$(z) 50
that 5(p) = $(z)+t forsome t € T. As before, n(p) = 7(8n + 2"pn) = sa7(1)+2"p!, for
all n. It follows that @(z) +t = limp_.o0 8,5 = sp € T which contradicts $(z) ¢T. 0

C. Let K; denote the field of 2-adic numbers. Since K3 has transcendence de-
gree 2%0 over the rationals, there exists a subset I C J, of cardinality 2% which is
algebraically independent over Z. Fix an enumeration

I ={r, | @ < 2¥},

and let, for each a and each natural number n, 7o = 85 + 2"p% with s3 € Z and
p2 € Jy. For each a < 2¥,let B, be the group B constructed in B with p = 7,. Well
known set theoretical arguments show the existence of a family F of sets of rational
primes with the following properties: (i) no set in F contains the prime 2 or the prime
3; (ii) no set in F is properly contained in another one; and (iii) F has cardinality
2% [B]. (The following argument shows that every countably infinite set S has a
family F of subsets satisfying (ii) and (iii): given n € N, let S, denote the set of
all functions f : {1,...,n} — N. Then each S, is countable and so is their union
S=Upen Sn- Let T = NY be the set of all functions from N to N. Then |T| = 2%0.
For g € T, let I(g) = {f € SIfI{1,...,n} = gl{1,...,n} for some n € N}. Let
F = {I(g)|lg € T}.) Again, choose an indexing F = {A,|a < 2“}. As customary, for
p a prime, Q) denotes the set of all rational numbers with denominator a power of

https://doi.org/10.1017/50004972700037047 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700037047

[9] Ring endomorphisms 99

p. For each a < 2¢, let Qo = Y{Q™|p € AL}, a subring of Q. Define a subgroup
H of the external direct sum @, <2w K2 as follows: if eg denotes the vector with 1 in
the beta-th coordinate and zeros elsewhere, we let

H = @ QaBata + Z Q(z)(ea —€)+ Q(s)(el — o).
a<2v 1<a<2v
Let o = t(Q(z)) denote the type of Q)| let 7 = t(Q(’)) and let 7, = t{(Qqa). One
verifies the following. For ¢ a type, H(t) denotes the (fully invariant) subgroup of
H consisting of all elements of type greater than or equal to t. The pure subgroup
generated by a subgroup A is denoted by A..

4.8. The following hold:
W) #)=( T eea-a))

<a<l
(2) H(r)=(Q¥(e1 - e)),.
(3) Foreach a <2¥, H(ty) = QaBata -
PROOF OF (1): Put A= Y Q®(eq—ep). Then A < H(o). Let w € H be

I<a<l2¥
an element of infinite 2-height. Without loss of generality, we may assume that w is

.
*

an element of @, <2w QaBata + Q(’)(el — €g). In generalised vector notation,
w = ('ra + tap:a + pa)

with ro,ta € Qa, na positive integers, po € Q¥), po + pr = 0 and p, = 0 for all
a > 1. In fact, we may assume that all of r,,%,,p. are integers, and p, = 0 for all a.
Also, since only finitely many components of w are nonzero, it is possible to write w
such that no = ng =n € N for all @ and 8. By hypothesis, given any m € N, there
exists ym € H such that 2™y, = w, and

Ym = (r + 005 + 47 +p7)

with r7,17 € Qa, ¢7 € Q®), ¢ =0, T q7 =0, p7 € Q®), pp* +p* = 0 and
p? =0 for all @ > 1. Thus, for all @ and all m,

2™ (ra Htapn, t 4o +P7) =Ta +tap]
which implies
QmtnAnm(p™ 4 g™ | pT) 4 27T (-rr.:.l - sﬁm) = 2™ Pma, + 2Pt (T — 83).
The linear independence of the n, over Q implies, for all a and all m,

(i) Mt = 2™,
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and, substituting,
(1) 2R (P L g7 4 P ) — 2" a8 = 2™y, — 27, s,

Assume, by way of contradiction, that {5 # 0 for some 8. Then tg = (2*p)/q for
some integers k > 0 and p and ¢ odd. Since t7 has odd denominator, (i) implies
nm + k 2 m+n. Note that n and &k are fixed. Thus

(iii) lim n,, = cc.

From (ii) we obtain
(iv) 2N = 2"y — 1082 4+ tasS  — 2™ (r D + pT).
Since, for all m, the denominator of 7 + p? is odd, (iii) and (iv) imply

v) lim (2”"'"‘ "‘) =2"rq — 1a85 + taTa.

m-— o0

For each m, let s, = ) 2"*™g™. Since Y ¢ = 0, each s,, is zero. Using (v) one
(-3 [+

verifies
0= mhlnw 8m = Z (2"rq — tase + ta™a),

and the linear independence of the {m,} over Q implies t, = 0 for each a. Because of
(i), all t7 are zero and from (iv) we infer 0 = 2™ E T = Zra ~2m Z('r +p7). It

follows that E To hasinfinite 2-height in the ring Q(3)+E Qa which 1mphes E re = 0.

Thus, w = Eraea 21-',(eOl —eo) =z + k(e1 — e) w1th z= Y ra(ea —eg) €
1<a2v

Z(ea —€0) < H(o) and k =, € Z. Hence, for all m, k/2™ € Q; + Q(®) which

1<a<2v
implies £k = 0. We have shown that w € A. 0

ProoOF OF (2): Obviously, Q(a)(el —e) < H(r). Let w = (7o + tap? +ga) €
H(r) with integers rq,tq,ga; We may assume each ¢ is zero. We use the same
notation as before: there exist ym = (r;" +igpa. + 9o +pa) € H such that
3™y, = w. Corresponding to (i) we obtain 3™2™T = 2”m{, which shows that each
to has infinite 3-height in Qo + Q(®). Hence t, = 0 for each a and w = (ra),
Ym = (r™ + 97 +p7). For a > 1, p? = 0 which implies that ro = 3™(r2 + ¢7*)
has infinite 3-height in Q. + Q®). It follows that 7, = 0 for @« > 1. Hence

ro + 71 = gra = 2033"‘(r +q7 +p> )—3"'(2r +an +Epa) =3"‘§3r.’,"
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has infinite 3-height in Y} Qo. Thus, 7¢ + 71 = 0 and w = r1(e1 — eg) € Z(e1 — €p) as
desired. 0

ProoF OF (3): Fix 8 < 2“ and let w € H(7g). Assume, by way of contradiction,
there exists an a # B belonging to the support of w. By hypothesis, there exists
a prime p such that p € Ag but p ¢ A,, and p # 2,3. For each positive integer
m, there exists y,, € H such that p™y,, = w. Using the same notation as before,
letting w = (ra + tapS + ¢a + Po) and y, = (r;" +igpn. +ax + p:,") , the equation
corresponding to (i) is p™2"t™ = 2"m¢, for all m which shows that {, =0 =t7*, and
Ta+ga+Pa = P™(r™ + ¢ + p™) has infinite p-height in Qq + Q) + Q). Thus, the
a-th component of w is zero and w = (r;," + t;‘pﬁ +4q5 + pg') eg. Since, for a # 8,

Ta + 9a + Pa = 0, both g, and p, are integers. Hence, so are gg = — ) go and
a#f
P8 =— Y, Pa. It follows that w € QgBgeg. 0
a#p

4.9. EndH =7 1y.

PROOF: Let ¢ € EndH. By 4.8(3), for each a, ¢ induces an endomorphism in
QaBaeoq which, by 4.6, must be the multiplication by some 7o € Q.. Pick 8> 1. By
4.8(1), we have

e(eg — eo) =rgeg —roep € ( z Q®(eq — eo)) *,

1<al2v

Thus, there exists a nonzero integer n such that n(rgeg —mep) = Y ga(ea — €o).
1<a

It follows that rg = n~1qg = ro. Similarly, using 4.8(2), r, = ro. It follows that ¢
restricted to @, 0 QaBaee is the multiplication by 7o € Z. The latter subgroup
being full in H shows e =7 - 1p. 0

4.10. H = (eo) + (e1) + 2H, and H/2H has rank two.

PROOF: Let R be a subring of Q such that every element in R has odd de-
nominator. Then R = Z + 2R. Since p2 = 2p2,,, it follows that Q(®)(e; — o) C
{eo) + {e1) + 2H and, for each a < 2%,

QaBaea = Qa(l’Pz)ea c Qaea +2H C (ea) + 2H.
Ifa>1, ea =€p + (€a —€p) € {eg) + 2H. Thus, H = (eg) + (€1} + 2H . In order to
show ey and e; are linearly independent modulo 2H, let a and b be integers such that

aeg+be; € 2H . Using the same symbolism as above, aeg+be; = 2(rs + taps + ga + Pa)
and as before we must have t, = 0 for all « and 74 + g = 0 if @ > 1 so that ¢,
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must be an integer. This implies g¢ = — ) g, is an integer and 2y is even. Since
1{x

q=0,2p, =b—2r, € Q®) N Q, = Z which implies p; = —po is an integer. Since
ro = (@ — 2go — 2po)/2 has odd denominator, @ must be even. Similarly, b must be
even. 0

4.11. For every ¢ € Hom(H,T), Im¢ is bounded.

PRrRoOF: There exists a positive integer n such that 2"¢(e;) = 0 for i = 1,2. By
4.10, ¢(H) = (¢(eo)) + (¢(e1)) + 2¢(H) which implies 2"¢(H) = 2"*1¢(H) = 0 since
T is reduced.

D. We are getting ready to construct our group G. By 4.7, for each a < 2%,
there exists an eligible map fo : By — T such that ¢o € ® does not extend to a
homomorphism from (Ba);, to T'. It follows that ®fa : D pczw Ba — T is an eligible

map which, in turn, extends to an eligible map f : H — T since f/T is divisible,
hence injective. By 4.9, H satisfies the same hypotheses as the group B in part A. Let
K = Hy. Then

4.12. EndK = Z-lx@Homb(K,T).

PROOF: By 4.2, it suffices to show every homomorphism from K to T has bounded
image. Let ¢ € Hom(K,T). By 4.1, tK = T; let ¢ = ¢|tK be the restriction map
and assume, by way of contradiction, that 1/ has unbounded image. Then 3 = ¢, for
some a < 2,. By construction, ¢, cannot be extended to (B‘*)fa . Since T € (B")fa
and

(Ba)y, = {(t+ F(8), )}t € T,b € Ba} < Hy = K,

¢a does not extend to K which is a contradiction. Hence 2"¢(T) = 0 and 2"¢ induces
a homomorphism 1 : K/T — T given by n(z + T) = 2"z. It follows from 4.1 and 4.11
that 7 is bounded and, hence, so is ¢. 0

Let P be the Priifer 2-group with 2P = (a) as above. Then there is an exact
sequence 0 — {(a) = P — T — 0 the epimorphism of which induces an epimorphism
Ezt(H,P) — Ezt(H,T). Thus, there exists a group G and homomorphisms such that
the following diagram is commutative with exact rows:

0 » P - G » H » 0
[
0 » T -+ K » H + 0

By the Five Lemma, 5 is an epimorphism, and (a) is the kernel of 7. Hence K ~ G/(a).
One verifies that G/(iG + 2G) ~ H/2H which, by 4.10, has rank two. The group G
will satisfy the hypothesis of 3.2 if it has the property that EndG = Z-1¢®Hom,(G, P).
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Let ¢ be an endomorphism of G. Since (a) = 2“tG is fully invariant in G, € induces
an endomorphism  in G/(a) ~ K. By 4.12, there exist integers m and n such that
2™ = 2™n - 1g/(a) and m is positive. Hence 2m+l(g —n-1g) = 0 as desired.

REMARK. A more elaborate construction along the same lines yields a group G
with G/(tG + 2G) of dimension 2%0.
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