RINGS WHOSE ADDITIVE ENDOMORPHISMS ARE RING ENDOMORPHISMS

MANFRED DUGAS, JUTTA HAUSEN AND JOHNNY A. JOHNSON

A ring R is said to be an AE-ring if every endomorphism of its additive group R^+ is a ring endomorphism. Clearly, the zero ring on any abelian group is an AE-ring. In a recent article, Birkenmeier and Heatherly characterised the so-called *standard* AE-rings, that is, the non-trivial AE-rings whose maximal 2-subgroup is a direct summand. The present article demonstrates the existence of non-standard AE-rings. Four questions posed by Birkenmeier and Heatherly are answered in the negative.

1. INTRODUCTION

In 1977, Sullivan posed the problem of characterising all rings R with the property that every endomorphism of its additive group R^+ is, in fact, a ring homomorphism [9]. It is convenient to call such a ring an AE-ring [3]. In 1981, Kim and Roush characterised all finite AE-rings [7], and in a recent paper Feigelstock extended this characterisation to the AE-rings R whose additive group is a torsion group [3]. Birkenmeier and Heatherly solved Sullivan's problem for the case that the 2-component R_2 of R^+ is a direct summand [1]. Without explicitly addressing the problem, they hinted that this need not always be the case [1, Theorem 8(ii)], and posed four questions:

QUESTION I. Are all AE-rings commutative?

QUESTION II. Is every subdirectly irreducible homomorphic image of an AE-ring also an AE-ring?

QUESTION III. Is every homomorphic image of an AE-ring an AE-ring?

QUESTION IV. If R is an AE-ring in which $x^2 = 0$ for each $x \in R$, is $R^2 = 0$?

We will show that the answer to each of these questions is negative. For this, we need to consider AE-rings R whose 2-component is not a direct summand (we will term such AE-rings non-standard). It is shown that any non-standard AE-ring R must be close to a zero ring in the sense that $R \cdot (tR + 2R) = 0 = (tR + 2R) \cdot R$ where tR denotes the maximal torsion subgroup of R^+ , and $R^3 = 0$. An example will

Received 31st January 1991

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/92 \$A2.00+0.00.

be constructed which demonstrates that non-standard AE-rings exist which are not zero rings. It should be noted that a similar construction yields an abelian group G which supports $2^{2^{\aleph_0}}$ pairwise non-isomorphic AE-rings. Thus, there is little hope for a complete solution to Sullivan's problem.

Abelian group notation will follow Fuchs' monographs [4, 5]. In particular, o(a) denotes the order of an element a in the group A, and |A| is the order of A; the subgroup of A consisting of all elements of 2-power order is denoted by A_2 , and A[2] is the subgroup consisting of all elements of order at most 2. As is customary, $2^{\omega}A = \bigcap_{n < \omega} 2^n A$, and R = I + J denotes the ring direct sum of the ideals I and J. For ease of reference, we collect some results due to Feigelstock:

LEMMA 1.1. [3] Let R be an AE-ring. Then

- (1) If $R^+ = A \oplus B$ then A and B are ideals of R and R = A + B.
- (2) $R^2 \subseteq R[2]$.
- (3) If $R^2 \neq 0$ then R_2 is reduced.

2. STANDARD AE-RINGS

Given an abelian group A, a ring on A is a ring R such that $R^+ = A$. The zero ring on A is the ring R on A with trivial multiplication: $R^2 = 0$. Obviously, the zero ring on any abelian group A is an AE-ring. By a non-trivial AE-ring we shall mean an AE-ring R with $R^2 \neq 0$.

Birkenmeier and Heatherly characterised the AE-rings R whose 2-component is a direct summand [1, Theorem 4]. We have an alternate condition:

PROPOSITION 2.1. Let R be an AE-ring such that $R^2 \neq 0$. Then R_2 is a direct summand of R if and only if $R^2 \not\subseteq 2^{\omega} R$.

PROOF: By [1, Theorem 4], R_2 being a direct summand of R implies R_2 bounded so that $2^{\omega}R = 0$. Conversely, assume $R^2 \notin 2^{\omega}R$. Frequent use will be made of 1.1. Let x and y be elements of R such that $xy \notin 2^{\omega}R$. Then $xy \in R[2]$ has finite 2-height $n-1 \ge 0$. If $xy = 2^{n-1}c$ for some $c \in R$ then c has order 2^n and [4, p.117, 27.1] implies $R^+ = \langle c \rangle \oplus W$. Hence $R = \langle c \rangle + W$. Let p and q be integers and $v, w \in W$ such that x = pc + v and y = qc + w. Then $2^{n-1}c = xy = pqc^2 + vw$ which implies pq is odd and $c^2 = 2^{n-1}c$. Assume, by way of contradiction, that R_2 is unbounded. Since R_2 is reduced, there exists a decomposition $W = \langle d \rangle \oplus X$ with $o(d) = 2^m$ for some $m \ge 2n$. It follows that there is $f \in End(R^+)$ such that f(d) = c and f(c) = 0. Lemma 1(ii) of [1] implies $c^2 = 0$ which is a contradiction. By [1, Corollary 5], R_2 is a direct summand.

THEOREM 2.2. Let R be a ring. Then R is an AE-ring with $R^2 \not\subseteq 2^{\omega}R$ if and

only if

[3]

$$R = \langle c \rangle \dot{+} S \dot{+} N$$

with $o(c) = 2^n$, n a positive integer, $c^2 = 2^{n-1}c$, S and N zero rings with $2^{n-1}S = 0$, $N_2 = 0$ and N = 2N.

PROOF: Again, 1.1 will be used without mention. Assume, firstly, that R is an AE-ring such that $R^2 \not\subseteq 2^{\omega}R$. By 2.1, we may apply Theorem 4 of [1]. Using the notation of [1], it remains to show that N is 2-divisible. Since $N_2 = 0$, the torsion subgroup tN of N is 2-divisible. Assume $N \neq 2N$. Then N/tN is a torsion-free abelian group which is not 2-divisible and as such has a quotient group isomorphic to $Z(2^n) \simeq C$. Let $g \in Hom(N^+, R_2^+)$ with g(N) = C. By [1, Theorem 4(iii)], $g(N) \cdot R_2 = 0$ contradicting $C \cdot C \neq 0$. Thus N = 2N. For the reverse implication, assume R is as stated. Then R_2 is a direct summand, R_2 is bounded, and the 2-divisibility of N implies $Hom(N^+, R_2^+) = 0$. By [1, Theorem 4] R is an AE-ring. \Box

We shall call the AE-rings described in 2.1 the standard AE-rings. Thus R is standard if $R^2 \not\subseteq 2^{\omega}R$. Every non-trivial torsion AE-ring is standard [3].

One verifies that an abelian group A which supports one standard AE-ring will support no other AE-ring except for the zero ring. This will be different in the case of non-standard AE-rings.

3. NON-STANDARD AE-RINGS

An AE-ring R is called non-standard if $R^2 \subseteq 2^{\omega}R$ and R is not trivial, that is, $R^2 \neq 0$. We have the following result.

PROPOSITION 3.1. Let R be a non-standard AE-ring. Then necessarily $R \cdot (tR+2R) = 0 = (tR+2R) \cdot R$. In particular, $R^3 = 0$.

PROOF: Assume, by way of contradiction, there exist elements $x \in tR$ and $r \in R$ such that $R \cdot (x + 2r) \neq 0$. Since $2R^2 = 0$ it follows that $R \cdot x \neq 0$ and $R \cdot x = R \cdot a$ for some $a \in R$ of 2-power order. Pick $c \in R_2$ of minimal order satisfying $R \cdot c \neq 0$. Let $o(c) = 2^n$. Then *n* is positive and, by 1.1(2), *c* has height zero. We claim that $\langle c \rangle$ is a direct summand of R^+ . By [4, p.117, 27.1], it suffices to show that $\langle c \rangle \cap 2^n R = 0$. Assume there exists an integer *m* and an element $s \in R$ such that $2^m c = 2^n s \neq 0$. Then $1 \leq m < n$ which implies $c - 2^{n-m} s \in R_2$ of order at most 2^m . Since $R \cdot (c - 2^{n-m} s) = R \cdot c \neq 0$, this contradicts the minimality of the order of *c*. Thus $\langle c \rangle$ is a direct summand of R^+ . From 1.1(1) we have $0 \neq R \cdot c \subseteq \langle c \rangle$. Since $\langle c \rangle \cap 2^{\omega} R = 0$, this is a contradiction. Similarly, $(tR + 2R) \cdot R = 0$.

In order to demonstrate the existence of non-standard AE-rings the following theorem is needed. Given two abelian groups G and H, the set of all homomorphisms $\phi: G \to H$ with $Im\phi$ a bounded torsion group is denoted by $Hom_b(G, H)$. Throughout, P denotes Prüfer's 2-group and $a \in P$ has the property that $\langle a \rangle = 2^{\omega}P \simeq Z(2)$ [4, p. 150]. The set of all endomorphisms of a group G which are integral multiplications is denoted by $\mathbf{Z} \cdot \mathbf{1}_G$.

THEOREM 3.2. Let G be an abelian group such that tG = P, $G \neq tG + 2G$, and assume that $EndG = \mathbb{Z} \cdot 1_G \oplus Hom_b(G, P)$. Then G supports a non-standard AE-ring. In fact:

- (1) if K is a subgroup of G containing tG + 2G and X is a set of elements in G which is minimal with respect to the set {x + K | x ∈ X} being a basis of G/K, then, given any map f : X × X → 2^wP, there exists an AE-ring R with R⁺ = G such that R ⋅ K = 0 = K ⋅ R and x ⋅ y = f(x, y) for all (x, y) ∈ X × X;
- (2) if G/(tG+2G) has infinite dimension δ over \mathbb{Z}_2 , then there exist 2^{δ} pairwise non-isomorphic AE-rings on G.

PROOF: Let $\pi: G \to G/K$ denote the natural epimorphism, and consider any $\eta \in Hom(G/K \otimes G/K, 2^{\omega}P)$. Define $\mu: G \otimes G \to 2^{\omega}P$ by $\mu = \eta \circ (\pi \otimes \pi)$. Then μ is a homomorphism and, defining a multiplication \cdot_n on G by $g \cdot_n h = \mu(g \otimes h)$ for all $g,h \in G$ makes G into a ring $R = R_{\eta}$ (which, in general, need not be associative) [5, p. 281]. In our case, $g \cdot_{\eta} h = \eta[(g+K) \otimes (h+K)]$ which implies $R \cdot_{\eta} K = 0 = K \cdot_{\eta} R$; by construction, $R \cdot_{\eta} R \subseteq Im\eta \leq 2^{\omega} P \leq K$ Hence, $R^3 = 0$ which implies that R, in fact, is associative. We claim that, for every $\eta \in Hom(G/K \otimes G/K, 2^{\omega}P)$, the ring $R = R_{\eta}$ is an AE-ring. Let ε be an endomorphism of $R^+ = G$. By hypothesis, $\varepsilon = n \cdot \mathbf{1}_G + \beta$ with $n \in \mathbb{Z}$ and $Im\beta$ bounded. It follows that $\beta(2^{\omega}P) = 0$ and $\beta(G) \subseteq K$. Let $g, h \in G$. Then, skipping the subscript η , we have $\varepsilon(g) \cdot \varepsilon(h) = (ng + \beta(g)) \cdot (nh + \beta(h)) = n^2 gh$, and $\varepsilon(gh) = ngh + \beta(gh) = ngh$. Since $gh \in 2^{\omega}P = \langle a \rangle$ and $na = n^2a$ for all integers n, we have shown that R is an AE-ring. In order to verify (1), let $f: X \times X \to 2^{\omega}P$ be a map. Since the set $B = \{\pi(x) \otimes \pi(y) | (x, y) \in X \times X\}$ is a basis for the vector space $G/K \otimes G/K$ [5, p.255, (I) and (H)] and $(x, y) \mapsto \pi(x) \otimes \pi(y)$ defines a bijection between $X \times X$ and B, there exists a homomorphism $\sigma: G/K \otimes G/K \to 2^{\omega}P \simeq Z(2)$ such that, for all $(x,y) \in X \times X$, $\sigma[\pi(x) \otimes \pi(y)] = f(x,y)$. If $S = R_{\sigma}$ then S is an AE-ring on G and, for all $x, y \in X$, we have $x \cdot_{\sigma} y = \sigma[\pi(x) \otimes \pi(y)] = f(x, y)$ as claimed. In order to verify (2), note that

$$Hom(G/K \otimes G/K, 2^{\omega}P) \simeq \prod_{(x,y) \in X \times X} Hom(\langle \pi(x) \rangle \otimes \langle \pi(y) \rangle, \langle a \rangle)$$

which has cardinality 2^{δ} if $|X| = \delta$ is infinite. Let $\eta, \sigma \in Hom(G/K \otimes G/K, \langle a \rangle)$. Assume the resulting *AE*-rings R_{η} and R_{σ} are isomorphic and let α be a ring isomorphism between them. Then α would have to be an automorphism of the underlying Ring endomorphisms

additive group, G, in particular $\alpha = n \cdot 1_G + \beta$ with $\beta(G)$ bounded. It follows that $\beta(a) = 0, \ \beta(G) \leq K$ and $a = \alpha(a) = n(a)$ so that n is odd. Being a ring isomorphism, we have $\alpha(g \cdot_{\eta} h) = \alpha(g) \cdot_{\sigma} \alpha(h)$ for all $g, h \in G$ and consequently $\eta(\pi(g) \otimes \pi(h)) = n\eta(\pi(g) \otimes \pi(h)) = n(g \cdot_{\eta} h) = \alpha(g \cdot_{\eta} h) = (ng + \beta(g)) \cdot_{\sigma} (nh + \beta(h)) = (ng) \cdot_{\sigma} (nh) = n^2(g \cdot_{\sigma} h) = (g \cdot_{\sigma} h) = \sigma(\pi(g) \otimes \pi(h))$. It follows that $\eta = \sigma$. This completes the proof.

The last section of our paper is devoted to the proof of

PROPOSITION 3.3. There exists an abelian group G satisfying the hypothesis of 3.2 such that G/(tG + 2G) has rank two.

Proposition 3.3 enables us to answer all four question posed in the Introduction in the negative:

COROLLARY 3.4. Not every AE-ring is commutative.

COROLLARY 3.5. There exists an AE-ring R such that $r^2 = 0$ for all $r \in R$ but $R^2 \neq 0$.

PROOF OF 3.4 AND 3.5: Let G be the group of 3.3. Put tG + 2G = K and let $x, y \in G$ such that $G/K = \langle x + K \rangle \oplus \langle y + K \rangle$. By 3.2, there exists an AE-ring R with $R^+ = G$ such that $x \cdot y = a$ and $y \cdot x = 0$. Thus R is not commutative, proving 3.4. Similarly, there exists and AE-ring S with $S^+ = G$ such that $x^2 = 0 = y^2$ and $x \cdot y = a = y \cdot x$. Let $r \in R$. Then r = mx + ny + k for some integers m and n and some $k \in K$, and

$$r \cdot r = m^2 x^2 + mnx \cdot y + nmy \cdot x + n^2 y^2 = 2mna = 0$$

proving 3.5.

Thus, Questions I and IV of [1] have negative answers. As pointed out by Birkenmeier and Heatherly, an affirmative answer to II would imply that every AE-ring is commutative. This follows from the fact that every subdirectly irreducible AE-ring is commutative [1, Theorem 13(iii)] and the well known theorem that every ring R is a subdirect sum of a product of subdirectly irreducible quotient rings of itself [8, p. 129, Theorem 34]. It thusly follows from 3.4 that Question II has a negative answer as well (and, hence, so does III).

In order to give a concrete example we include

PROPOSITION 3.6. Not every subdirectly irreducible homomorphic image of an AE-ring is an AE-ring.

PROOF: Let G be the group of 3.3. Then there exists $x \in G$ and a subgroup A of G such that $tG + 2G \leq A$ and $G/A = \langle x + A \rangle \simeq Z(2)$. By 3.2, there exists an AE-ring R on G with $x^2 = a$ and $R \cdot A = 0 = A \cdot R$. Let B be a basic subgroup of P such

[5]

0

that $P/B \simeq Z(2^{\infty})$. Then $(P/B)[2] = \langle a + B \rangle$. Since $x \notin A$, the order of x must be infinite so that $\langle x + B \rangle \cap P/B = 0$. Divisible subgroups are absolute direct summands. Thus $G/B = P/B \oplus C/B$ for some subgroup C of G with $B \leq C$ and $x \in C$. Put $A \cap C = I$. Then I is an ideal of R and $x \notin I$ since $x \notin A$. Also, since $a \in P \setminus B$, we have $a \notin C$ so that $a \notin I$. By construction, $(x + I)^2 = x^2 + I = a + I \neq 0$ which shows that R/I is not a zero ring. Since $G = A + \langle x \rangle = A + C$ we have

$$A/I = A/(A \cap C) \simeq (A+C)/C = G/C \simeq (G/B)/(C/B) \simeq P/B \simeq Z(2^{\infty}) .$$

Thus $(R/I)^+ = G/I = A/I + \langle x + I \rangle$ and $x \notin I$ but $2x \in A \cap C = I$ which implies $(R/I)^+ = A/I \oplus \langle x + I \rangle \simeq Z(2^{\infty}) \oplus Z(2)$. It follows from 1.1(3) that R/I cannot be an *AE*-ring. In order to verify that R/I is subdirectly irreducible, it suffices to show that every nonzero ideal of R/I contains $\langle a + I \rangle$. Since $a \cdot R = 0 = R \cdot a$, $\langle a + I \rangle$ is clearly an ideal and $a + I \neq 0$. Let J be a nonzero ideal of R/I. Then there exist $y \in A$ and an integer n such that $0 \neq y + nx + I \in J$, and we can choose n = 1 or n = 0. If n = 1 then $(y + x + I)(x + I) = a + I \in J$ as claimed. Suppose n = 0. Then $y \in A \setminus C$ and G = P + C with $P \leq A$ implies y = z + i with $0 \neq z \in P$ and $i = y - z \in C \cap A = I$. Since $y \notin I$ we have $z \notin B$. From $(P/B)[2] = \langle a + B \rangle$ we infer $2^m z + B = a + B$ for some positive integer m. Thus

$$a + I = 2^m z + I = 2^m (z + i) + I = 2^m y + I \in J$$

completing the proof.

4. The Proof of 3.3

Throughout, we let $T = \bigoplus_{n < \omega} Z(2^n)$, and \widehat{T} denotes the 2-adic completion of T. Then $T \leq \widehat{T} \leq \prod_{n < \omega} Z(2^n)$, and every endomorphism ϕ of T can be extended uniquely to an endomorphism of \widehat{T} . Let $\pi : \widehat{T} \to \widehat{T}/T$ denote the natural epimorphism. Note that the group \widehat{T}/T is divisible.

We start with a general construction using ideas from [2].

A. Let B be any torsion-free group such that $EndB = \mathbb{Z} \cdot 1_B$, and let $f: B \to \widehat{T}$ be a set function. If $\pi \circ f \in Hom(B, \widehat{T}/T)$ is a homomorphism we say that f is *eligible*. Assume f is eligible. Define

$$B_f = \{(t + f(b), b) | t \in T, b \in B\} \subseteq \widehat{T} \oplus B.$$

One verifies the following. We will identify \widehat{T} with $\widehat{T} \oplus 0$.

0

[6]

4.1. B_f is a subgroup of $\widehat{T} \oplus B$ with torsion part $tB_f = T$, and $B_f/tB_f \simeq B$. 4.2. $EndB_f = \mathbb{Z} \cdot 1_{B_f} \oplus Hom(B_f, T)$.

4.3. If $g: B \to \widehat{T}$ is a set function such that $\pi \circ g = \pi \circ f$ then $B_g = B_f$.

4.4. B_f splits if and only if there exists a homomorphism $\eta: B \to \widehat{T}$ such that $\pi \circ f = \pi \circ \eta$.

For $\phi \in Hom(T,T)$, its unique extension to \widehat{T} will be denoted by $\widehat{\phi}$. Note that f eligible implies $\widehat{\phi} \circ f$ eligible.

4.5. Given $\phi \in Hom(T,T)$, there exists $\theta \in Hom(B_f,T)$ extending ϕ if and only if $B_{\widehat{\phi}\circ f}$ splits.

PROOF: Suppose, firstly, that $B_{\widehat{\phi}\circ f}$ splits. It follows that there exists a homomorphism $\sigma: B_{\widehat{\phi}\circ f} \to T$ such that $\sigma \circ \iota = 1_T$ where $\iota: T \to B_{\widehat{\phi}\circ f}$ denotes the inclusion map. One verifies that $\widehat{\phi} \oplus 1_B \in End(\widehat{T} \oplus B)$ induces a homomorphism from B_f to $B_{\widehat{\phi}\circ f}$. Let $\theta = \sigma \circ (\widehat{\phi} \oplus 1_B)|B_f$. Conversely, suppose there exists a θ as stated. In particular, $\theta(t,0) = \phi(t)$ for all $t \in T$. Define $\eta: B \to \widehat{T}$ by $\eta(b) = \widehat{\phi}(f(b)) - \theta(f(b), b)$ for all $b \in B$. Then $\pi \circ \eta = \pi \circ \widehat{\phi} \circ f$. By (4), it suffices to show η is a homomorphism. Let $b, b' \in B$. There exists $t \in T$ such that f(b+b') = f(b) + f(b') + t. Hence

$$\eta(b+b') = \widehat{\phi}(f(b) + f(b') + t) - \theta(f(b) + f(b') + t, b+b') = \eta(b) + \eta(b').$$

B. We now specify the torsion-free group B. Let J_2 denote the ring of 2-adic integers, and let $\rho \in J_2$ be transcendental over the rational integers Q. For each natural number n we have

$$ho = s_n + 2^n
ho_n$$

with $s_n \in \mathbb{Z}$ and $\rho_n \in J_2$. Let

$$B = \langle \{1\} \cup \{\frac{\rho - s_n}{2^n} | n < \omega\} \rangle,$$

and let R be a subring of $Z_{(2)}$, the integers localised at 2, containing Z. The set $RB = \{rb | r \in R, b \in B\} \subseteq J_2$ is an additive group.

4.6. $End(RB) = R \cdot 1_{RB}$.

PROOF: Let ε be an endomorphism of RB and $\gamma = \varepsilon(1) \in RB$. Since, for each $n, \rho = s_n + 2^n \rho_n, \varepsilon(\rho) = \varepsilon(s_n) + 2^n \varepsilon(\rho_n) = s_n \varepsilon(1) + 2^n \rho'_n = s_n \gamma + 2^n \rho'_n$. Hence $\varepsilon(\rho) = \lim_{n \to \infty} s_n \gamma = \rho \gamma$. It follows that ε is the multiplication by γ . There exists a positive integer k such that $2^k \gamma = r + t\rho$ with r and t in R. Then $\varepsilon(2^k \rho) = 2^k \rho \gamma = r\rho + t\rho^2$. Since ρ is transcendental over \mathbf{Q} , we have t = 0 and $\gamma \in \mathbf{R}$.

[8]

Let $\Phi = EndT \setminus Hom_b(T,T)$ denote the set of all endomorphisms of T with unbounded image. Then Φ has cardinality 2^{\aleph_0} so that we can fix an enumeration

$$\Phi = \{\phi_{\alpha} | \alpha < 2^{\omega}\}.$$

4.7. For each $\alpha < 2^{\omega}$, there exists an eligible set function $f_{\alpha} : B \to \widehat{T}$ such that $\phi_{\alpha} \in \Phi$ cannot be extended to a homomorphism from $(B)_{t_{\alpha}}$ to T.

PROOF: Let $\phi = \phi_{\alpha} \in \Phi$. First of all, note that there exists an element $x = x_{\alpha}$ in \widehat{T} such that $\widehat{\phi}(x) \in \widehat{T} \setminus T$: being an unbounded subgroup of T, the image of ϕ contains a subgroup $C = \bigoplus_{i < \omega} \langle \phi(t_i) \rangle$ with $2^{2i} \phi(t_i) \neq 0$ and $o(\phi(t_i)) < o(\phi(t_{i+1}))$ for all *i*; if $x = \lim_{n \to \infty} (2t_1 + \cdots + 2^n t_n)$ then $\widehat{\phi}(x)$ has infinite order. Since $F = \langle 1, \rho \rangle$ is a free subgroup of B, there exists a homomorphism μ from F to \widehat{T} such that $\mu(1) = 0$ and $\mu(\rho) = x$. Then $\pi \circ \mu : F \to \widehat{T}/T$ is a homomorphism which, since \widehat{T}/T is divisible, can be extended to a homomorphism $\psi \in Hom(B, \widehat{T}/T)$. For each $b \in B \setminus F$ choose $t_b \in \widehat{T}$ such that $\psi(b) = \pi(t_b)$. The mapping $b \mapsto t_b$ extends μ to a function $f = f_\alpha : B \to \widehat{T}$ with $f|F = \mu$ which is eligible. Assume ϕ can be extended to a homomorphism from B_f to T. By 4.4 and 4.5, there exists $\eta \in Hom(B, \widehat{T})$ such that $\pi \circ \widehat{\phi} \circ f = \pi \circ \eta$. Hence, $\pi\eta(1) = \pi\widehat{\phi}f(1) = \pi\widehat{\phi}(0) = 0$ which implies $\eta(1) = s \in T$; similarly, $\pi\eta(\rho) = \pi\widehat{\phi}(x)$ so that $\eta(\rho) = \widehat{\phi}(x) + t$ for some $t \in T$. As before, $\eta(\rho) = \eta(s_n + 2^n \rho_n) = s_n \eta(1) + 2^n \rho'_n$ for all n. It follows that $\widehat{\phi}(x) + t = \lim_{n \to \infty} s_n s = s \rho \in T$ which contradicts $\widehat{\phi}(x) \notin T$.

C. Let K_2 denote the field of 2-adic numbers. Since K_2 has transcendence degree 2^{\aleph_0} over the rationals, there exists a subset $\Pi \subseteq J_2$ of cardinality 2^{\aleph_0} which is algebraically independent over Z. Fix an enumeration

$$\Pi = \{\pi_{\alpha} \mid \alpha < 2^{\omega}\},\$$

and let, for each α and each natural number n, $\pi_{\alpha} = s_n^{\alpha} + 2^n \rho_n^{\alpha}$ with $s_n^{\alpha} \in \mathbb{Z}$ and $\rho_n^{\alpha} \in J_2$. For each $\alpha < 2^{\omega}$, let B_{α} be the group B constructed in B with $\rho = \pi_{\alpha}$. Well known set theoretical arguments show the existence of a family $\mathcal F$ of sets of rational primes with the following properties: (i) no set in \mathcal{F} contains the prime 2 or the prime 3; (ii) no set in \mathcal{F} is properly contained in another one; and (iii) \mathcal{F} has cardinality 2^{\aleph_0} [6]. (The following argument shows that every countably infinite set S has a family \mathcal{F} of subsets satisfying (ii) and (iii): given $n \in \mathbb{N}$, let S_n denote the set of all functions $f: \{1, \ldots, n\} \to \mathbb{N}$. Then each S_n is countable and so is their union $S = \bigcup_{n \in \mathbb{N}} S_n$. Let $T = \mathbb{N}^{\mathbb{N}}$ be the set of all functions from N to N. Then $|T| = 2^{\aleph_0}$. For $g \in T$, let $I(g) = \{f \in S | f | \{1, ..., n\} = g | \{1, ..., n\}$ for some $n \in \mathbb{N} \}$. Let $\mathcal{F} = \{I(g) | g \in T\}$.) Again, choose an indexing $\mathcal{F} = \{\Delta_{\alpha} | \alpha < 2^{\omega}\}$. As customary, for p a prime, $\mathbf{Q}^{(p)}$ denotes the set of all rational numbers with denominator a power of

p. For each $\alpha < 2^{\omega}$, let $\mathbf{Q}_{\alpha} = \sum \{\mathbf{Q}^{(p)} | p \in \Delta_{\alpha}\}$, a subring of \mathbf{Q} . Define a subgroup H of the external direct sum $\bigoplus_{\alpha < 2^{\omega}} K_2$ as follows: if e_{β} denotes the vector with 1 in the beta-th coordinate and zeros elsewhere, we let

$$H = \bigoplus_{\alpha < 2^{\omega}} \mathbf{Q}_{\alpha} B_{\alpha} e_{\alpha} + \sum_{1 < \alpha < 2^{\omega}} \mathbf{Q}^{(2)}(e_{\alpha} - e_{0}) + \mathbf{Q}^{(3)}(e_{1} - e_{0}).$$

Let $\sigma = t(\mathbf{Q}^{(2)})$ denote the type of $\mathbf{Q}^{(2)}$, let $\tau = t(\mathbf{Q}^{(3)})$ and let $\tau_{\alpha} = t(\mathbf{Q}_{\alpha})$. One verifies the following. For t a type, H(t) denotes the (fully invariant) subgroup of H consisting of all elements of type greater than or equal to t. The pure subgroup generated by a subgroup A is denoted by A_* .

4.8. The following hold:

(1)
$$H(\sigma) = \left(\sum_{1 < \alpha < 2^{\omega}} \mathbf{Q}^{(2)}(e_{\alpha} - e_{0})\right)_{*}.$$

(2)
$$H(\tau) = \left(\mathbf{Q}^{(3)}(e_{1} - e_{0})\right)_{*}.$$

(3) For each $\alpha < 2^{\omega}$, $H(\tau) = \mathbf{Q}$, \mathbf{R} , \mathbf{e}

(3) For each
$$\alpha < 2^{\omega}$$
, $H(\tau_{\alpha}) = \mathbf{Q}_{\alpha}B_{\alpha}e_{\alpha}$

PROOF OF (1): Put $A = \sum_{1 < \alpha < 2^{\omega}} \mathbf{Q}^{(2)}(e_{\alpha} - e_{0})$. Then $A \leq H(\sigma)$. Let $w \in H$ be an element of infinite 2-height. Without loss of generality, we may assume that w is an element of $\bigoplus_{\alpha < 2^{\omega}} \mathbf{Q}_{\alpha} B_{\alpha} e_{\alpha} + \mathbf{Q}^{(3)}(e_{1} - e_{0})$. In generalised vector notation,

$$w = \left(r_{\alpha} + t_{\alpha}\rho_{n_{\alpha}}^{\alpha} + p_{\alpha}\right)$$

with $r_{\alpha}, t_{\alpha} \in \mathbf{Q}_{\alpha}$, n_{α} positive integers, $p_{\alpha} \in \mathbf{Q}^{(3)}$, $p_0 + p_1 = 0$ and $p_{\alpha} = 0$ for all $\alpha > 1$. In fact, we may assume that all of $r_{\alpha}, t_{\alpha}, p_{\alpha}$ are integers, and $p_{\alpha} = 0$ for all α . Also, since only finitely many components of w are nonzero, it is possible to write w such that $n_{\alpha} = n_{\beta} = n \in \mathbb{N}$ for all α and β . By hypothesis, given any $m \in \mathbb{N}$, there exists $y_m \in H$ such that $2^m y_m = w$, and

$$y_m = \left(r_\alpha^m + t_\alpha^m \rho_{n_m}^\alpha + q_\alpha^m + p_\alpha^m\right)$$

with $r_{\alpha}^{m}, t_{\alpha}^{m} \in \mathbf{Q}_{\alpha}, q_{\alpha}^{m} \in \mathbf{Q}^{(2)}, q_{1}^{m} = 0, \sum_{\alpha} q_{\alpha}^{m} = 0, p_{\alpha}^{m} \in \mathbf{Q}^{(3)}, p_{0}^{m} + p_{1}^{m} = 0$ and $p_{\alpha}^{m} = 0$ for all $\alpha > 1$. Thus, for all α and all m,

$$2^{m} \left(r_{\alpha}^{m} + t_{\alpha}^{m} \rho_{n_{m}}^{\alpha} + q_{\alpha}^{m} + p_{\alpha}^{m} \right) = r_{\alpha} + t_{\alpha} \rho_{n}^{\alpha}$$

which implies

$$2^{m+n+n_m}(r_\alpha^m+q_\alpha^m+p_\alpha^m)+2^{m+n}t_\alpha^m(\pi_\alpha-s_{n_m}^\alpha)=2^{n+n_m}r_\alpha+2^{n_m}t_\alpha(\pi_\alpha-s_n^\alpha).$$

The linear independence of the π_{α} over Q implies, for all α and all m,

(i)
$$2^{m+n}t_{\alpha}^{m}=2^{nm}t_{\alpha}$$

and, substituting,

(ii)
$$2^{m+n+n_m}(r^m_{\alpha}+q^m_{\alpha}+p^m_{\alpha})-2^{n_m}t_{\alpha}s^{\alpha}_{n_m}=2^{n+n_m}r_{\alpha}-2^{n_m}t_{\alpha}s^{\alpha}_n.$$

Assume, by way of contradiction, that $t_{\beta} \neq 0$ for some β . Then $t_{\beta} = (2^k p)/q$ for some integers $k \geq 0$ and p and q odd. Since t_{β}^m has odd denominator, (i) implies $n_m + k \geq m + n$. Note that n and k are fixed. Thus

(iii)
$$\lim_{m\to\infty}n_m=\infty.$$

From (ii) we obtain

(iv)
$$2^{m+n}q_{\alpha}^{m} = 2^{n}r_{\alpha} - t_{\alpha}s_{n}^{\alpha} + t_{\alpha}s_{n_{m}}^{\alpha} - 2^{m+n}(r_{\alpha}^{m} + p_{\alpha}^{m}).$$

Since, for all m, the denominator of $r_{\alpha}^{m} + p_{\alpha}^{m}$ is odd, (iii) and (iv) imply

(v)
$$\lim_{m\to\infty} \left(2^{n+m}q_{\alpha}^{m}\right) = 2^{n}r_{\alpha} - t_{\alpha}s_{n}^{\alpha} + t_{\alpha}\pi_{\alpha}$$

For each m, let $s_m = \sum_{\alpha} 2^{n+m} q_{\alpha}^m$. Since $\sum_{\alpha} q_{\alpha}^m = 0$, each s_m is zero. Using (v) one verifies

$$0 = \lim_{m \to \infty} s_m = \sum_{\alpha} (2^n r_{\alpha} - t_{\alpha} s_n^{\alpha} + t_{\alpha} \pi_{\alpha}),$$

and the linear independence of the $\{\pi_{\alpha}\}$ over \mathbf{Q} implies $t_{\alpha} = 0$ for each α . Because of (i), all t_{α}^{m} are zero and from (iv) we infer $0 = 2^{m} \sum_{\alpha} q_{\alpha}^{m} = \sum_{\alpha} r_{\alpha} - 2^{m} \sum_{\alpha} (r_{\alpha}^{m} + p_{\alpha}^{m})$. It follows that $\sum_{\alpha} r_{\alpha}$ has infinite 2-height in the ring $\mathbf{Q}^{(3)} + \sum_{\alpha} \mathbf{Q}_{\alpha}$ which implies $\sum_{\alpha} r_{\alpha} = 0$. Thus, $w = \sum_{\alpha}^{\alpha} r_{\alpha} e_{\alpha} = \sum_{\alpha} r_{\alpha} (e_{\alpha} - e_{0}) = z + k(e_{1} - e_{0})$ with $z = \sum_{1 < \alpha < 2^{\omega}} r_{\alpha} (e_{\alpha} - e_{0}) \in \sum_{1 < \alpha < 2^{\omega}} \mathbf{Z}(e_{\alpha} - e_{0}) \leq H(\sigma)$ and $k = r_{1} \in \mathbf{Z}$. Hence, for all $m, k/2^{m} \in \mathbf{Q}_{1} + \mathbf{Q}^{(3)}$ which implies k = 0. We have shown that $w \in A$.

PROOF OF (2): Obviously, $\mathbf{Q}^{(3)}(e_1 - e_0) \leq H(\tau)$. Let $w = (r_{\alpha} + t_{\alpha}\rho_n^{\alpha} + q_{\alpha}) \in H(\tau)$ with integers $r_{\alpha}, t_{\alpha}, q_{\alpha}$; we may assume each q_{α} is zero. We use the same notation as before: there exist $y_m = (r_{\alpha}^m + t_{\alpha}^m \rho_{nm}^{\alpha} + q_{\alpha}^m + p_{\alpha}^m) \in H$ such that $3^m y_m = w$. Corresponding to (i) we obtain $3^m 2^n t_{\alpha}^m = 2^{nm} t_{\alpha}$ which shows that each t_{α} has infinite 3-height in $\mathbf{Q}_{\alpha} + \mathbf{Q}^{(2)}$. Hence $t_{\alpha} = 0$ for each α and $w = (r_{\alpha})$, $y_m = (r_{\alpha}^m + q_{\alpha}^m + p_{\alpha}^m)$. For $\alpha > 1$, $p_{\alpha}^m = 0$ which implies that $r_{\alpha} = 3^m (r_{\alpha}^m + q_{\alpha}^m)$ has infinite 3-height in $\mathbf{Q}_{\alpha} + \mathbf{Q}^{(2)}$. It follows that $r_{\alpha} = 0$ for $\alpha > 1$. Hence $r_0 + r_1 = \sum_{\alpha} r_{\alpha} = \sum_{\alpha} 3^m (r_{\alpha}^m + q_{\alpha}^m + p_{\alpha}^m) = 3^m \left(\sum_{\alpha} r_{\alpha}^m + \sum_{\alpha} q_{\alpha}^m + \sum_{\alpha} p_{\alpha}^m\right) = 3^m \sum_{\alpha} r_{\alpha}^m$

has infinite 3-height in $\sum_{\alpha} \mathbf{Q}_{\alpha}$. Thus, $r_0 + r_1 = 0$ and $w = r_1(e_1 - e_0) \in \mathbf{Z}(e_1 - e_0)$ as desired.

PROOF OF (3): Fix $\beta < 2^{\omega}$ and let $w \in H(\tau_{\beta})$. Assume, by way of contradiction, there exists an $\alpha \neq \beta$ belonging to the support of w. By hypothesis, there exists a prime p such that $p \in \Delta_{\beta}$ but $p \notin \Delta_{\alpha}$, and $p \neq 2,3$. For each positive integer m, there exists $y_m \in H$ such that $p^m y_m = w$. Using the same notation as before, letting $w = (r_{\alpha} + t_{\alpha}\rho_n^{\alpha} + q_{\alpha} + p_{\alpha})$ and $y_m = (r_{\alpha}^m + t_{\alpha}^m \rho_{n_m}^{\alpha} + q_{\alpha}^m + p_{\alpha}^m)$, the equation corresponding to (i) is $p^m 2^n t_{\alpha}^m = 2^{n_m} t_{\alpha}$ for all m which shows that $t_{\alpha} = 0 = t_{\alpha}^m$, and $r_{\alpha} + q_{\alpha} + p_{\alpha} = p^m (r_{\alpha}^m + q_{\alpha}^m + p_{\alpha}^m)$ has infinite p-height in $Q_{\alpha} + Q^{(2)} + Q^{(3)}$. Thus, the α -th component of w is zero and $w = \left(r_{\beta}^m + t_{\beta}^m \rho_n^\beta + q_{\beta}^m + p_{\beta}^m\right)e_{\beta}$. Since, for $\alpha \neq \beta$, $r_{\alpha} + q_{\alpha} + p_{\alpha} = 0$, both q_{α} and p_{α} are integers. Hence, so are $q_{\beta} = -\sum_{\alpha \neq \beta} q_{\alpha}$ and $p_{\beta} = -\sum_{\alpha \neq \beta} p_{\alpha}$. It follows that $w \in Q_{\beta}B_{\beta}e_{\beta}$.

4.9. $EndH = \mathbf{Z} \cdot \mathbf{1}_H$.

PROOF: Let $\varepsilon \in EndH$. By 4.8(3), for each α , ε induces an endomorphism in $\mathbf{Q}_{\alpha}B_{\alpha}e_{\alpha}$ which, by 4.6, must be the multiplication by some $r_{\alpha} \in \mathbf{Q}_{\alpha}$. Pick $\beta > 1$. By 4.8(1), we have

$$\varepsilon(e_{\beta}-e_0)=r_{\beta}e_{\beta}-r_0e_0\in\left(\sum_{1$$

Thus, there exists a nonzero integer n such that $n(r_{\beta}e_{\beta}-r_{0}e_{0}) = \sum_{1 < \alpha} q_{\alpha}(e_{\alpha}-e_{0})$. It follows that $r_{\beta} = n^{-1}q_{\beta} = r_{0}$. Similarly, using 4.8(2), $r_{1} = r_{0}$. It follows that ε restricted to $\bigoplus_{\alpha < 2^{\omega}} Q_{\alpha}B_{\alpha}e_{\alpha}$ is the multiplication by $r_{0} \in \mathbb{Z}$. The latter subgroup being full in H shows $\varepsilon = r_{0} \cdot 1_{H}$.

4.10. $H = \langle e_0 \rangle + \langle e_1 \rangle + 2H$, and H/2H has rank two.

PROOF: Let R be a subring of Q such that every element in R has odd denominator. Then $R = \mathbb{Z} + 2R$. Since $\rho_n^{\alpha} = 2\rho_{n+1}^{\alpha}$, it follows that $\mathbb{Q}^{(3)}(e_1 - e_0) \subseteq \langle e_0 \rangle + \langle e_1 \rangle + 2H$ and, for each $\alpha < 2^{\omega}$,

$$\mathbf{Q}_{\alpha}B_{\alpha}e_{\alpha} = \mathbf{Q}_{\alpha}\langle 1, \rho_{n}^{\alpha}\rangle e_{\alpha} \subseteq \mathbf{Q}_{\alpha}e_{\alpha} + 2H \subseteq \langle e_{\alpha}\rangle + 2H$$

If $\alpha > 1$, $e_{\alpha} = e_0 + (e_{\alpha} - e_0) \in \langle e_0 \rangle + 2H$. Thus, $H = \langle e_0 \rangle + \langle e_1 \rangle + 2H$. In order to show e_0 and e_1 are linearly independent modulo 2H, let a and b be integers such that $ae_0 + be_1 \in 2H$. Using the same symbolism as above, $ae_0 + be_1 = 2(r_{\alpha} + t_{\alpha}\rho_n^{\alpha} + q_{\alpha} + p_{\alpha})$ and as before we must have $t_{\alpha} = 0$ for all α and $r_{\alpha} + q_{\alpha} = 0$ if $\alpha > 1$ so that q_{α}

must be an integer. This implies $q_0 = -\sum_{1 \leq \alpha} q_{\alpha}$ is an integer and $2q_0$ is even. Since $q_1 = 0$, $2p_1 = b - 2r_1 \in \mathbf{Q}^{(3)} \cap \mathbf{Q}_1 = \mathbf{Z}$ which implies $p_1 = -p_0$ is an integer. Since $r_0 = (a - 2q_0 - 2p_0)/2$ has odd denominator, a must be even. Similarly, b must be even.

4.11. For every $\phi \in Hom(H,T)$, $Im\phi$ is bounded.

PROOF: There exists a positive integer n such that $2^n \phi(e_i) = 0$ for i = 1, 2. By 4.10, $\phi(H) = \langle \phi(e_0) \rangle + \langle \phi(e_1) \rangle + 2\phi(H)$ which implies $2^n \phi(H) = 2^{n+1} \phi(H) = 0$ since T is reduced.

D. We are getting ready to construct our group G. By 4.7, for each $\alpha < 2^{\omega}$, there exists an eligible map $f_{\alpha} : B_{\alpha} \to \widehat{T}$ such that $\phi_{\alpha} \in \Phi$ does not extend to a homomorphism from $(B_{\alpha})_{f_{\alpha}}$ to T. It follows that $\oplus f_{\alpha} : \bigoplus_{\alpha < 2^{\omega}} B_{\alpha} \to \widehat{T}$ is an eligible map which, in turn, extends to an eligible map $f : H \to \widehat{T}$ since \widehat{T}/T is divisible, hence injective. By 4.9, H satisfies the same hypotheses as the group B in part A. Let $K = H_f$. Then

4.12. $EndK = \mathbb{Z} \cdot 1_K \oplus Hom_b(K,T)$.

PROOF: By 4.2, it suffices to show every homomorphism from K to T has bounded image. Let $\phi \in Hom(K,T)$. By 4.1, tK = T; let $\psi = \phi | tK$ be the restriction map and assume, by way of contradiction, that ψ has unbounded image. Then $\psi = \phi_{\alpha}$ for some $\alpha < 2_{\omega}$. By construction, ϕ_{α} cannot be extended to $(B_{\alpha})_{f_{\alpha}}$. Since $T \leq (B_{\alpha})_{f_{\alpha}}$ and

$$(B_{\alpha})_{f_{\alpha}} = \{(t+f(b),b)|t\in T, b\in B_{\alpha}\} \leq H_f = K,$$

 ϕ_{α} does not extend to K which is a contradiction. Hence $2^{n}\phi(T) = 0$ and $2^{n}\phi$ induces a homomorphism $\eta: K/T \to T$ given by $\eta(x+T) = 2^{n}x$. It follows from 4.1 and 4.11 that η is bounded and, hence, so is ϕ .

Let P be the Prüfer 2-group with $2^{\omega}P = \langle a \rangle$ as above. Then there is an exact sequence $0 \rightarrow \langle a \rangle \rightarrow P \rightarrow T \rightarrow 0$ the epimorphism of which induces an epimorphism $Ext(H,P) \rightarrow Ext(H,T)$. Thus, there exists a group G and homomorphisms such that the following diagram is commutative with exact rows:

By the Five Lemma, η is an epimorphism, and $\langle a \rangle$ is the kernel of η . Hence $K \simeq G/\langle a \rangle$. One verifies that $G/(tG + 2G) \simeq H/2H$ which, by 4.10, has rank two. The group G will satisfy the hypothesis of 3.2 if it has the property that $EndG = \mathbb{Z} \cdot 1_G \oplus Hom_b(G, P)$. Ring endomorphisms

Let ε be an endomorphism of G. Since $\langle a \rangle = 2^{\omega} t G$ is fully invariant in G, ε induces an endomorphism $\overline{\varepsilon}$ in $G/\langle a \rangle \simeq K$. By 4.12, there exist integers m and n such that $2^m \overline{\varepsilon} = 2^m n \cdot 1_{G/\langle a \rangle}$ and m is positive. Hence $2^{m+1}(\varepsilon - n \cdot 1_G) = 0$ as desired.

REMARK. A more elaborate construction along the same lines yields a group G with G/(tG+2G) of dimension 2^{\aleph_0} .

References

- G. Birkenmeier and H. Heatherly, 'Rings whose additive endomorphisms are ring endomorphisms', Bull. Austral. Math. Soc. 42 (1990), 145-152.
- [2] M. Dugas, P. Hill, and K.M. Rangaswamy, 'Butler groups of infinite rank II', Trans. Amer. Math. Soc. 320 (1990), 643-664.
- [3] S. Feigelstock, 'Rings whose additive endomorphisms are multiplicative', Period. Math. Hungar. 19 (1988), 257-260.
- [4] L. Fuchs, Infinite abelian groups, I (Academic Press., New York, 1970).
- [5] L. Fuchs, Infinite abelian groups, II (Academic Press, New York, 1973).
- [6] T. Jech, Set theory (Academic Press, New York, 1978).
- [7] K.H. Kim and F.W. Roush, 'Additive endomorphisms of rings', Period. Math. Hungar. 12 (1981), 241-242.
- [8] N.H. McCoy, *Rings and ideals*, Carus Mathematical Monographs (The Mathematical Association of America, Fifth Impression, 1971.).
- [9] R.P. Sullivan, 'Research problem No. 23', Period. Math. Hungar. 8 (1977), 313-314.

Baylor University Waco TX 76798-7328 United States of America

University of Houston Houston TX 77204-3476 United States of America University of Houston Houston TX 77204-3476 United States of America