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Abstract

We give a new method for simulating the time average steady-state distribution of a
continuous-time queueing system, by extending a ‘read-once’ or ‘forward’ version of the
coupling from the past (CFTP) algorithm developed for discrete-time Markov chains.
We then use this to give a new proof of the ‘Poisson arrivals see time averages’ (PASTA)
property, and a new proof for why renewal arrivals see either stochastically smaller or
larger congestion than the time average if interarrival times are respectively new better
than used in expectation (NBUE) or new worse than used in expectation (NWUE).
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1. Introduction

In a queueing system the fraction of arrivals finding the queue in some state is not necessarily
the same as the fraction of time the queue is in that state. For example, if arrivals occur
in infrequent but heavy bursts, most customers can see a lot of congestion even though the
system is usually empty. The celebrated ‘Poisson arrivals see time averages’ (PASTA) property
of queueing theory, attributed to Wolff (1982), says that with Poisson arrivals the fraction of
arrivals finding a queue in some state equals the fraction of time the queue is in that state.

There is a very large literature on the PASTA property. Wolff’s (1982) article has nearly 300
citations listed in the Web of Science citation index, making it the the third most cited article
in Operations Research since 1980 and among the top 10 most frequently cited articles in the
history of the journal. For some entry points to this literature, see, for example, Melamed and
Whitt (1990a), Melamed and Whitt (1990b), Melamed and Yao (1995), Brèmaud et al. (1992),
Heyman and Stidham (1980), Köning and Schmidt (1980), (1981), Shanthikumar and Zazanis
(1999), and the references therein.

In this article we present new proofs relating time averages and customer averages in queues
by extending a version of the coupling from the past (CFTP) idea, first attributed to Propp and
Wilson (1996), used to exactly sample the stationary distribution of a Markov chain. Propp
and Wilson’s original 1996 article in Random Structures and Algorithms, according to the
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Web of Science citation index, has 162 citations and, thus, is the most frequently cited article
in the history of that journal. The more recent article Wilson (2000) gives a ‘read-once’ or
‘forward’ CFTP technique for exactly sampling the stationary distribution of a discrete-time
Markov chain. Other approaches for exact sampling in continuous time appear in Corcoran and
Tweedie (2001), and Foss et al. (1998). Additional material on ‘forward’ CFTP can be found
in Ross and Peköz (2007).

The organization of this article is as follows. In Section 2 we present our main result, which
is an extension of the ‘read-once’or ‘forward’CFTP technique to continuous time. In Section 3
we apply this result to relating customer and time averages, and in particular, we give new
proofs of the PASTA property and of why renewal arrivals see either stochastically smaller or
larger congestion than the time average if interarrival times are respectively new better than
used in expectation (NBUE) or new worse than used in expectation (NWUE).

2. Simulating the time average queue

Consider a queueing system having a renewal customer arrival process, and let Q(t) be the
state of the system at time t , immediately prior to any arrival which may occur at that time.
Let X1, X2, . . . be independent and identically distributed customer interarrival times (denoted
generically as X with cumulative distribution function F ), and let Tn = ∑n

i=1 Xi be the time
of the nth customer arrival. We suppose that the state of the system encodes the amount of time
each customer has been in service, along with their positions in the system, so that Q(Tn) is a
Markov chain, where Q(Tn) is the state seen by arrival n—that is, it is the state of the system
immediately before customer n arrives. Let S denote the state space of this Markov chain, and
let 0 ∈ S correspond to the system being empty.

Suppose that, for some p > 0, we have

Ps,0 ≡ P(Q(Tn+1) = 0 | Q(Tn) = s) ≥ p for all states s.

This condition will hold if interarrival times are unbounded and the total amount of work allowed
in the system is bounded. This condition will also hold in the special setting of ‘exploding’
customers, defined and used in the next section, where after the arrival of each customer, the
system is instantly cleared of all customers with probability p (independent of all else) and
enters state 0 immediately. It also holds in a finite-capacity system where the interarrival times
are unbounded and the failure rate function of the service distribution is bounded (or, more
generally, if there is a distribution G that, for all t , is stochastically larger than the distribution
of the remaining service time of a customer who has already spent t time units in service).

We now construct a sequence Jn, n ≥ 1, of independent and identically distributed Bernoulli
random variables with parameter p, that is, such that whenever Jn = 1 then Q(Tn) = 0. To
do so, let Ui, i ≥ 1, be a sequence of independent uniform (0, 1) random variables that is
generated independent of the queueing system. Let

Jn = max
s∈S

I

{
Q(Tn−1) = s, Q(Tn) = 0, Un <

p

Ps,0

}
,

where we use the notation I {B} for the indicator variable for the event B. That is, Jn = 1 if,
for some state s, the state seen by arrival number n − 1 is s, the state seen by the next arrival
is 0, and the corresponding uniform is less than p/Ps,0.
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We say that the random variable Z taking values in S has the time average steady-state
distribution if

P(Z ∈ A) = lim
t→∞

1

t

∫ t

0
I {Q(s) ∈ A} ds

for any set of states A.
Let Y be a random variable that is independent of all the other random variables and which

has the equilibrium distribution for the renewal process. That is,

P(Y ≤ y) = 1

E[X]
∫ y

0
F̄ (x) dx,

where F̄ is the tail distribution function. Note that the density function for Y is

g(x) = F̄ (x)

E[X] .

Suppose that the system is empty at time 0 and say that a new cycle begins at time TN , where
N = min(n > 0 : Jn = 1) denotes the number of arrivals in the first cycle. Also, let Qn(t) be
a random variable, independent of all else, whose distribution is the conditional distribution of
Q(Tn + t) given that Tn+1 > Tn + t and N ≥ n. Note that this means that Qn(t) is independent
of both N and Q(t), though its distribution is defined in terms of the distributions of Q(t)

and N .

Proposition 1. With the above definitions, the variable QN−1(Y ) has the time average steady-
state distribution.

Remark 1. The variable QN−1(Y ) can be simulated as follows. Simulate the queue until a
cycle ends, let s = Q(TN−1), generate a random variable Y having the equilibrium distribution,
start a completely independent simulation of the queueing system from state s at time 0 without
any arrivals, and output the state of this independent simulation at time Y . Note that this is
not the same as simply outputting the state Q(TN−1 + Y ), since Qn−1(t) is defined to be
independent of all else (including N ) and, thus, N does not indicate the end of a cycle in the
system Qn−1(t).

Remark 2. The preceding result can be viewed as an extension to continuous time of the ‘read-
once’ or ‘forward’ CFTP technique for discrete-time Markov chains given in Wilson (2000).

Proof of Proposition 1. Suppose that the system is empty at time 0 and say that a new cycle
begins each time an exploding customer arrives. Let N = min(n > 0 : Jn = 1), so that the
first cycle is of length TN . Letting

RA =
∫ TN

0
I {Q(s) ∈ A} ds

be the amount of time spent in A during the first cycle, by the renewal reward theorem we have

P(Z ∈ A) = E[RA]
E[TN ] .

Because N is a stopping time for the sequence of interarrival times, Wald’s equation gives

E[TN ] = E[X] E[N ] = E[X]
p

.
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Now, let Qn(t) be a random variable whose distribution is the conditional distribution of
Q(Tn + t) given that Tn+1 > Tn + t and N ≥ n. Then, with

F−1(x) ≡ inf{t : F(t) ≥ x},
M ∼ geometric(p) independent of all else, and U ∼ U(0, 1),

E[RA] = E

[∫ TN

0
I {Q(t) ∈ A} dt

]

= E

[ N∑
n=1

∫ Xn

0
I {Q(Tn−1 + t) ∈ A} dt

]

= E

[ ∞∑
n=1

I {N ≥ n}
∫ Xn

0
I {Q(Tn−1 + t) ∈ A} dt

]

=
∞∑

n=1

E

[∫ Xn

0
I {Q(Tn−1 + t) ∈ A} dt | N ≥ n

]
P(N ≥ n)

=
∑
n

P(N ≥ n) E

[
E

[∫ Xn

0
I {Q(Tn−1 + t) ∈ A} dt | Xn, N ≥ n

] ∣∣∣∣ N ≥ n

]

=
∑
n

P(N ≥ n) E

[
E

[∫ F−1(U)

0
I {Q(Tn−1 + t) ∈ A} dt | U,

Xn = F−1(U), N ≥ n

] ∣∣∣∣ N ≥ n

]

=
∑
n

P(N ≥ n)

∫ 1

0

∫ F−1(x)

0
P(Qn−1(t) ∈ A) dt dx

=
∑
n

P(N ≥ n)

∫ ∞

0

∫ 1

F(t)

P(Qn−1(t) ∈ A) dx dt

=
∑
n

P(N ≥ n)

∫ ∞

0
F̄ (t) P(Qn−1(t) ∈ A) dt

=
∑
n

P(N ≥ n) E[X]
∫ ∞

0
g(t) P(Qn−1(t) ∈ A) dt

=
∑
n

P(N ≥ n) E[X] P(Qn−1(Y ) ∈ A)

=
∑
n

1

p
P(N = n) E[X] P(Qn−1(Y ) ∈ A)

= P(QM−1(Y ) ∈ A) E[X]
p

= P(QN−1(Y ) ∈ A) E[X]
p

,

and the result is proved. The last line follows because Qn(t) is defined to be independent of all
else, including N .
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3. Relating time and customer averages

We say that the random variable W taking values in S has the customer average steady-state
distribution if

P(W ∈ A) = lim
n→∞

1

n

n∑
i=1

I {Q(Ti) ∈ A}.

Using a parameter p ≥ 0, suppose that each customer, independently of all else, with
probability p is labeled as an exploding customer. Immediately after the arrival of such a
customer, the system is instantly cleared of all customers and enters state 0. Now let Jn be the
indicator variable equal to 1 if customer n is an exploding customer. If Jn = 1 then Q(Tn) is
the state seen by an exploding arrival (e.g. the system state immediately before the exploding
arrival clears the system). Although our main interest is when p = 0, we will first consider the
case when p > 0.

Although our next result can be deduced as a corollary from our preceding proposition, we
give an alternative self-contained proof for simplicity.

Proposition 2. If p > 0 then Q(TN) has the customer average steady-state distribution.

Proof. For any A ⊂ S, let πA be the steady state probability that the state of the Markov
chain is in A. Imagine that an exploding customer arrived at time 0, and let a new cycle begin at
each arrival that immediately follows an exploding customer. So the initial cycle begins when
the first customer arrives and the next cycle begins when customer N + 1 arrives, where, as
always, N = min(n > 0 : Jn = 1). Let NA denote the number of time periods the Markov
chain is in state A during this cycle. That is,

NA =
N∑

n=1

I {Q(Tn) ∈ A}.

If we suppose that a reward of 1 is earned each time the state of the chain lies in A then the
renewal reward theorem yields

πA = E[NA]
E[N ] = p E[NA].

Now, let Ik be the indicator variable for the event that a new cycle begins on the transition
following the kth visit to the set of states A. Note that

NA∑
k=1

Ik = I {Q(TN) ∈ A}.

Because I1, I2, . . . are independent and identically distributed and the event {NA = n} is
independent of In+1, In+2, . . . , it follows from Wald’s equation that

P(Q(TN) ∈ A) = E[NA] E[I1] = p E[NA].
This completes the proof.

Remark 3. Proposition 2 is a version of the ‘read-once’ or ‘forward’ CFTP technique which
appears in Wilson (2000), and allows perfect simulation of the stationary distribution of a
discrete-time Markov chain. Some connections to the PASTA property were proposed and
discussed there as well. A more general version of Proposition 2 is proven in Ross and Peköz
(2007, Example 6.9).
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Our next result relates time and customer averages for queues with exploding customers.

Corollary 1. Suppose that p > 0.

(i) If X has an exponential distribution then W
d= Z, where ‘

d=’ denotes equality in
distribution. In other words, if arrivals are according to a Poisson process then the
customer average steady-state distribution is the same as the time average steady-state
distribution.

(ii) Let G(s), s ∈ S, be a function of the system state having the property that, for some
partial ordering, the value of G(Q(t)) decreases with respect to that partial ordering at
all times at which customers do not arrive. Then G(W) ≤st G(Z) or G(W) ≥st G(Z)

when the interarrival distribution X is NBUE or, respectively, NWUE. In other words,
the customer average steady-state distribution of G(Q) is stochastically smaller than or
stochastically larger than the time average steady-state distribution of G(Q) when the
interarrival distribution is NBUE or, respectively, NWUE.

Proof. It follows from Proposition 2 that the customer average steady-state distribution
is the distribution of the system state as seen by exploding arrivals, which is distributed as
the system state as seen by customers immediately preceding an exploding arrival after a
random interarrival time during which there are no new arrivals. On the other hand, from
Proposition 1, the time average steady-state distribution is the distribution of the system state as
seen by customers immediately preceding an exploding arrival after a random time, distributed
according to the equilibrium distribution, during which there are no new arrivals. In the
exploding customers model, each interarrival time is independent of the type of customer
(exploding or nonexploding). Then, because the equilibrium distribution is the interarrival
distribution for a Poisson process, the PASTA result, part (i), is proven. Also, because the
equilibrium distribution is stochastically smaller than F when F is NBUE and is stochastically
larger when F is NWUE, part (ii) follows.

We finally present the main result of this section, which relates customer and time averages
for general queues.

Corollary 2. Corollary 1 holds if p = 0, under the stability condition that state 0 is positive
recurrent.

Proof. Fix some A ⊂ S, and, for some given value of p, let ap and bp denote the probability
that the system is in the set of states A respectively under the time average and the customer
average steady-state distributions. We will show that limp→0 ap = a0 and limp→0 bp = b0,
which along with Corollary 1 gives the result.

Say a new cycle begins whenever a customer arrives to find the system in state 0. Let Mp

be the total time the system is in the set of states A during a cycle, and let Lp be the length
of a cycle. Clearly, Mp ≤st Lp ≤st L0, and the stability condition gives E[L0] < ∞. By the
renewal reward theorem we must have ap = E[Mp]/ E[Lp], and we can then use the Lebesgue
dominated convergence theorem to obtain limp→0 E[Mp] = E[M0] and limp→0 E[Lp] =
E[L0]. This gives limp→0 ap = a0.

The same argument can be applied to obtain limp→0 bp = b0 if we write bp =
E[M ′

p]/ E[L′
p], where M ′

p is the number of arrivals finding the system in the set of states
A during a cycle, and L′

p is the number of arrivals during a cycle. This then establishes the
corollary.
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Remark 4. Corollary 2, proved using different methods, appears in Shanthikumar and Zazanis
(1999) and Niu (1984).
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