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Long-run restrictions are a very popular method for identifying structural vector
autoregressions, but they suffer from weak identification when the data is very per-
sistent, i.e., when the highest autoregressive roots are near unity. Near unit roots in-
troduce additional nuisance parameters and make standard weak-instrument-robust
methods of inference inapplicable. We develop a method of inference that is robust
to both weak identification and strong persistence. The method is based on a combi-
nation of the Anderson-Rubin test with instruments derived by filtering potentially
nonstationary variables to make them near stationary using the IVX instrumentation
method of Magdalinos and Phillips (2009). We apply our method to obtain robust
confidence bands on impulse responses in two leading applications in the literature.

“It is better to be vaguely right than exactly wrong.” Carveth Read,
Logic, 1898.

1. INTRODUCTION

Since the seminal paper of Sims (1980), structural vector autoregressions
(SVARs) have become a very popular method for analyzing dynamic causal
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effects in macroeconomics. SVARs can be used to decompose economic fluctu-
ations into interpretable shocks, such as technology, demand, policy shocks, and
trace the dynamic response of macroeconomic variables to such shocks, known
as impulse response functions (IRFs). The success of the SVARs relies on (i) their
ability to recover the true underlying structural shocks (invertibility); (ii) the va-
lidity of the identification scheme; and (iii) the informativeness of the identifying
restrictions. Because an SVAR is a system of linear simultaneous equations, the
third condition can be expressed as the availability of informative instruments.

In the words of Christiano, Eichenbaum, and Vigfusson (2007), “to be use-
ful in practice, VAR-based procedures should accurately characterize [and] un-
cover the information in the data about the effects of a shock to the economy”.
In other words, confidence intervals on the model’s parameters, e.g., the IRFs to
an identified shock, need to have the property that they are (i) as small as possi-
ble when instruments are strong (efficiency); and (ii) large when instruments are
weak/irrelevant (robustness), see Dufour (1997). Conventional methods based on
standard strong-instrument and stationarity assumptions achieve the first objective
but fail the second and therefore lead to unreliable inference.

This paper focuses on the identification scheme known as long-run restrictions,
proposed by Blanchard and Quah (1989). This assumes that certain shocks (e.g.,
demand shocks) have no permanent effect on certain economic variables (e.g.,
output). Long-run restrictions are a popular identification scheme for SVARs, be-
cause they seem to be less contentious than short-run identifying restrictions, see
e.g., Christiano et al. (2007) and the associated comments and discussion. How-
ever, it is well-known that long-run restrictions can lead to weak identification,
see e.g., Pagan and Robertson (1998), and there is presently no method of infer-
ence that is fully robust to this problem. The main difficulty is that in this con-
text weak identification arises when instruments are highly persistent, or nearly
nonstationary. Therefore, all the available weak identification robust methods of
inference, such as the Anderson and Rubin (1949) test, see Staiger and Stock
(1997), are inapplicable because they rely on stationary asymptotics. This also
applies to common pretests of weak identification, see Mark Watson’s comment
on Christiano et al. (2007), as well as to bootstrap methods that are not robust to
weak instruments and near unit roots.

In this paper, we develop a method of inference that is robust to weak instru-
ments as well as near nonstationarity. The method is based on combining recent
advances in econometrics on inference with highly persistent data by Magdalinos
and Phillips (2009) and Kostakis, Magdalinos, and Stamatogiannis (2015), see
also Phillips (2014), with well-established methods of inference that are robust
to weak instruments. The former methods have been developed for predictive re-
gressions or cointegration, and their use in the context of structural inference in
simultaneous equations models is new. Our new method of inference controls
asymptotic size under a wide range of data generating processes, including
standard local-to-unity asymptotics; it has good size in finite samples; it is asymp-
totically efficient under strong identification and has good power under weak
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identification; and it is very simple to implement and quick to compute.1 For
illustration, we revisit the empirical evidence in two classic applications of SVARs
with long-run restrictions: the original application in Blanchard and Quah (1989)
and the hours debate of Galı́ (1999) and Christiano, Eichenbaum, and Vigfusson
(2003). In the case of Blanchard and Quah (1989), we find that long-run re-
strictions yield very weak identification. On the hours debate, we find that the
difference specification of Galı́ (1999) is very well identified, while the level
specification of Christiano et al. (2003) is weakly identified. Long-run restric-
tions are one of the most well-known approaches to the identification of SVARs,
and have been extensively used in the literature since the seminal contribution of
Blanchard and Quah (1989).2 Therefore, the scope of the present paper extends
well beyond the two applications that we discuss here.

In this paper, we focus exclusively on frequentist inference in SVARs identi-
fied using long-run restrictions. A popular alternative to frequentist methods is
Bayesian estimation of SVARs. It is well known that weak identification can also
be problematic for Bayesian inference, see Kleibergen and Zivot (2003). How to
address these issues in the context of SVARs identified using long-run restrictions
remains an open question which could be addressed using, e.g., the approach of
Kleibergen and Mavroeidis (2014).

The paper is structured as follows. Section 2 introduces the model and the
long-run identification scheme. Section 3 discusses existing methods of inference,
highlights the problem and presents our proposed solution. Section 4 gives simu-
lations on the finite-sample size and power of our new method. Section 5 presents
the two empirical applications and finally, Section 6 concludes. Proofs are given
in the Appendix at the end, as well as in a Supplementary Appendix available
at Cambridge Journals Online (journals.cambridge.org/ect), which also contains
additional numerical and empirical results.

2. MODEL

A general SVAR with m lags can be written as

B (L)Yt =�Dt + εt , B (L)=
m∑

j=0

Bj L j (1)

where L is the lag operator, Yt is a n ×1 vector of endogenous random variables,
Bj are n × n nonstochastic matrices of parameters, � is a matrix of coefficients
on deterministic terms Dt , and E (εt |Yt−1,Yt−2, . . .)= 0. The diagonal elements
of B0 are normalized to 1, and var (εt ) is a diagonal matrix.

1 On a laptop computer with a 2.9 GHz processor using Oxmetrics, it takes 7 seconds to compute confidence bands
for the IRF in a bivariate SVAR with two hundred grid points.
2 At the time of writing, Blanchard and Quah (1989) had 5142 Google scholar citations, and we found that long-run
restrictions appeared in about half of all the articles that used SVARs published between 2005 and 2014 in the top
general interest and macro journals in economics.
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Partition the vector of structural shocks as εt = (ε1t
ε2t

)
, where ε1t is scalar and ε2t

is (n − 1)×1.We are interested in identifying ε1t , and the IRF

gj
n×1

= ∂Yt+ j

∂ε1t
, j = 0,1, . . . .

The long-run identifying restriction is that ε2t has no long-run effect on Y1t .
In the literature this is expressed as a zero restriction on elements of the spectral
density matrix of Yt at frequency zero—via a Choleski factorization of the long-
run variance of Yt . We work with the (equivalent) instrumental variables (IV)
representation of the long-run restrictions in Pagan and Robertson (1998), see also
Appendix 6. According to this representation, under the assumption that ε1t has
a permanent effect on Y1t , and the long-run restriction that ε2t has no permanent
effect on Y1t , the system (1) can be written as:3

�Y1t = b′
12�Y2t + δ′1 X1t + ε1t (2)

�Y2t = α2Y2,t−1 + δ′2 X2t + d21ε1t + v2t︸ ︷︷ ︸
u2t

, (3)

where X1t ,X2t denote vectors containing lags of�Yt and deterministic terms Dt ,
δ1,δ2 denote the coefficients on those exogenous and predetermined variables,
and u2t is the reduced-form error in Y2t .4 It is evident that the variables Y2,t−1 are
excluded from (2), and hence they can be used as instruments for the endogenous
regressors �Y2t . This suffices to identify ε1t and hence trace out the entire IRF
with respect to ε1t . Note that v2t is the residual of the projection of the reduced-
form error u2t on ε1t . Moreover, when the data is in logs the coefficient b12 in (2)
has a direct economic interpretation as a short-run elasticity.

In the rest of the paper, we will focus our attention on the special case n = 2,
because it suffices to expose the main methodological innovation of the paper and
covers the two leading applications of long-run restrictions in the literature. We
will also comment on how the results can be generalized to allow for n > 2.

Note that the representation (2)–(3) with α2 < 0 assumes that no shock has a
permanent effect on Y2t , meaning that Y2t is stationary. In the literature on hours
(Galı́, 1999; Christiano et al., 2003) this is referred to as the levels specification,
which is contrasted with the differences specification that assumes Y2t to be non-
stationary. The differences specification can be written exactly in the form (2)–(3)
if we replace Y2t by �Y2t , see Appendix 6 for details. Since the representation
(2)–(3) can accommodate both specifications, we do not need to analyze them
separately in the methodological part of the paper—we study their empirical im-
plications in Section 5.

3 An equivalent way to represent equation (3) is �Y2t = b′
21�Y1t + α̃2Y2,t−1 + δ̃′2 X2t + ε2t , see, e.g., Gospodinov

(2010).
4 This specification is somewhat more general than (1) in that X1t and X2t need not be the same and need not
include all m lagged differences of the variables.
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The objective of this paper is to develop tests of general hypotheses on the
identified structural parameters θ

H0 : r (θ)= 0 against H1 : r (θ) �= 0, (4)

where r :	→ �q , q ≤ dimθ . This includes e.g., the IRF and forecast error vari-
ance decomposition.

Example (Bivariate SVAR(1))
A bivariate SVAR(1) without deterministic terms is given by

�Y1t = b12�Y2t + ε1t , (5)

�Y2t = α2Y2,t−1 + d21ε1t + v2t . (6)

The structural parameters θ = (b12,σε1 ,α2,d21
)′
, where σε1 is the standard devi-

ation of ε1t . This is the simplest possible model that suffices to characterize the
inference problem and describe our methodology, so we will use this as a running
example throughout the paper. The parameter α2 plays a crucial role both for the
persistence of the data and the identification of the structural parameters. Specif-
ically, when α2 is close to zero, Y2,t−1 has a near unit root and becomes a weak
instrument for �Y2t , see Pagan and Robertson (1998) and Gospodinov (2010).
An example of a simple hypothesis of interest is r (θ)= d21 −d0

21 in (4). Inverting
an η-level test of this hypothesis produces a (1 −η)-level confidence band for d21,
which is the impact response of Y2t to a unit impulse on ε1t .

3. ECONOMETRIC METHODS

The conventional approach is to use Gaussian maximum likelihood (ML) esti-
mation with conditional homoskedasticity. The ML estimator is trivial to ob-
tain in this case. It can be computed in two steps as follows: (i) estimate equa-
tion (2) by IV (2SLS) with instrument Y2,t−1 for �Y2t , and save the residual
ε̂1t = �Y1t − b̂′

12�Y2t − δ̂′1 X1t ; (ii) substitute ε̂1t for ε1t in the remaining equa-
tions (3) and estimate them by OLS.

Under strong-instrument stationary asymptotics, i.e., α2 < 0 and fixed, the
asymptotic distribution of Wald statistics for testing general hypotheses (4) is χ2

and error bands for any smooth function of the parameters can be derived using the
delta method, e.g., Mittnik and Zadrozny (1993), or by bootstrapping, e.g., Kil-
ian (1998). When α2 is small, asymptotic distributions of Wald tests may become
nonstandard and depend on a nuisance parameter that measures the proximity of
α2 to zero, see, e.g., Gospodinov (2010).

Thus, conventional confidence bands on SVAR coefficients and IRFs do not
have correct asymptotic coverage. This includes conventional bootstrap methods,
since the conditions for the validity of the bootstrap, cf. Horowitz (2001), are
not satisfied here. In particular, the structural parameters are nonsmooth functions
of the reduced-form parameters because a discontinuity occurs at the point of
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nonidentification α2 = 0.5 In this section, which contains the main contribution of
the paper, we introduce a method that has correct asymptotic coverage.

3.1. Anderson-Rubin Test with Filtered Instruments

Our approach to solving the problems of weak identification and near nonsta-
tionarity consists of two components: (i) a weak-identification robust method; the
Anderson and Rubin (1949) (henceforth AR) test, since the model is typically
just-identified, and (ii) filtered instruments; the so-called IVX approach of Mag-
dalinos and Phillips (2009), to deal with near unit roots.

We start by looking at the special case of testing the hypothesis

H0 : b12 = b0
12 against H1 : b12 �= b0

12. (7)

This hypothesis is special because it turns out that there exists a test that is both
robust to weak identification/near unit roots and asymptotically efficient under
strong identification. Note also that H0 (which may be interpreted as a hypothesis
about a short-run elasticity) is of frequent economic interest.

Because of the structure of the problem, the hypothesis (7) can be tested using
just the first equation of the model (2). Given some instruments Z1t = (X ′

1t ,z
′
t

)′
,

the AR statistic, AR
(
b0

12

)
, is the Wald statistic for testing H ∗

0 : δz = 0 in the
auxiliary regression:

�Y1t − b0′
12�Y2t = δ′1 X1t + δ′zzt + ε0

1t . (8)

When n = 2, i.e., when b12 is a scalar, this AR statistic can be written analyti-
cally as

AR (b12)= (�Y1 −�Y2b12)
′ PMX1 z (�Y1 −�Y2b12)

(�Y1 −�Y2b12)
′ MZ1 (�Y1 −�Y2b12)/(T − col(Z1))

, (9)

where P· denotes the projection matrix, M· = I − P· Z1 = (X1,z) , and we fol-
low standard notation that for any column vector Xt , X denotes the matrix of T
stacked rows X ′

t , t = 1, . . . ,T .
If we set zt = Y2,t−1, the AR statistic corresponds to the likelihood ratio test for

(7). Under stationarity/strong identification (α2< 0 and fixed), AR (b12) is asymp-
totically distributed as χ2 under H0. Moreover, the likelihood ratio test is asymp-
totically efficient under stationarity/strong identification. However, when α2 is
local to zero, the χ2 asymptotic approximation breaks down, and the asymptotic
distribution, if it exists, depends on the proximity of Tα2 to zero. So, AR (b12) is
not asymptotically pivotal, and tests based on χ2 critical values will not control
asymptotic size. This is straightforward to see using local-to-unity asymptotics as
in Gospodinov (2010).

5 Nonconventional bootstrap methods, such as the grid bootstrap, see Hansen (1999) and Mikusheva (2012), or
subsampling, see Andrews and Guggenberger (2010), could provide valid asymptotic coverage. A disadvantage of
those methods is that they are much more computationally demanding than the method we propose here.
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Our solution to the above problem is to use an instrument that relates to Y2,t−1
but is constructed in such a way that it is less persistent than Y2,t−1 whenever the
latter has a near unit root. This is an application of the IVX method of Magdalinos
and Phillips (2009) to this problem.

Magdalinos and Phillips (2009) obtained nuisance-parameter–free asymptotic
distribution theory for Wald tests in situations where the order of integration of the
regressors is unknown, such as predictive regressions or cointegrating regressions
when the right hand side variables are nearly integrated. They did so by introduc-
ing an instrument which is filtered from the original data in such a way that it is
at most moderately integrated, and correlates sufficiently with the variable it is
instrumenting.

In the SVAR model, the filtered instrument of Magdalinos and Phillips (2009)
is given by

zt =
t−1∑
j=1

ρ
t− j
T z �Y2, j , ρT z = 1 + cz

T b
, b ∈ (1/2,1), cz < 0. (10)

The parameter ρT z must be close to unity for efficiency, and outside an O (1/T )
neighborhood of unity for asymptotic size control, as we show later. Extensive
simulations reported in Kostakis et al. (2015) show that setting cz = −1 and
b = 0.95 achieves a good balance between size and power in finite samples in
the predictive regression model. We find that these values also work well in the
context of this paper (see the Online Supplementary Appendix), and we therefore
use them in our empirical implementation.

To obtain asymptotic results, we make the following assumption on εt , where
‖ · ‖ denotes the spectral norm.

Assumption A. (εt )t∈Z is a sequence of identically and independently dis-
tributed random vectors with E (εt |Yt−1,Yt−2, . . .)= 0, E

(
εtε

′
t |Yt−1,Yt−2, . . .

)=
�ε and diagonal with �ε > 0, and the moment condition E ‖εt‖4 <∞.

This assumption is similar to the one used in Magdalinos and Phillips (2009),
except for the addition of conditional homoskedasticity, which is typically used
in the literature (e.g., the results in Galı́ (1999) assume conditional homoskedas-
ticity). Heteroskedasticity robust versions of the proposed tests can be obtained
using GMM, see the Appendix.

Our proposed AR test is based on the following result.

THEOREM 1. Consider the model (2) and (3), where X1t ,X2t consist of lags
of �Yt , Y2t is a scalar, εt satisfies Assumption A and either Tα2 → −∞ or
Tα2 → C ≤ 0. Let AR (b12) be as in (9) with instrument zt defined by (10).

Then under H0 : b12 = b0
12, AR

(
b0

12

) d→ χ2
1 .

Remark. 1. The asymptotic size of the η-level AR test that rejects H0 when
AR
(
b0

12

)
exceeds the 1 −η quantile of χ2

1 is equal to η. This can be shown using
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arguments analogous to those used in the proof of Andrews, Cheng, and Guggen-
berger (2011, Cor. 2.1 and Lemma 4.1), see the Online Supplementary Appendix
for further details.

2. The case Tα2 → −∞ corresponds to (near) stationarity and strong identifi-
cation. In this case, the statistic AR in (9) is asymptotically equivalent to the AR
statistic AR∗ that is obtained by replacing the filtered instrument zt with Y2,t−1.
Because the model is just-identified, AR∗ is the standard LR statistic which is
asymptotically efficient under stationary and strong-instrument asymptotics. It is
also asymptotically equivalent to the standard Wald test of H0. Thus, the use of
the filtered instrument entails no loss of power in the case of strong identifica-
tion, and so the AR test with filtered instruments weakly dominates the Wald and
standard LR tests.

3. The results of the theorem, as well as the above two remarks, also apply in a
model with more endogenous variables, Y3t , that are subject to long-run restric-
tions, under the assumption that their coefficients, b13, can be estimated consis-
tently using Y3,t−1 as instruments, and the resulting estimator b̂13 is asymptoti-
cally Gaussian. A sufficient condition for this is that Y3t is stationary.

4. Theorem 1 can be extended to cover the case when Y2t is a vector along the
lines of Magdalinos and Phillips (2009, Thm. 3.8), or Kostakis et al. (2015, Thm.

1), under the assumption that C is a diagonal matrix. In that case, AR
(
b0

12

) d→
χ2

dimb12
.

3.2. Tests of General Hypotheses

Testing general hypotheses such as (4) is complicated by the fact that r (θ) con-
tains the potentially weakly identified parameter b12. Let ψ denote the rest of the
unknown parameters in θ other than b12. Note that when b12 is known, the pa-
rameters ψ are identified as regression coefficients and variances. So, inference
on smooth functions of ψ, given b12, would be straightforward, except for the
complication that arises when there is a near unit root in Y2t . We address this
issue using IVX in equation (3) with instrument zt given by (10) for Y2,t−1.

General hypotheses (4) can be tested using Bonferroni or projection methods
for valid inference. The Bonferroni method is as follows: (i) obtain a (1 −η1)-
level confidence set for b12, Cb12,η1, by inverting the AR test introduced in the
previous subsection; (ii) for each value b0

12 ∈ Cb12,η1, perform an η2-level IVX
Wald test of r

(
b0

12,ψ
) = 0; (iii) reject H0 : r (θ) = 0 if all tests in (ii) re-

ject. By the Bonferroni inequality, this test has level at most η1 + η2. In fact,
because it turns out that the second step Wald test is asymptotically indepen-
dent of the first-step AR test, the Bonferroni bound can be tightened some-
what by choosing a larger η2, see Remark 4 below Theorem 2. In theory, this
can be refined even further along the lines of McCloskey (2012), but this may
be computationally impractical in realistic settings, due to the large number of
parameters.
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The projection method is as follows: perform a test of the joint null hypothesis
H ∗

0 : r (θ) = 0,b12 = b0
12, and project out b12, i.e., reject H0 : r (θ) = 0 if there

is no value of b0
12 for which H ∗

0 is accepted. This approach requires a test of
the joint hypothesis H ∗

0 . Our proposed test for H ∗
0 is based on a novel idea that

combines the AR (b12) statistic developed above with the Wald statistic for testing
the restrictions on the remaining parameters ψ (this idea applies more generally,
see Section C.2 and Theorem C.1 in the Appendix). We call the resulting test
ARW, and derive its asymptotic properties under the null in Theorem 2 below.

We now turn to the derivation of the ARW test. Let ψ̂ (b12) be the restricted
GMM estimator of ψ given b12 given in equation (C.4) in the Appendix, and let
V̂ψ̂ (b12) denote the estimator of the asymptotic variance matrix of ψ̂ (b12) given
in equation (C.5) in the Appendix. Provided R (θ) = ∂r (θ)/∂ψ ′ exists and is of
full rank q , define

W (b12)= r
(

b12, ψ̂ (b12)
)′

V̂r̂ (b12)
−1 r

(
b12, ψ̂ (b12)

)
, (11)

where V̂r̂ (b12)= R
(

b12, ψ̂ (b12)
)

V̂ψ̂ (b12) R
(

b12, ψ̂ (b12)
)′
,

and consider the combined statistic

ARW
(

b0
12

)
= AR

(
b0

12

)
+ W

(
b0

12

)
. (12)

The asymptotic distribution of ARW
(
b0

12

)
under the null H ∗

0 is given by the fol-
lowing result.

THEOREM 2. Under the conditions of Theorem 1, if the null hypothesis H ∗
0 :

r (θ)= 0,b12 = b0
12 holds, then:

W
(

b0
12

)
d→ χ2

q ,

W
(
b0

12

)
is asymptotically independent of AR

(
b0

12

)
, and

ARW
(

b0
12

)
= AR

(
b0

12

)
+ W

(
b0

12

)
d→ χ2

1+q .

Remark. 1. The ARW test rejects H ∗
0 : r (θ) = 0,b12 = b0

12 at the η level of
significance if ARW

(
b0

12

)
is greater than cη where cη is the 1 − η quantile of

χ2
1+q . A projection test of H0 : r (θ)= 0 rejects H0 when minb12 ARW (b12) > cη.
2. The asymptotic size of a (1 −η)-level confidence set obtained by inverting an

η-level ARW test, defined as the minimum coverage probability of the confidence
set, is equal to 1 − η uniformly in α2. This result is analogous to Remark 1 to
Theorem 1, see the Online Supplementary Appendix for details.

3. Remarks 3 and 4 to Theorem 1 also apply to Theorem 2.
4. For a Bonferroni test of H0 : r (θ)= 0, one can use a (1 −η1)-level AR con-

fidence set for b12 in the first step, and then a Wald test that rejects when W
(
b0

12

)
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exceeds the 1 − η2 quantile of χ2
q for all b0

12 in the first-step confidence set. Be-
cause AR and W are asymptotically independent under H0, a η-level Bonferroni
test can be obtained by setting η2 = η−η1

1−η1
thus avoiding the more conservative

Bonferroni bound given by η2 = η−η1.6

5. Confidence intervals for any scalar function of the parameters g (b12,ψ) that
is smooth in ψ, such as an impulse response, can be obtained easily and quickly
by numerical optimization methods. An algorithm for this is given in the Online
Supplementary Appendix.

6. The ARW test is a Wald test of the joint hypothesis H ∗∗
0 : r

(
ψ,b0

12

)= 0 and
δz = 0 in the auxiliary regression (8), where δz and r

(
ψ,b0

12

)
are the means of

two asymptotically jointly Normal random vectors with an asymptotic variance
matrix that is block diagonal under the null, because E

(
ε1tε

′
2t

) = 0. Hence, by
the usual invariance argument of Wald (1943), the joint Wald statistic for testing
H ∗∗

0 is equal to the sum of the Wald statistic AR
(
b0

12

)
for testing δz = 0, and

the Wald statistic W
(
b0

12

)
for testing r

(
ψ,b0

12

) = 0. Alternative combinations of
the two statistics that place different weights on each of the two components,
e.g., wAR

(
b0

12

)+ W
(
b0

12

)
, w > 0 can be considered in order to direct power

to specific alternatives. We explore this in Section 4.2.3, and find that there is
no w �= 1 that uniformly dominates the (equally weighted) ARW test. Moreover,
the optimal choice of w depends on the nuisance parameter c = Tα2 that is not
consistently estimable under near-unit-root asymptotics. These limitations, com-
bined with the added complication that tests based on nonequally weighted com-
binations of AR

(
b0

12

)
and W

(
b0

12

)
will require nonstandard critical values, thus

further limiting the appeal of the procedure for practitioners, lead us to propose
the equally weighted ARW test.

Example (Bivariate SVAR(1))
Suppose we are interested in testing H0 : ∂Y2t/∂ε1t = d21 = d0

21 against H1 : d21 �=
d0

21. This can be expressed as the linear restriction r (b12,ψ) = d21 − d0
21. Our

proposed η-level ARW test rejects H0 if minb12 (AR (b12)+ W (b12)) is greater
than cη, the 1−η quantile of χ2

2 . Let d̂21 (b12) and σ̂d̂21
(b12) denote the restricted

point estimate of d21 and its standard error, respectively. An ARW projection
(1 −η)-level confidence interval for d21 is given by

{
d21,d21

}
, where

d21 = min
b12:AR(b12)≤cη

[
d̂21 (b12)− σ̂d̂21

(b12)
√

cη− AR (b12)
]
, and

d21 = max
b12:AR(b12)≤cη

[
d̂21 (b12)+ σ̂d̂21

(b12)
√

cη− AR (b12)
]
.

6 This follows from

Pr
{
∃b12 ∈ � : AR

(
b12
) ≤ χ2

1,1−η1
,W
(
b12
)≤ χ2

q,1−η2

}
≤ Pr

{
AR
(

b0
12

)
≤ χ2

1,1−η1
,W
(

b0
12

)
≤ χ2

q,1−η2

}
→ (

1−η1
)(

1−η2
)
.

We are grateful to a referee for pointing this out.
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A Bonferroni confidence interval based on an η1-level AR test with critical value
c1 and η2-level W test with critical value c2, where ci is the 1−ηi quantile of χ2

1
and η2 = η−η1

1−η1
, is given by{

min
b12:AR(b12)≤c1

[
d̂21 (b12)− σ̂d̂21

(b12)
√

c2

]
, max

b12:AR(b12)≤c1

[
d̂21 (b12)+ σ̂d̂21

(b12)
√

c2

]}
.

3.3. Deterministic Terms

Theorems 1 and 2 apply when model (2)–(3) does not include any deterministic
terms in X1t and X2t , but it can be shown using the same arguments as in Kostakis
et al. (2015) Theorem A that they continue to hold if an intercept is included in
X1t , X2t . However, in that case the asymptotic approximations may deteriorate in
finite samples, as was found by Kostakis et al. (2015) for predictive regression. To
address this possibility, we derive a finite sample correction proposed by Kostakis
et al. (2015), adapting it to the ARW statistic as follows. The finite sample cor-
rection in Kostakis et al. (2015), applied to the AR in (9) consists in modifying
PMX1 z in the numerator. When the model contains an intercept, the finite sample

correction involves replacing the term PMX1 z = MX1 z
(
z′MX1 z

)−1
z′MX1 with

P̃MX1 z = MX1 z
(

z′MX̃1
z − T

(
1 − ρ̂ε1,u2

)
z′z
)−1

z′MX1

where X̃1 denotes the elements in X1 excluding the intercept, ρ̂ε1,u2 is the esti-
mated long-run correlation between ε1t and u2t in equations (2)–(3). The correc-
tion of the Wald statistic W (b12) is analogous. It depends on the specific form of
H ∗

0 but only affects the variance related to the estimator of α2 in V̂ψ̂ (b12) . We
provide an expression for it in the Online Supplementary Appendix. In the em-
pirical applications, we consider in this paper, ρ̂ε1,u2 is low enough so the finite
sample correction does not make material difference to the results.

In some applications, Y2t denotes the deviation of some observed variable (e.g.,
log hours, or log real GDP) from a linear deterministic trend where the observed
data Y obs

2t is given by Y obs
2t = Y2t + τx + γx t . We then replace Y2t with Ŷ2t =

Y obs
2t − τ̂x − γ̂x t in the computation of the IVX instrument zt . Whether or not Y2t

is stationary affects inference on γx . If γ̂x is computed using the full sample, then
Ŷ2t is a function of future values and this may affect the validity of the exclusion
restrictions used in the estimation.

To avoid this issue, we follow Phillips, Park, and Chang (2004) and use a re-
cursive detrending formula to ensure that Ŷ2t is not computed using future values:

Ŷ2t = Y obs
2t − τ̂x − γ̂x t = Y obs

2t + 2

t

t∑
j=1

Y obs
2 j − 6

t (t + 1)

t∑
j=1

jY obs
2 j .

This formula preserves the martingale difference sequences which are needed in
the asymptotic theory, so moment conditions hold under H0. Hence, the asymp-
totic results presented above continue to hold.
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4. NUMERICAL RESULTS

In this section, we investigate the finite-sample properties of our proposed test and
compare them with the existing nonrobust alternative.

The data generating process is the bivariate SVAR(1) example introduced ear-
lier, with α2 = cT −1. In reduced form, the model is:

�Y1t = c

T
b12Y2,t−1 + u1t , 1 ≤ t ≤ T

�Y2t = c

T
Y2,t−1 + u2t

with(
u1t

u2t

)
∼ N I D

((
0
0

)
,

(
ω2

1 ρω1
ρω1 1

))
and Y10 = Y20 = 0. We normalize ω2 = 1 because the statistics are invariant to
scaling of the variance matrix. The AR statistic is also invariant to ω1, so in sim-
ulations involving only AR (b12) , we will also normalize ω1 = 1. The estimated
model is SVAR(1), with and without deterministic terms.7

4.1. Size

We conduct two sets of simulation experiments to obtain the rejection frequency
of tests of the following two null hypotheses: (i) H0 : b12 = 0 against H1 : b12 �= 0,
using the AR test with filtered instruments, and (ii) H0 : d21 = d0

21 against H1 :
d21 �= d0

21 using the ARW test, for d21 ∈ [−1,1] .8

In case (i), we report rejection frequencies over a few different pa-
rameterizations. We consider the parameter sets ρ ∈ {0.20,0.95} and c ∈
{0,−1,−10,−30,−100} and the sample size is set to T = 200. We compute the
null rejection frequencies of our AR test with the filtered instrument zt in (9) and
the conventional t test with instrument Y2,t−1 at the 5% and 10% levels of signif-
icance. The estimated model is SVAR(1) with an intercept, and the computation
of the AR statistic uses the finite sample correction introduced in Section 3.3. The
number of Monte Carlo replications is 20,000.

The rejection frequencies are reported in Table 1. We notice that the rejection
frequency of the t test can deviate sharply from its asymptotic level, with con-
siderable overrejection in the cases ρ = 0.95 and c close to zero. In contrast, the
rejection frequency of our proposed AR test is close to its asymptotic level in
all cases. Similar results obtain for SVAR models with more lags as well as for
models with deterministic terms (further results can be found in the Online Sup-
plementary Appendix).

7 Results for higher-order SVARs are very similar and can be found in the Online Supplementary Appendix.
8 It can be shown that d21 is bounded between ±ω2, the reduced-form error standard deviation in the second
equation, which is normalized to 1 here.
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TABLE 1. Null rejection frequencies of AR (with filtered instruments) and
conventional t tests of the hypothesis H0 : b12 = 0 in a bivariate SVAR(1)
with long-run restrictions. ρ is the correlation between the reduced-form VAR
errors. The sample size is 200. Number of MC replications: 20,000

At 5% At 10%
ρ = 0.20 0.95 0.20 0.95

AR t AR t AR t AR t

c = 0 0.052 0.005 0.071 0.774 0.103 0.025 0.133 0.807

−1 0.052 0.007 0.064 0.680 0.100 0.029 0.125 0.717

−10 0.050 0.019 0.047 0.257 0.102 0.053 0.092 0.307

−30 0.051 0.034 0.044 0.135 0.100 0.081 0.089 0.181

−100 0.053 0.050 0.045 0.069 0.102 0.100 0.093 0.115

In case (ii), we conduct experiments for a very large number of parameter com-
binations over a 4-dimensional grid in d21,ρ,ω1 and c, where we exploit an in-
variance property of the ARW statistic that enables us to normalizeω2 = 1 and fix
b12 as a function of the other parameters, see the Online Supplementary Appendix
for details. Figure 1 reports the maximal rejection frequency of the test at three
different levels of significance (10%, 5% and 1%) over ρ,ω1 and c for each value
of d21 under the null, denoted d̄21 in the figure. The estimated model coincides
with the data generating process (DGP), i.e., an SVAR(1) without deterministics,
and the number of Monte Carlo replications is 20,000.

We notice that the size of the projection ARW test is well below the nominal
level across all values of d21. In the Online Supplementary Appendix, we verify
that the same result holds also in a large sample with T = 2,000. This indicates
that there is some projection bias that could in principle be reduced by using
lower critical values. However, it is not possible to reduce the critical value all
the way to χ2

1 , as would be warranted under strong identification, because the
resulting test would be oversized (see the results in the Online Supplementary
Appendix). An ARW test with χ2

1 critical values will only yield correct asymp-
totic size when α2 < κ for some fixed κ < 0. This is because in that case, a test
that rejects when minb12 ARW (b12) is greater than the 1 − η quantile of the χ2

1
distribution is asymptotically equivalent to a standard Wald test of the restric-
tion on the parameter d21. However, it does not seem possible to use the lower
critical values under weak identification, so the use of the projection critical val-
ues based on χ2

2 entail some loss of power for robustness in the case of strong
identification.

It is in principle possible to reduce the projection bias, e.g., by designing a data-
based identification category selection rule along the lines of Andrews and Cheng
(2012), comparing the proximity of α̂2 to some cutoff that diverges with T . This
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FIGURE 1. Size of the projection ARW test of the hypothesis H0 : d21 = d̄21, in an
SVAR(1) model with T = 200 at three different significance levels. The number of Monte
Carlo replications is 20,000.

improvement will come at the cost of introducing additional tuning parameters,
and so may be unappealing in applied work.

4.2. Power

We compute the power of tests of AR, t , projection ARW and Bonferroni tests in
the working SVAR(1) example. We set T = 200 and use 10,000 Monte Carlo
replications. In the Online Supplementary Appendix, we report large-sample
power curves, obtained with T = 2,000, and note that they are very similar to
the ones reported here.

4.2.1. Power of AR Test. We compare the power of AR and t tests of H0 :
b12 = 0 against H1 : b12 �= 0 at the 10% level of significance. The remaining pa-
rameters are ρ ∈ {0.2,0.95}, ω1 = 1, and c ∈ {−10,−70,−200}. In this model,
the strength of identification is driven by c. To relate the results to well-known
cases of weak, moderate and strong identification in linear IV, we compute an
approximate measure of the strength of instruments known as the concentration
parameter (denoted λ) in linear IV.9 The chosen values of c correspond to approx-

9 In linear IV with fixed instruments, the concentration parameter is equal to k [E (F)−1] , where F is the infeasible
version of the first-stage F statistic for excluding the instrument, computed when the variance of the reduced form
error variance is known, see Stock, Wright, and Yogo (2002). The present context does not fit into that canonical IV
framework, so we use a large sample approximation of λ.
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FIGURE 2. Power of AR with filtered instrument (solid line) and t (dashed line) tests
of the hypothesis H0 : b12 = 0 against H1 : b12 �= 0 in the SVAR(1) model with long
run restrictions. T = 200, 10,000 MC replications, ρ is correlation of reduced-form
errors.

imate values of λ of 1.36 (weak), 10.6 (medium) and 49.5 (strong), respectively.
The range of b12 under H1 is λ−1/2 (−3 : 3).

Figure 2 reports the resulting power curves. The figure shows that the AR test
has good finite-sample power even for c close to zero. This is not the case for the
t test, which is both size distorted and even biased in some cases. Moreover, when
identification is strong (c = −200), the power of the AR test is very similar to that
of the t test, which is asymptotically efficient in this case (the power curves are
even closer for T = 2,000). Since the DGP in this case is approximately station-
ary, this is a consequence of the fact that the AR and t tests are asymptotically
equivalent in the case of stationarity, see Remark 2 to Theorem 1.

4.2.2. Power of Projection ARW Test. We compare the power of the projec-
tion ARW test of H0 : d21 = 0 against H1 : d21 �= 0, as defined in Remark 1
to Theorem 2, with the corresponding t test at significance level 10%. We set
b12 = 0, ω1 = 1 and note that with these parameter values ρ = d21, so the range
of d21 is bounded between −1 and 1. Unlike the previous subsection, which dealt
with inference on b12 (the coefficient on the endogenous regressor in a linear
IV regression), there is no direct analogy to the concentration parameter as a
measure of the strength of identification. The results are reported in Figure 3 for
c ∈ {−10,−50,−100,−200}. We observe that c = −10 and c = −200 correspond
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FIGURE 3. Power of projection ARW with filtered instrument (solid line) and t (dashed
line) tests of the hypothesis H0 : d21 = 0 against H1 : d21 �= 0 in the SVAR(1) model with
long run restrictions and b12 = 0, so ρ = d21. T = 200, 10,000 MC replications.

to weak and strong identification, respectively, while −50 and −100 correspond
to intermediate cases. The projection ARW test is conservative, as expected, and
less powerful than the nonrobust t test. So, there is a clear trade-off here between
power and robustness to weak identification, unlike the AR test of hypotheses on
b12, reported in Figure 2.

A comparison of the projection ARW test with the Bonferroni method dis-
cussed in Remark 4 of Theorem 2 is reported in the Online Supplementary Ap-
pendix.

4.2.3. Power of Weighted ARW Test. We consider alternatives to the ARW
test based on a weighted average of the AR (b12) and W (b12) statistics

ARWw (b12)=wAR (b12)+ W (b12) , w > 0.

For each w, the critical value of an η-level ARWw test is computed by simulating
its asymptotic distribution obtained from Theorem 2.

We use the same DGPs as in the previous subsections with T = 200 and set
η = 10% as before. We consider both tests of the joint null H0 : b12 = d21 = 0,
and projection tests of H0 : d21 = 0. We compute the power of ARWw tests as a
function of w across the different DGPs.
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FIGURE 4. Power of the ARWw test for H0 : b12 = d21 = 0. The values of b12,d21 under
H1 are such that power is approximately 50% at w = 1. The left panel has b12 = 0.1 and
c ∈ {−10,−50,−100,−200} . The right panel has b12 ∈ {−1,−0.5,0.5,1} and c = −10.
T = 200 and 10,000 Monte Carlo replications.

Tests of the Joint Hypothesis H0 : b12 = d21 = 0. To explore whether the
optimal weight w of the joint ARWw test depends on c, we first consider sim-
ulations where we fix c ∈ {−200,−100,−50,−10}. The alternative for b12 is
fixed at b12 = 0.1. For every pair (c, b12), we pick the value of ρ (equivalently,
d21 = ρ−b12

1−2ρb12+b2
12

) such that the power of the ARWw test is 50% when w = 1.

The left panel of Figure 4 reports the power of the ARWw statistic as a function
of w for different DGPs indexed by c. The figure shows that the optimal weightw
clearly depends on c. Specifically, the optimal weight is close to 1 when c = −200
and it decreases with c.

Next, we explore whether the optimal weight depends on the alternative for b12.
Specifically, we let b12 ∈ {−1,−0.5,0.5,1}, while holding c fixed at c = −10.
Again, for each pair (c, b12), we pick ρ to ensure that power is 50% when w = 1.
The right panel of Figure 4 reports the power as a function of w.

All in all, the results show that the optimal weight w depends on the DGP and
there is no value of w that yields uniform power improvement over the equally-
weighted ARW test.

Projection Test of H0 : d21 = 0. We set b12 = 0 and consider different values for
c ∈ {−200,−100,−50,−10}. The value of ρ is chosen as before to ensure 50%
power for the ARW test with w = 1. Figure 5 reports the power of the projection
ARWw test as a function of w. Again, we see that the optimal weight depends on
c. Similarly to the test of the joint hypothesis, the optimal weight is close to 1 for
c = −200, but unlike the joint test, the optimal weight is increasing rather than
decreasing in c. Unreported results show a similar pattern for other values of b12.
All in all, there is no uniformly optimal value of w for the projection ARWw test.

4.3. Comparison with Gospodinov (2010)

In Appendix B, we provide a comparison with Gospodinov (2010) who also con-
siders inference in the bivariate model (2)–(3). He proposes a method of infer-
ence that relies on an additional overidentifying assumption that the modeler pos-
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FIGURE 5. Power of the projection ARWw test for H0 : d21 = 0, against H1 : b12 =
0,d21 = d1

21, with d1
21 such that power is 50% at w = 1, for different values when c =

{−10,−50,−100,−200} . T = 200 and 10,000 Monte Carlo replications.

sesses knowledge of one parameter of the system. This assumption ensures that
b12 is identified and can be estimated from a function of the coefficients in the
VECM representation of the model. For example, in the SVAR(1) model, his ad-
ditional restriction reduces to the assumption that b12 is known and is equal to
zero (Gospodinov, 2010, p. 4). We therefore report simulations when the esti-
mated model is SVAR(2), so that Gospodinov’s estimator is nontrivial. We com-
pare the power of our AR test H0 : b12 = 0 against H1 : b12 �= 0, to the t test
based on Gospodinov’s method and find that when Gospodinov’s extra assump-
tion holds both under the null and under the alternative, and when the DGP is very
persistent, his t test is correctly sized and is more powerful than the AR test. How-
ever, when the highest root is far from unity or when Gospodinov’s restriction is
violated, his t test becomes size distorted and biased.

5. EMPIRICAL RESULTS

5.1. Blanchard and Quah (1989)

We first revisit the application of Blanchard and Quah (1989) (BQ), where Y1t is
log real GNP, and Y2t is the unemployment rate in deviation from a linear trend.
We use the original BQ dataset, which is quarterly and covers the period 1948q1
to 1987q4. More details about the data and transformations are given in the Online
Supplementary Appendix.
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FIGURE 6. IRFs to supply shock from a bivariate SVAR in real output growth and the
unemployment rate by Blanchard and Quah (1989). The solid line is the ML estimator.
The dotted lines are 90% Wald confidence intervals, and the dashed lines are the 90%
projection ARW confidence intervals. The data is from Blanchard and Quah (1989) over
the period 1948q1 to 1987q4.

The specification in BQ is an SVAR(9). Figure 6 reports the estimated IRFs
together with robust 90% confidence bands based on our proposed ARW method
and the corresponding nonrobust Wald confidence bands. We see that the robust
confidence bands are so large that the original conclusion of BQ is not borne
out. In other words, long-run restrictions produce very weak identification in this
application using the original data. This corroborates the criticism of Pagan and
Robertson (1998).

The results in Figure 6 used full-sample detrending, which is problematic when
the data is persistent, as we saw in our numerical analysis in the previous sec-
tion. This can be addressed using recursive detrending. Results based on recur-
sive detrending of the unemployment rate are given in Figure 7. We see that
the results are very sensitive to the detrending method. With recursive detrend-
ing, which is more reliable than full-sample detrending, the effect of the supply
shock on output becomes clearly positive but the effect on unemployment remains
ambivalent.

We should emphasize that weak identification is an empirical matter, so iden-
tification of the model may become stronger over a different sample. Figure 8
reports estimates of the IRFs based on the same specification as in Figure 7, but
estimated over an extended sample that runs up to 2014q4. We notice that the
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FIGURE 7. Estimates and confidence bands of the IRFs in Blanchard and Quah (1989)
with recursive detrending, using their original data. The solid line is the ML estimator. The
dotted lines are 90% Wald confidence intervals, and the dashed lines are the 90% projection
ARW confidence intervals.

point estimates are very similar, but error bands become significantly tighter, and
identification appears to be strong.

5.2. The Hours Debate

Next, we turn to the debate on the short-run effect of a technology shock on hours
initiated by the seminal papers of Galı́ (1999) and Christiano et al. (2003) (CEV).
The analysis in those papers is based on an SVAR where Y1t denotes log produc-
tivity and Y2t denotes log hours.

The original paper by Galı́ (1999) estimated a negative short-run effect of a
technology shock on hours, where Y2t was the growth rate in hours, i.e., total
log hours in first difference. Galı́ (1999) argued that this finding was inconsistent
with real business cycle theory, but could be explained by sticky-price models.
CEV criticized Galı́’s data and specification. Specifically, they argued for using
log hours per capita as opposed to total hours and that Y2t should be hours in
levels as opposed to growth rates because the level specification encompasses the
difference one. Reestimating using per capita hours in levels, they found a positive
short-run effect of technology shock on hours, contradicting Galı́’s conclusions.

There has been a large subsequent literature attempting to explain the above
conflicting findings, see, for example, Chaudourne, Fève, and Guay (2014), Du-

https://doi.org/10.1017/S0266466619000045 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466619000045


106 GUILLAUME CHEVILLON ET AL.

FIGURE 8. Estimates and confidence bands of the IRFs with extended Blanchard and Quah
(1989) data and recursive detrending. The solid line is the ML estimator. The dotted lines
are 90% Wald confidence intervals, and the dashed lines are the 90% projection ARW
confidence intervals.

paigne, Fève, and Matheron (2007), Fève and Guay (2009, 2010), Francis and
Ramey (2005, 2009), Gospodinov, Maynard, and Pesavento (2011), Pesavento
and Rossi (2005), and Ramey (2016) (Section 5) for a recent review. Many of
those papers emphasized possible misspecification due to omission of relevant
variables and shocks from the SVAR, which could be addressed by adding more
variables to the SVAR. Others emphasized the sensitivity of the estimates to as-
sumptions about the number of permanent shocks and the effect of near unit
roots. Our analysis below complements the literature by providing confidence
bands on the impulse responses in question that are fully robust to weak identi-
fication. We focus our empirical analysis only on the baseline specifications in
the two seminal papers in the literature, Galı́ (1999) and CEV, but we note that
our methods are applicable to the more general SVAR specifications used in the
literature.

We use the same data as Galı́ and CEV,10 so the point estimates and conven-
tional confidence bands reported below are the same as in those papers. Galı́ uses
total hours linearly detrended over the sample 1948q1 to 1994q4. CEV use per
capita hours and their sample is 1948q1 to 2001q4. The number of lags in the
VAR is 5.

10 A plot of the data can be found in the Online Supplementary Appendix.
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FIGURE 9. IRFs to technology shock for the difference specification of Galı́ (1999). The
model is a bivariate SVAR in the first differences of log productivity and log total hours.
The solid line is the ML estimator. The dotted lines are 90% Wald confidence intervals,
and the dashed lines are the 90% projection ARW confidence intervals. The data is from
Galı́ (1999) over the period 1948q1 to 1994q4.

Figure 9 presents point estimates and 90% confidence bands from the difference
specification in Galı́ (1999) with total hours. We see that the projection ARW
confidence bands are not much wider than the nonrobust ones reported by Galı́
(1999), indicating that this specification does not suffer from weak identification.
This conclusion is robust to using the growth in per capita hours instead of total
hours.11

However, the results on the difference specification are subject to the valid cri-
tique by CEV regarding possible misspecification if hours do not have a unit
root.12 Figure 10 presents the CEV estimates and confidence intervals based
on the levels specification, together with the robust projection ARW confidence
bands. Unlike the Wald bands, the robust confidence bands are so wide that the
response of hours to a technology shock is no longer significant. The information
in the long-run restriction is so small that the data is consistent both with a posi-
tive as well as a negative response of hours to a technology shock. Therefore, the
original conclusions of CEV are not robust to weak identification.

11 The estimates of the difference specification with CEV data on per capita hours are reported in the Online Supple-
mentary Appendix.

12 This is spelt out in Section A.2 of the Appendix.
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FIGURE 10. IRFs to technology shock for the level specification of Christiano et al. (2003).
The model is a bivariate SVAR in the growth of productivity and the level of log per
capita hours. The solid line is the ML estimator. The dotted lines are 90% Wald confidence
intervals, and the dashed lines are the 90% projection ARW confidence intervals. The data
is from Christiano et al. (2003) over the period 1948q1 to 2001q4.

In the Online Supplementary Appendix, we report further results that indicate
that the above conclusion on the weak identification of the level specification is
robust to detrending of hours and to extensions of the estimation sample. All in
all, we see that long-run restrictions are not very informative in this application,
unless one is willing to impose the arguably strong assumption that hours have a
unit root.

6. CONCLUSIONS

We proposed a method of inference on the parameters of SVARs identified us-
ing long-run restrictions that is robust to both weak instruments and near unit
roots in the data. The method uses IVX-type instruments obtained by filtering
the potentially nonstationary variables to make them near stationary. We propose
to test hypotheses on the parameters that are potentially weakly identified using
the Anderson-Rubin test with filtered instruments. Tests of general parametric
restrictions, and confidence intervals for differentiable functions of the parame-
ters, such as IRFs or forecast error variance decompositions, are obtained using a
combined AR and Wald test. The robust test and associated confidence bands are
easy to compute, and offer informative and reliable inference in two high-profile
applications.

https://doi.org/10.1017/S0266466619000045 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466619000045


ROBUST INFERENCE IN STRUCTURAL VARS 109

REFERENCES

Anderson, T.W. & H. Rubin (1949) Estimation of the parameters of a single equation in a complete
system of stochastic equations. Annals of Mathematical Statistics 20, 46–63.

Andrews, D.W. & X. Cheng (2012) Estimation and inference with weak, semi-strong, and strong
identification. Econometrica 80(5), 2153–2211.

Andrews, D.W., X. Cheng, & P. Guggenberger (2011) Generic Results for Establishing the Asymptotic
Size of Confidence Sets and Tests. Cowles Foundation Discussion Papers 1813, Cowles Foundation
for Research in Economics, Yale University.

Andrews, D.W.K. & P. Guggenberger (2010) Applications of subsampling, hybrid, and size-correction
methods. Journal of Econometrics 158(2), 285–305.

Beveridge, S. & C.R. Nelson (1981) A new approach to decomposition of economic time series into
permanent and transitory components with particular attention to measurement of the business cy-
cle. Journal of Monetary Economics 7(2), 151–174.

Blanchard, O.J. & D. Quah (1989) The dynamic effects of aggregate demand and supply disturbances.
American Economic Review 79(4), 655–673.
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APPENDIX A: Level Versus Difference Specification

A.1. Representation in Terms of (2)–(3)

Fukac and Pagan (2006) show that the long-run restrictions depend on the number of per-
manent shocks in the system. We assume throughout that there are no I(2) trends. It is
typically assumed (e.g., by Galı́, 1999) that long-run identification requires at least one
permanent shock, so the cointegrating rank can be 0 (two permanent shocks) or 1 (one
permanent shock). Let Ỹt denote the original data in levels. We will show how both the
level and the difference specifications can both be written in the form (2)–(3) by defining
Yt appropriately. We drop the deterministic terms and focus on the bivariate case of the
general model (1), which suffices for this discussion.

Case of One Permanent Shock. This is a cointegrated VAR, or vector error correction
model (VECM), which can be written as
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�(L)�Ỹt = α
2×1

β′︸︷︷︸
1×2

Ỹt−1 + B−1
0 εt , (A.1)

with �(L) =∑m−1
j=0 �j L j , �0 = I , �j = −B−1

0
∑m

i= j+1 Bi , and αβ′ = −B−1
0 B (1) . Its

Granger representation is:

Ỹt = C
t∑

s=1

εs + C̃ (L)εt , C = β⊥
(
α′⊥�(1)β⊥

)−1
α′⊥B−1

0 ,

where α′⊥α = 0, α = (α1
α2

)
, α⊥ = ( α2−α1

)
and similarly for β. The long-run restriction that

only ε1t has a permanent effect on Ỹ1t can be written as a zero restriction on the top right
element of the matrix C ,

C =
(

C11 C12

C21 C22

)
=
(∗ 0

∗ ∗

)
.

(Note that since cointegration implies rank(C)= 1, C22 = 0 must hold too: only ε1t drives
the stochastic trend.) This implies that α′⊥B−1

0

(0
1
)= 0, or if we define

B0 =
(

1 −b12
−b21 1

)
,

b12 = α1

α2
.

Alternatively, let �(L)=
(
γ11 (L) −γ12 (L)

−γ21 (L) γ22 (L)

)
and write the VECM as:

γ11 (L)�Ỹ1t = α1β
′Ỹt−1 +γ12 (L)�Ỹ2t +u1t

γ22 (L)�Ỹ2t = α2β
′Ỹt−1 +γ21 (L)�Ỹ1t +u2t ,

where ut = B−1
0 εt are the reduced form errors. Imposing the long-run restriction yields

(Pagan and Pesaran, 2008):

γ̃11 (L)�Ỹ1t = b12�Ỹ2t + γ̃12 (L)�Ỹ2t +ε1t , (A.2)

where γ̃11 (L)= γ11 (L)+b12γ21 (L) and γ̃12 (L)= γ12 (L)+b12
[
γ22 (L)−1

]
. Observe

that the error correction (ecm) term β′Ỹt−1 is missing from (A.2), so we can use this to
instrument for the endogenous regressor �Ỹ2t . In our applications, β = (0,1)′ , so that
β′Ỹt = Ỹ2t . So, the model can be written in the form (2)–(3) with Yt = Ỹt .

Case of Two Permanent Shocks. In this case there is no cointegration, so the model is a
VAR in first differences:

�(L)�Ỹt = B−1
0 εt .

The long-run restriction that permanent shocks to Ỹ2t have no impact on Ỹ1t is

C = �(1)−1 B−1
0 =

(∗ 0

∗ ∗

)
.
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(Note that in this case C22 does not need to be 0.) The long-run restriction then implies:

b12 = −γ12 (1)

γ22 (1)
.

As before, this can also be expressed as an exclusion restriction. First, from the Bev-
eridge and Nelson (1981) (henceforth BN) decomposition we have

b12 + γ̃12 (L)= b12 + γ̃12 (1)+ γ̃ ∗
12 (L)�. (A.3)

Substituting in the SVAR, using the long-run restriction b12 + γ̃12 (1)= 0 we have

γ̃11 (L)�Ỹ1t = γ̃ ∗
12 (L)�

2Ỹ2t +ε1t , (A.4)

Similarly, using the BN decomposition of γ22 (L) = γ22 (1) L + γ ∗
22 (L)�, the equation

for Ỹ2t can be written as

γ ∗
22 (L)�

2Ỹ2t = γ22 (1)�Ỹ2,t−1 +γ21 (L)�Ỹ1t +u2t .

Thus, we are using�Ỹ2,t−1 as an instrument for the endogenous regressor�2Ỹ2t in (A.4).
This specification can be written in the form (2)–(3) with Y1t = Ỹ1t and Y2t =�Ỹ2t .

A.2. Misspecification of Difference Specification

Using (A.3) to substitute for γ̃12 (L) in (A.2) yields

γ̃11 (L)�Ỹ1t = γ̃ ∗
12 (L)�

2Ỹ2t + [b12 + γ̃12 (1)
]
�Ỹ2t +ε1t . (A.5)

Similarly, the reduced form equation for the level specification imposes no extra restric-
tion, and uses Ỹ2,t−1 as an instrument in (A.5). The difference specification imposes
b12 + γ̃12 (1) = α2 = 0, which enables us to use �Y2,t−1 as an instrument in (A.5). The
difference specification will be misspecified if b12 + γ̃12 (1) �= 0. In principle, this mis-
specification is detectable by a suitable diagnostic test. However, the power of such a test
depends on the value of α2 �= 0. Only when α2 is far from zero can we reject α2 = 0 with
high probability. Otherwise, if we do not reject α2 = 0 and impose it incorrectly, the bias
that will result depends on the true value of b12 + γ̃12 (1) and can be arbitrarily large. This
discussion corroborates formally CEV’s critique.

APPENDIX B: Gospodinov (2010)

Gospodinov (2010) considers the same setting where the modeler can make an additional
identification assumption. In the SVAR(2) , � (L)�Yt = αβ′Yt−1 + B−1

0 εt , the long-run
restriction implies

�Yt =
(

0 α1
0 α2

)
Yt−1 +

(
γ11 γ12
γ21 γ22

)
�Yt−1 + B−1

0 εt (B.1)

such that b12 = α1/α2. In the same model, Gospodinov (2010) uses the parameterization

(I2 −�1 L)

[
1− L −π (φ−1) L

0 1−φL

]
Yt = B−1

0 εt . (B.2)
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such that b12 = π(1−�1,11)−�1,12
−π�1,21+(1−�1,22)

under the long-run identification scheme. In Gospodi-

nov (2010), the modeler is assumed to know π so there are only 5 freely varying reduced-
form coefficients in equation (B.2),

(
�1,11,�1,12,�1,21,�1,22,φ

)
, as opposed to 6

in equation (B.1), (α1,α2,γ11,γ12,γ21,γ22) . In his baseline specification, Gospodinov
(2010) assumes π = 0, and his paper focuses on local-to-unity asymptotics by setting
φ = 1+c/T .

Under π = 0, Gospodinov’s method estimates b12 by b̂12 = −�̂1,12

1−�̂1,22
, and he shows that

under local-to-unity asymptotics, b̂12 is asymptotically Normal with consistently estimable
variance. Hence, tests of H0 : b12 = b0

12 can be conducted by the corresponding t test (see
the Online Supplementary Appendix for details).

We study the power of Gospodinov’s t test obtained under knowledge of π = 0 and local-
to-unity asymptotics, and compare it to our proposed AR test that is robust to violations
of those assumptions. We first consider the SVAR(1) DGP used in our previous simulation
study reported in the main text, with c = −10 and ρ = 0.5 (but note that the estimated
model is SVAR(2), otherwise Gospodinov’s estimator is trivial). The results are reported
in Figure 11. We find that Gospodinov’s t test has correct size but lower power than the AR
test, despite the fact that it uses an additional assumption. This is because Gospodinov’s
overidentifying assumption π = 0 is violated under the alternative and this works to reduce
the power of the test on b12 in this case.

Next, we consider a DGP in which Gospodinov’s extra restriction holds both under the
null and under the alternative. For this purpose, we use the SVAR(2) DGP used in Gospodi-

FIGURE 11. Comparison of AR and Gospodinov’s t of H0 : b12 = 0, against H1 : b12 �= 0
when the DGP is SVAR(1).
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FIGURE 12. Comparison of AR and Gospodinov’s t of H0 : b12 = −0.16, against H1 :
b12 �= 0 when π = 0 in the DGP.

FIGURE 13. Comparison of AR and Gospodinov’s t of H0 : b12 = −0.16, against H1 :
b12 �= 0 when the DGP has π = −1/2.
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nov (2010) with T = 250.13 Figure 12 reports power curves when the DGP has π = 0, so
Gospodinov’s assumption holds and b0

12 = −0.16. When c is small, Gospodinov’s test is
more powerful yet slightly oversized. When c is largely negative, Gospodinov’s method be-
comes oversized and biased (i.e., rejects less under some alternatives than under the null).
Figure 13 reports power curves when π = −1/2, so Gospodinov’s method is misspecified.
In this case, the t test is invalid: it is oversized and biased. In contrast, the AR test remains
valid across all DGPs used in Figures 11 to 13.

APPENDIX C: Proofs

The following Lemma is used in the proofs of the theorems. Parameter ω is a positive
constant that relates to model parameters and the long run variance of the reduced form
errors. W is a standard Brownian motion and Jc (s) = ∫ s

0 ec(s−r)dW (r) is the associated
Ornstein-Uhlenbeck process with parameter c, and N is a standard normal random vector
independent of W.

LEMMA P. Consider the model (2) and (3), where Xt consists of lags of �Yt , Y2t is a

scalar, εt satisfies Assumption A and zt is given by (10). Let κT = −(cz+T bα2
)

T 1+b . Then, as
T → ∞,

(i) κT
∑T

t=m z2
t

p→ ω;
(ii ) κT

∑T
t=m zt Y2,t−1 =⇒ 2ω

(∫ 1
0 JcdJc +1

)
if there exists c ≤ 0 such that Tα2 →

c; or κT
∑T

t=m zt Y2,t−1
p→ ω if Tα2 → −∞;

(iii )
√
κT
∑T

t=m zt
(ε1t
v2t

) L→
(
σε1
0

0
σv2

)√
ωN ;

(iv)
∑T

t=m zt�Yt−i = Op (T ) , i = 1, . . . ,m −1;
(v)

∑T
t=m Y2,t−1�Yt−i = Op (T ) , i = 1, . . . ,m −1;

(vi )
√
κT
T
∑T

t=m Y2,t−1ε1t = op (1) .

(i) to (iii) also apply jointly.

Proof. See the Online Supplementary Appendix. �

C.1. Proof of Theorem 1

We first consider the case m = 1 (SVAR(1)), so the numerator of the AR statistic in equation
(9), simplifies to

(�Y1 −�Y2b12)
′ Pz (�Y1 −�Y2b12)=

T∑
t=1

ε1t zt

⎛⎝ T∑
t=1

z2
t

⎞⎠−1 T∑
t=1

zt ε1t .

13 Specifically, �1,11 = −0.05, �1,21 = 0.2, �1,22 = 0.5 and �0
1,12 = 0.08, so that b0

12 = −0.16, c ∈ {−10,−100} ,
and ut ∼ N (0,�) with � =

(
0.78 0.1
0.1 0.55

)
.
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When Tα2 → c ≤ 0, Lemma P(i) , (iii) implies that
(∑

t z2
t

)−1/2∑
t zt ε1t

L→
N
(

0,σ 2
ε1

)
. Hence,

σ−2
ε1

∑
t

ε1t zt

(∑
t

z2
t

)−1∑
t

ztε1t =⇒ χ2
1 . (C.1)

Now the denominator is (�Y1 −�Y2b12)
′ Mz (�Y1 −�Y2b12) = ∑T

t=1 ε
2
1t −∑T

t=1 ε1t zt

(∑T
t=1 z2

t

)−1∑T
t=1 zt ε1t . Since E

[
zt ε1t

] = 0, the second element on the

RHS of the previous expression is Op (1), so T −1 (�Y1 −�Y2b12)
′ Mz (�Y1 −�Y2b12)

p→ σ 2
ε1

. This completes the proof when m = 1.
We now extend the above result to m > 1, which involves X1t =(
�Y ′

t−1, . . . ,�Y ′
t−m+1

)′
. The numerator of the AR statistic, (�Y1 −�Y2b12)

′
PMX1 z (�Y1 −�Y2b12) , writes⎛⎜⎝ T∑

t=m

ε1t zt −
T∑

t=m

ε1t X ′
1t

⎛⎝ T∑
t=m

X1t X ′
1t

⎞⎠−1
T∑

t=m

X1t zt

⎞⎟⎠

×,
⎡⎢⎣ T∑

t=m

z2
t −

T∑
t=m

zt X ′
1t

⎛⎝ T∑
t=m

X1t X ′
1t

⎞⎠−1
T∑

t=m

X1t zt

⎤⎥⎦
−1

(C.2)

×
⎛⎜⎝ T∑

t=m

zt ε1t −
T∑

t=m

zt X ′
1t

⎛⎝ T∑
t=m

X1t X ′
1t

⎞⎠−1
T∑

t=m

X1tε1t

⎞⎟⎠ .
From Lemma P(iv), we have

∑T
t=1 X1t zt = Op (T ) . Moreover,

∑T
t=1 X1tε1t =

Op

(
T 1/2

)
because X1tε1t constitutes a martingale difference sequence with bounded

variance, and
∑T

t=1 X1t X ′
1t = Op (T ) , because X1t is weakly dependent with bounded

variance (Stock, 1994, Sect. 3).
Hence if α2 → 0 as T → ∞, (C.2) behaves like (C.1) since the correction for the lags

is of lower magnitude. When α2 is constant, Kostakis et al. (2015) Lemma A.2 shows

that expression (C.2) is asymptotically equivalent to ε′1 MX1 Y2
(
Y ′

2 MX1 Y2
)−1 Y ′

2MX1ε1,
where Y2 denotes the stacked

(
Y2,t−1

)
. Since E

[
ε1t Y2,t−1

] = 0 and Y2,t−1 is weakly

stationary, it follows that σ−2
ε1
ε′1 MX1 Y2

(
Y ′

2 MX1 Y2
)−1 Y ′

2 MX1ε1
d→ χ2

1 . In both cases, the

denominator satisfies T −1 (�Y1 −�Y2b12)
′ M(X1,z) (�Y1 −�Y2b12)

p→ σ 2
ε1
.

C.2. General ARW Test

Here, we give high-level conditions to derive the properties of the combined ARW test in
a general GMM setting, which we use to prove Theorem 2 in the next subsection.

Let θ ∈ 	 denote a p-dimensional vector of parameters partitioned into θ = (ϑ ′,ψ ′)′
of dimensions pϑ and pψ , respectively. Let FT (θ)= T −1∑T

t=1 ft (θ) denote the sample
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moments, where ft (θ) is a k-dimensional vector-valued function of data and parameters
with k ≥ p and E ( ft (θ))= 0 at the true value of θ . Let r (θ) be a known function of the
parameters, r : 	→ �q , q ≤ pψ . Suppose ft (ϑ, ·) and r (ϑ, ·) are continuously differen-

tiable with respect toψ , and let JT (θ)= ∂FT (θ)/∂ψ
′ and R (θ)= ∂r (θ)/∂ψ ′. Let V̂f (θ)

denote a k × k matrix that is positive definite almost surely, and define the GMM objective
function

ST (ϑ,ψ)= FT (ϑ,ψ)
′ V̂f

(
ϑ,ψ̃

)−1
FT (ϑ,ψ) ,

where ψ̃ could be equal to some one-step GMM estimator (for 2-step GMM) or to ψ
(for continuously updated GMM). Suppose the constrained GMM estimator of ψ given ϑ
exists:

ψ̂ (ϑ)= argmin
ψ

FT (ϑ,ψ)
′ V̂f

(
ϑ,ψ̃

)−1
FT (ϑ,ψ) .

To simplify notation, let ψ̂ ≡ ψ̂ (ϑ) , r̂ (ϑ) = r
(
ϑ,ψ̂

)
, R̂ (ϑ) = R

(
ϑ,ψ̂

)
, Ṽf (ϑ) =

V̂f

(
ϑ,ψ̃

)
, F̂T (ϑ) = FT

(
ϑ,ψ̂

)
and ĴT (ϑ) = JT

(
ϑ,ψ̂

)
. Also, let Ĉ (ϑ) be an almost

surely full-rank k × (k − pψ
)

matrix that spans the null-space of Ṽf (ϑ)
−1/2 ĴT (ϑ) , i.e.,

Ĉ (ϑ) Ĉ (ϑ)′ = MṼf (ϑ)
−1/2 ĴT (ϑ)

, where MX = I − PX , PX = X
(
X ′ X

)−1 X ′.
Consider the statistic

ARW (ϑ)= ŜT (ϑ)+ Wr (ϑ)

where

ŜT (ϑ)= ST

(
ϑ,ψ̂

)
= F̂T (ϑ)

′ Ṽf (ϑ)
−1 F̂T (ϑ),

Wr (ϑ)= r̂ (ϑ)′
[

R̂ (ϑ) V̂
ψ̂
(ϑ) R̂ (ϑ)′

]−1
r̂ (ϑ), and (C.3)

V̂
ψ̂
(ϑ)=

[
ĴT (ϑ)

′ Ṽf (ϑ)
−1 ĴT (ϑ)

]−1
.

Let Ĉ
ψ̂

be a square matrix such that Ĉ
ψ̂

Ĉ ′
ψ̂

= V̂
ψ̂
(ϑ)−1. The following result gives high-

level conditions under which the asymptotic distribution of ARW (ϑ) is χ2
pϑ+q when ϑ is

the true value of that parameter and r (θ)= 0. It can then be used to form a test of

H∗
0 : ϑ = ϑ0,r (θ)= 0 against H∗

1 : ϑ �= ϑ0 and/or r (θ) �= 0.

THEOREM C.1. Suppose that at the true value of the parameters θ = (ϑψ),
(i) r (θ)= 0, (ii) ψ̃

p→ ψ , ψ̂
p→ ψ ,

(iii)

(
ξ̂1
ξ̂2

)
≡
(

Ĉ (ϑ)′ Ṽf (ϑ)
−1/2 F̂T (ϑ)

Ĉ ′
ψ̂

(
ψ̂−ψ

) )
=⇒

(
ξ1
ξ2

)
∼ N (0, Ik ) ,

(iv) there exist a nonstochastic pψ × pψ symmetric matrix BT → 0 such that BT Ĉ
ψ̂

=⇒
� full-rank a.s., and (v) any stochastic elements in � are independent of ξ = (ξ ′

1,ξ
′
2

)′.
Then, ARW (ϑ)

L→ χ2
k−pψ+q .
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Proof. By assumption (ii) and Slutsky’s theorem, we have R̂ (ϑ)= R (θ)+op (1) . By the
singular value decomposition, R (θ) BT = QT�T U ′

T , where QT is an orthonormal q × q
matrix, �T → 0 is a diagonal matrix holding the singular values of R (θ) BT , and UT is a
pψ ×q matrix such that U ′

T UT = Iq . So,

�−1
T Q′

T R̂ (ϑ) BT =�−1
T Q′

T R (θ) BT +op (1)= U ′
T +op (1) .

Assumption (iv) implies that

B−1
T V̂

ψ̂
(ϑ) B−1

T =
(

BT Ĉ
ψ̂

Ĉ ′
ψ̂

BT

)−1 =⇒ �−1′�−1.

So,

�−1
T Q′

T R̂ (ϑ) V̂
ψ̂
(ϑ) R̂ (ϑ)′ QT�

−1
T =�−1

T Q′
T R̂ (ϑ) BT B−1

T V̂
ψ̂
(ϑ) B−1′

T B ′
T R̂ (ϑ)′ QT�

−1
T

= U ′
T�

−1′�−1UT +op (1) .

Assumption (iii) then implies

B−1
T

(
ψ̂−ψ

)
= B−1

T Ĉ ′−1
ψ̂

Ĉ ′
ψ̂

(
ψ̂−ψ

)
=�−1′ξ2 +op (1) .

Assumption (ii) and a Taylor expansion of r̂ (ϑ) yield, under H∗
0 ,

r̂ (ϑ)= R (θ)
(
ψ̂−ψ

)
+op

(∥∥∥ψ̂−ψ
∥∥∥)

and �−1
T Q′

T r̂ (ϑ)= U ′
T B−1

T

(
ψ̂−ψ

)
+op (1) which for BT symmetric yields

�−1
T Q′

T r̂ (ϑ)= U ′
T�

−1′ξ2 +op (1) .

Moreover,

r̂ (ϑ)′
[

R̂ (ϑ) V̂
ψ̂
(ϑ) R̂ (ϑ)′

]−1
r̂ (ϑ)

= r̂ (ϑ)′ QT�
−1
T

[
�−1

T Q′
T R̂ (ϑ) V̂

ψ̂
(ϑ) R̂ (ϑ)′ QT�

−1
T

]−1
�−1

T Q′
T r̂ (ϑ)

= ξ ′
2�

−1′UT

[
U ′

T�
−1′�−1UT

]−1
U ′

T�
−1′ξ2 +op (1) .

Combining these results, we have

ARW (ϑ)=
(
ξ1
ηT

)′(
ξ1
ηT

)
+op (1) ,

where ηT =
[
U ′

T�
−1′�−1UT

]−1/2
U ′

T�
−1′ξ2, and the conclusion of the theorem fol-

lows from Assumptions (v) and (iii) , which imply that
( ξ1
ηT

) d→ N
(

0, Ik−pψ+q

)
, and the

continuous mapping theorem.
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C.3. Proof of Theorem 2

The proof involves verifying the conditions of Theorem C.1. Intermediate results will be
given as propositions whose proof can be found in the Online Supplementary Appendix.

The specification in Theorem 2 is a special case of that in Theorem C.1, where ϑ = b12
and ψ contains all remaining elements θ . It is convenient to partition ψ into ψ1 and ψ2,
where ψ1 are the parameters that appear in equation (2) other than b12, namely δ1 and
σ 2
ε1

, and ψ2 are the parameters that appear only in (3), i.e., α2,δ2 and d21. Because we can

make V̂f block diagonal by imposing the orthogonality of the errors ε1t and v2t that appear
in f1t and f2t , respectively, estimation of ψ1 and ψ2 can be performed sequentially.

We start by obtaining expressions for ξ̂ in Theorem C.1, which forms the basis of the
ARW statistic.

PROPOSITION C.1. The estimator ψ̂ is given by

ψ̂1 =
((

X ′
1 X1

)−1 X ′
1 (�Y1 −�Y2b12)

T −1ε̂′1ε̂1

)
, (C.4)

ψ̂2 =
(

Ẑ ′
2 X̂2

)−1
Ẑ ′

2�Y2,

where ε̂1 = MX1 (�Y1 −�Y2b12) , X̂2 =
(

Y2
...X2

...ε̂1

)
, and Ẑ2 =

(
z
...X2

...ε̂1

)
. The esti-

mator of the variance of ψ̂ is given by

V̂
ψ̂

=

⎛⎜⎜⎝
V
ψ̂,11 0 V

ψ̂,13

0 �̂
T 0

V ′
ψ̂,13

0 V
ψ̂,33

⎞⎟⎟⎠ , (C.5)

where

V̂
ψ̂,11 = (X ′

1 X1
)−1

σ̂ 2
ε1

,

V̂
ψ̂,13 = (X ′

1 X1
)−1 X ′

1 Ẑ2

(
X̂ ′

2 Ẑ2

)−1
σ̂ 2
ε1

d21,

V̂
ψ̂,33 =

(
Ẑ ′

2 X̂2

)−1 (
Ẑ ′

2 Ẑ2σ̂
2
v2

+ Ẑ ′
2 PX1 Ẑ2σ̂

2
ε1

d2
21

)(
X̂ ′

2 Ẑ2

)−1
, (C.6)

σ̂ 2
ε1

= T −1ε̂′1ε̂1, �̂
p→ var

(
σ̂ 2
ε1

)
, σ̂ 2
v2

= T −1v̂ ′2v̂2
p→ E

(
v2

2t

)
and v̂2 =�Y2 − X̂2ψ̂2. It

satisfies V̂
ψ̂
(ϑ)−1 = Ĉ

ψ̂
Ĉ ′
ψ̂
, with

Ĉ
ψ̂

=

⎛⎜⎜⎝
(
X ′

1 X1
)1/2

σ̂−1
ε1

0 −d21 X ′
1 Ẑ2C ′−1

Ẑ ′
2 Ẑ2
σ̂−1
v2

0 T 1/2�̂−1/2 0
0 0 X̂ ′

2 Ẑ2C ′−1
Ẑ ′

2 Ẑ2
σ̂−1
v2

⎞⎟⎟⎠ , (C.7)
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where CẐ ′
2 Ẑ2

C ′
Ẑ ′

2 Ẑ2
= Ẑ ′

2 Ẑ2. The standardized random vector ξ̂ defined in Theorem C.1

is given by

ξ̂1 = (z′MX1 z
)−1/2

σ̂−1
ε1

z′MX1ε1, and (C.8)

ξ̂2 =

⎛⎜⎜⎜⎝
(
X ′

1 X1
)−1/2 X ′

1ε1σ̂
−1
ε1

�̂−1/2
(
σ̂ 2
ε1

−σ 2
ε1

)
C−1

Ẑ ′
2 Ẑ2

Ẑ ′
2v2σ̂

−1
v2

⎞⎟⎟⎟⎠ . (C.9)

Proof. See the Online Supplementary Appendix. �
Let

DT =
(√

κT 0
0 T −1/2 Ipψ2 −1

)
, κT =

−
(

cz + T bα2

)
T 1+b

, (C.10)

and

BT =
(

T −1/2 Ipψ1
0

0 DT

)
. (C.11)

The following result verifies Assumption (ii) of Theorem C.1.

PROPOSITION C.2. (i) ψ̃ = ψ̂ , and (ii) ψ̂
p→ ψ .

Proof. See the Online Supplementary Appendix. �
Finally, we verify Assumptions (iii)–(v) of Theorem C.1. By Proposition C.2(ii), ξ̂ =

ξ̂∗ +op (1) , where

ξ̂∗ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
κT z′MX1 z

)−1/2 √
κT z′MX1ε1σ

−1
ε1
,(

T −1 X ′
1 X1

)−1/2
T −1/2 X ′

1ε1σ
−1
ε1

�−1/2T 1/2
(
σ̂ 2
ε1

−σ 2
ε1

)
(

DT C
Z

′
2 Z2

)−1
DT Z

′
2v2σ

−1
v2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
where � = var

(
σ̂ 2
ε1

)
and Z2 ≡ (zt , X ′

2t ,ε1t
)′
. Define the array

ζT t =

⎛⎜⎜⎜⎜⎜⎝

√
κT zt

(ε1t
v2t

)
T −1/2 X1tε1t

T −1/2
(
ε2

1t −σ 2
ε

)
T −1/2(X2t

ε1t

)
v2t

⎞⎟⎟⎟⎟⎟⎠ ,

which is a martingale difference with respect to the filtration FT t =
σ
(
Y0,ε1t ,v2t,ε1,t−1,v2,t−1 . . .

)
.
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PROPOSITION C.3.
∑T

t=1 ζT t ⇒ N
(
0,Vζ

)
, where Vζ is nonstochastic and posi-

tive definite, and there exist a k × dimζ matrix GT such that ξ̂∗ = GT
∑T

t=1 ζT t , where

GT VζG′
T

p→ Ik .

Combining the above results verifies Assumption (iii) of Theorem C.1, i.e.,

ξ̂ ⇒ ξ ∼ N (0, Ik ) .

Proof. See the Online Supplementary Appendix. �

Finally, it remains to derive the asymptotic behavior of BT Ĉ
ψ̂
. This is done in the fol-

lowing Proposition.

PROPOSITION C.4. BT defined in (C.11) and Ĉ
ψ̂

defined in (C.7) satisfy Assump-

tions (iv)–(v) of Theorem C.1.

Proof. See the Online Supplementary Appendix. �

The theorem then follows from Theorem C.1.
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