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Abstract

Let p > 2 be prime. We use purely local methods to determine the possible reductions of certain
two-dimensional crystalline representations, which we call pseudo-Barsotti–Tate representations,
over arbitrary finite extensions of Qp . As a consequence, we establish (under the usual Taylor–
Wiles hypothesis) the weight part of Serre’s conjecture for GL(2) over arbitrary totally real fields.

2010 Mathematics Subject Classification: 11F33 (primary); 11F80 (secondary)

Overview

Let p be a prime number. Given an irreducible modular representation ρ : GQ → GL2(Fp), the
weight part of Serre’s conjecture predicts the set of weights k such that ρ is isomorphic to the
mod-p Galois representation ρ f,p associated to some eigenform of weight k and level prime to
p. The conjectural set of weights is determined by the local representation ρ|GQp

. In recent years,
beginning with the work of [BDJ10], generalizations of the weight part of Serre’s conjecture have
become increasingly important, in particular because of their importance in formulating a p-adic
Langlands correspondence (see [BP12]).

The weight part of Serre’s original conjecture was settled in the early 1990s (at least if p > 2;
see [CV92, Edi92, Gro90]). The paper [BDJ10] explored the generalization of the weight part of
Serre’s original conjecture [Ser87] to the setting of Hilbert modular forms over a totally real field F
in which p is unramified. Already in this case even formulating the conjecture is far more difficult;
there are many more weights, and the conjectural description of them involves subtle questions in
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integral p-adic Hodge theory. The conjecture was subsequently extended to arbitrary totally real
fields in [Sch08, Gee11a, BLGG13]; see [BLGG13, Section 4] for an extensive discussion. The
present paper completes the proof of this general Serre weight conjecture for GL(2) (under the
assumption that p > 2 and that a standard Taylor–Wiles hypothesis holds).

Work of [BLGG13, GK, New14] has reduced the weight part of Serre’s conjecture for GL(2) to
a certain statement about local Galois representations: namely, two sets of Serre weights associated
to a mod p local Galois representation, each defined in p-adic Hodge-theoretic terms, must be seen
to be equal. It is this problem that we resolve in this paper. In our earlier paper [GLS14] we proved
the same result for totally real fields in which p is unramified, by establishing a structure theorem
for Kisin modules which slightly extended Fontaine–Laffaille theory in this case. In contrast, in
this paper we must work over an arbitrarily ramified base field, and the proof requires a delicate
analysis of the Kisin modules associated to a certain class of crystalline representations, which
we call pseudo-Barsotti–Tate representations. To the best of our knowledge, these are the first
general results about the reductions of crystalline representations in any situation where arbitrary
ramification is permitted.

1. Introduction

We begin by tracing the history of the work on the weight part of Serre’s
conjecture over the last decade. The first breakthrough towards proving the
conjecture of [BDJ10] was the paper [Gee11b], which proved the conjecture
under a mild global hypothesis as well as a genericity hypothesis on the local
mod-p representations. The global hypothesis comes from the use of the Taylor–
Wiles–Kisin method, which is used to prove modularity lifting theorems; the
modularity lifting theorems used in [Gee11b] are those of [Kis09, Gee06]
for potentially Barsotti–Tate representations. The genericity hypothesis was
needed for a complicated combinatorial argument relating Serre weights to
the reduction modulo p of the types associated to certain potentially Barsotti–
Tate representations. The natural output of the argument was a description of
the Serre weights (in this generic setting) in terms of potentially Barsotti–
Tate representations, while the conjecture in [BDJ10] is in terms of crystalline
representations, and the comparison between the two descriptions involved
a delicate calculation in integral p-adic Hodge theory. It was clear that the
combinatorial arguments would not extend to cover the nongeneric case, or to
settings in which p is allowed to ramify.

All subsequent results on the problem have followed [Gee11b] in making use
of modularity lifting theorems, and have assumed that p > 2, which we do for
the remainder of this introduction. The next progress (other than special cases
such as [GS11]) was due to the work of [BLGGT14], which proved automorphy
lifting theorems for unitary groups of arbitrary rank, in which the weight of the
automorphic forms is allowed to vary. As the conjectural description of the set of
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weights is purely local, there is a natural analogue of the weight part of Serre’s
conjecture for inner forms of U(2), and the paper [BLGG13] used the results
of [BLGGT14] to prove a general result on these conjectures. Specifically, given
a global modular representation ρ associated to some form of U(2), the main
results in [BLGG13] show that ρ is modular of all the weights predicted by the
generalizations of the weight part of Serre’s conjecture. The problem is then to
prove that ρ cannot be modular of any other weight.

This remaining problem is easily reduced to a local problem. To describe this,
let K/Qp be a finite extension with residue field k, and let r̄ : G K → GL2(Fp) be
a continuous representation. In this local context a Serre weight is an irreducible
Fp-representation of GL2(k) (see Definition 4.1.1). Associated to r̄ there are
two sets of Serre weights W explicit(r̄) ⊆ W cris(r̄), defined in terms of p-adic
Hodge theory. The set W cris(r̄) is defined in terms of the existence of crystalline
lifts with certain Hodge–Tate weights, and W explicit(r̄) is defined as a subset
of W cris(r̄) by explicitly writing down examples of these crystalline lifts (as
inductions and extensions of crystalline characters); see Definitions 4.1.3 and
4.1.4 below for precise definitions. These definitions are then extended to global
representations ρ by taking the tensor products of the sets of weights for the
restrictions of ρ to decomposition groups at places dividing p. In the case that
p is unramified or r̄ is semisimple, W explicit(r̄) is the set of weights predicted by
the conjectures in [BDJ10, Sch08].

If ρ is a global modular representation for U(2), then it is almost immediate
from the definition that the set of weights in which ρ is modular is contained in
W cris(ρ). The main result in [BLGG13] shows that the set of weights contains
W explicit(ρ). Therefore, to complete the proof of the weight part of Serre’s
conjecture for U(2) (that is, to prove that W explicit(ρ) is the set of weights
in which ρ is modular) it is only necessary to show in the local setting that
W explicit(r̄) = W cris(r̄).

In the case that K/Qp is unramified (that is, the setting of the original
conjecture of [BDJ10]), this was proved by purely local means in our earlier
paper [GLS14]. That work uses the second author’s theory of (ϕ, Ĝ)-modules
to prove a structure theorem for the Kisin modules associated to crystalline
representations (over an unramified base) with Hodge–Tate weights just beyond
the Fontaine–Laffaille range. A careful analysis of this structure theorem, and
of the ways in which these Kisin modules can be extended to (ϕ, Ĝ)-modules,
allowed us to compute the possible reductions of the crystalline representations,
and explicitly check that they were all of the required form.

Until the present paper, the equality W explicit(r̄) = W cris(r̄) was not known
in any greater generality. However, in the paper [GLS12] we were able to
show that if p is totally ramified, then the set of modular weights for U(2)
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is exactly W explicit(ρ), by making a rather baroque global argument using the
results in [BLGG13] and a comparison to certain potentially Barsotti–Tate
representations, motivated by the approach in [Gee11b]. This approach did
not show that W explicit(r̄) = W cris(r̄); as in [Gee11b], this approach relies
on combinatorial results that do not extend to the general case, although
generalizations subject to a genericity hypothesis (and other related results) were
proved using these techniques in [DS].

The results in [BLGG13, GLS14, GLS12] only concerned the analogues
for U(2) of the conjecture in [BDJ10] and its generalizations, which were
formulated using modular forms on quaternion algebras over totally real fields.
The quaternion algebra setting in [BDJ10] is a more natural generalization of the
original conjectures in [Ser87], but it is harder, because of a parity obstruction
coming from the units of the totally real field: algebraic Hilbert modular forms
necessarily have paritious weight. This means, for example, that there are
mod-p Hilbert modular forms of level prime to p and some weight which cannot
be lifted to characteristic zero forms of the same weight, and is one of the reasons
for studying potentially Barsotti–Tate lifts instead (which correspond to Hilbert
modular forms of parallel weight two).

The papers [GK, New14] independently succeeded (by rather different means)
in transferring the results for U(2) described above to the setting of quaternion
algebras over totally real fields. In particular, [GK] defines a set of weights
W BT(r̄), and shows (by global methods, using the results in [BLGG13]) that
there are inclusions

W explicit(r̄) ⊆ W BT(r̄) ⊆ W cris(r̄).

The definition of W BT(r̄) can again be extended to global representations in
exactly the same manner as before, and (in either the U(2) or quaternion algebra
settings) the set of weights in which ρ is modular is always the set W BT(ρ). In
particular, this shows that the set of weights is determined purely locally, and in
order to complete the proof of the weight part of Serre’s conjecture, it would be
enough to solve the purely local problem of showing that W BT(r̄) = W explicit(r̄).

Unfortunately, the definition of W BT(r̄) is rather indirect, being defined as
a linear combination of the Hilbert–Samuel multiplicities of certain potentially
Barsotti–Tate deformation rings. These rings have only been computed when
K = Qp [Sav05] or when K/Qp is unramified and r̄ is generic [Bre14, BM12],
and they appear to be extremely difficult to determine in any generality.

The main local result of this paper (see Theorem 6.1.18) is that
W explicit(r̄) = W cris(r̄) in complete generality (provided that p > 2). The proof
is purely local, and will be described below. As a consequence, we deduce that
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W BT(r̄) = W explicit(r̄) when p > 2, and thus we obtain the following theorem
(see Theorem 6.2.1).

THEOREM A. Let p > 2 be prime, let F be a totally real field, and let ρ : G F →
GL2(Fp) be a continuous representation. Assume that ρ is modular, that ρ|G F(ζp )

is irreducible, and if p = 5 assume further that the projective image of ρ|G F(ζp )

is not isomorphic to A5.
For each place v|p of F with residue field kv, let σv be a Serre weight of

GL2(kv). Then ρ is modular of weight ⊗v|pσv if and only if σv ∈ W explicit(ρ|G Fv
)

for all v.

In particular, this immediately implies the generalizations of the weight
conjecture in [BDJ10] proposed in [Sch08, Gee11a].

We remark that Newton and Yoshida [NY14, forthcoming] have also
established Theorem A for many weights ⊗v|pσv by methods that are rather
different from ours, namely via novel arguments involving the study of the
special fibres of integral models for Shimura curves.

We now turn to an outline of our approach. To prove that W explicit(r̄) =
W cris(r̄), it is necessary to study the possible reductions of certain two-
dimensional crystalline representations. The Hodge–Tate weights of these
representations (which were first considered in [Gee11a]) have a particular
form, and we call these representations pseudo-Barsotti–Tate representations,
because most of their Hodge–Tate weights (in a sense that we make precise
in Definition 2.3.1) agree with those of Barsotti–Tate representations. In the
case that K/Qp is unramified, these are exactly the representations considered
in [GLS14], and our techniques are a wide-ranging extension of those of that
paper to a setting where p may be arbitrarily ramified.

The equality W explicit(r̄) = W cris(r̄) is by definition equivalent to the statement
that the possible reductions of pseudo-Barsotti–Tate representations with given
Hodge–Tate weights are in an explicit list, namely the list of representations
arising as the reductions of pseudo-Barsotti–Tate representations (of the
same Hodge–Tate weights) which are extensions or inductions of crystalline
characters. The most obvious way to try to establish this would be to classify
(the lattices in) pseudo-Barsotti–Tate representations (perhaps in terms of their
associated (ϕ, Ĝ)-modules), and then to compute all of their reductions modulo
p. Experience suggests that this is likely to be a very difficult problem, and this
is not the approach that we take. Instead, we proceed more indirectly, guided by
the particular form of W explicit(r̄).

Our first step is to make a detailed study of the filtrations on the various
objects in integral p-adic Hodge theory which are attached to lattices in pseudo-
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Barsotti–Tate representations. This study, which is a considerable generalization
of much of the work carried out in [GLS14, Section 4] in the unramified case,
culminates in Theorem 2.4.1, which classifies the possible structures of their
underlying Kisin modules in terms of their Hodge–Tate weights. It is then
relatively straightforward to determine the possible characters that can occur in
the reduction modulo p of such a representation, and comparing this to the form
of W explicit(r̄), we prove the conjecture in the case that r̄ is a direct sum of two
characters (see Theorem 3.1.4).

We next turn to the case that r̄ is irreducible. In this case, we know that r̄
becomes a direct sum of two characters after restriction to the absolute Galois
group of the unramified quadratic extension, and applying the previous result
in this case gives a constraint on the form of r̄ . It is not at all obvious that
this constraint is sufficient to prove the conjecture in this case, but we are
able to establish this by a somewhat involved combinatorial argument (see
Theorem 3.1.5).

At this point we have established the conjectures in [Sch08], which treat the
case that r̄ is semisimple. There is, however, still a considerable amount of work
to be done to deal with the case that r̄ is an extension of characters. It is not
surprising that more work should be needed in the nonsemisimple case. For
example, if the ramification degree of K is at least p and r̄ is semisimple, then the
inclusion W cris(r̄) ⊆ W explicit(r̄) is essentially trivial, because the set W explicit(r̄)
consists of all the weights satisfying a simple determinant condition. On the other
hand, when r̄ is not semisimple, the definition of W explicit(r̄), which is given in
terms of certain crystalline Ext1 groups, only becomes more complicated as the
ramification index increases.

In the remaining case that r̄ is an extension of characters, the result that
we proved in the semisimple case shows that the two characters are of the
predicted form, and it remains to show that the extension class is one of the
predicted extension classes. We again proceed indirectly. From the definition of
W explicit(r̄), we need to show that r̄ has a pseudo-Barsotti–Tate lift of the given
weight and which is an extension of crystalline characters. An approach to this
problem naturally suggests itself: we could compute the dimension of the space
of extensions in characteristic p that arise from the reductions of extensions of
crystalline characters, and try to use our structure theorem to prove that the set
of extensions that can arise as the reductions of possibly irreducible pseudo-
Barsotti–Tate representations is contained in a space of this same dimension.

This is in effect what we do, but there are a number of serious complications
that arise when we try to compute our upper bound on the set of extension
classes coming from pseudo-Barsotti–Tate representations. It is natural to return
to our structural result Theorem 2.4.1, and this gives us nontrivial information
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on the possible Kisin modules, which we assemble with some effort. We would
then like to compare these Kisin modules with those arising from extensions of
crystalline characters. It is at this point that two difficulties arise. One is that the
functor from lattices in Galois representations to Kisin modules is not exact (see
Example 5.2.1 and the discussion that follows it), which means that the Kisin
module corresponding to the reduction of such an extension need not correspond
to an extension of the corresponding rank-one Kisin modules. The other related
difficulty is that when the ramification degree is large, there are many different
crystalline characters with different Hodge–Tate weights to consider, and it is
necessary to relate their reductions. We are able to overcome these difficulties
by showing that there is a ‘maximal’ pair of rank-one Kisin modules for the
representation r̄ and the Hodge–Tate weights under consideration, and reducing
to the problem of studying their extensions. This is done in Sections 5.2–5.4.

The second complication is that Kisin modules do not completely determine
the corresponding G K -representations, but rather their restrictions to a certain
subgroup G K∞ . If r̄ is an extension of χ 2 by χ 1 with χ 1χ

−1
2 not equal to

the mod-p cyclotomic character, it turns out that the natural restriction map
from extensions of G K -representations to extensions of G K∞-representations
is injective (Lemma 5.4.2), and we have done enough to complete the proof.
However, in the remaining case that χ 1χ

−1
2 is the mod-p cyclotomic character,

we still have more work to do; we need to study the uniqueness or otherwise of
the extensions of the Kisin modules to (ϕ, Ĝ)-modules. We are able to do this
with the aid of [GLS14, Corollary 4.10], which constrains the possible Ĝ-actions
coming from the reductions of crystalline representations.

1.1. Notation

1.1.1. Galois theory. If M is a field, we let G M denote its absolute Galois
group. If M is a global field and v is a place of M , let Mv denote the completion
of M at v. If M is a finite extension of Q` for some `, we let M0 denote the
maximal unramified extension of Q` contained in M , and we write IM for the
inertia subgroup of G M . If R is a local ring, we write mR for the maximal ideal
of R.

Let p be a prime number. Let K be a finite extension of Qp, with ring of
integers OK and residue field k. Fix a uniformizer π of K , let E(u) denote the
minimal polynomial of π over K0, and set e = deg E(u). We also fix an algebraic
closure K of K . The ring of Witt vectors W (k) is the ring of integers in K0.

Our representations of G K will have coefficients in subfields of Qp, another
fixed algebraic closure of Qp, whose residue field we denote Fp. Let E be a finite
extension of Qp contained in Qp and containing the image of every embedding
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into Qp of the unramified quadratic extension of K ; let OE be the ring of integers
in E , with uniformizer $ and residue field kE ⊂ Fp.

We write ArtK : K× → W ab
K for the isomorphism of local class field theory,

normalized so that uniformizers correspond to geometric Frobenius elements.
For each λ ∈ Hom(k,Fp), we define the fundamental characterωλ corresponding
to λ to be the composite

IK −→ W ab
K

Art−1
K−→ O×K −→ k×

λ−→ F×p .

We fix a compatible system of pnth roots of π : that is, we set π0 = π , and for
all n > 0 we fix a choice of πn satisfying π p

n = πn−1. Define K∞ =
⋃∞

n=0 K (πn).

1.1.2. Hodge–Tate weights. If W is a de Rham representation of G K over Qp

and κ is an embedding K ↪→ Qp, then the multiset HTκ(W ) of Hodge–Tate
weights of W with respect to κ is defined to contain the integer i with multiplicity

dimQp

(
W ⊗κ,K K̂ (−i)

)G K

,

with the usual notation for Tate twists. (Here, K̂ is the completion of K .) Thus
for example HTκ(ε) = {1}, where ε is the cyclotomic character. We will refer to
the elements of HTκ(W ) as the κ-labelled Hodge–Tate weights of W , or simply
as the κ-Hodge–Tate weights of W .

1.1.3. p-adic period rings. Define S = W (k)JuK. The ring S is equipped with
a Frobenius endomorphism ϕ via u 7→ u p along with the natural Frobenius on
W (k).

We denote by S the p-adic completion of the divided power envelope of
W (k)[u] with respect to the ideal generated by E(u). Let Filr S be the closure
in S of the ideal generated by E(u)i/ i ! for i > r . Write SK0 = S[1/p] and
Filr SK0 = (Filr S)[1/p]. There is a unique Frobenius map ϕ : S → S which
extends the Frobenius on S. We write NS for the K0-linear derivation on SK0

such that NS(u) = −u.

2. Kisin modules attached to pseudo-Barsotti–Tate representations

2.1. Finer filtrations on Breuil modules. Let V be a d-dimensional E-
vector space with continuous E-linear G K -action which makes V into a
crystalline representation of G K . Let D := Dcris(V ) be the filtered ϕ-module
associated to V by Fontaine [Fon94]. Recall that we have assumed that the
coefficient field E contains the image of every embedding of K into Qp.
Since V has an E-linear structure, it turns out that the filtration on the Breuil
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module D attached to D in [Bre97, Section 6] can be endowed with finer
layers that encode the information of the κ-labelled Hodge–Tate weights of D.
As we will see in later subsections, these finer filtrations play a crucial role
in understanding the structure of Kisin modules [Kis06] associated to pseudo-
Barsotti–Tate representations (Theorem 2.4.1). In this subsection, we construct
such finer filtrations and study their basic properties.

2.1.1. Let f = [K0 : Qp], and recall that e = [K : K0]. Fix an element κ0 ∈
HomQp(K0, E), and recursively define κi ∈ HomQp(K0, E) for i ∈ Z so that
κ

p
i+1 ≡ κi (mod p). Then the distinct elements of HomQp(K0, E) are κ0, . . . ,

κ f−1, while κ f = κ0. Now we label the elements of HomQp(K , E) as

HomQp(K , E) = {κi j : i = 0, . . . , f − 1, j = 0, . . . , e − 1}
in any manner so that κi j |K0 = κi .

Let εi ∈ W (k) ⊗Zp OE be the unique idempotent element such that
(x ⊗ 1)εi = (1⊗ κi(x))εi for all x ∈ W (k). Then we have εi(W (k)⊗Zp OE) '
W (k)⊗W (k),κi OE .

Write K0,E = K0⊗Qp E and KE = K⊗Qp E . We have a natural decomposition
of rings K0,E =

∏ f−1
i=0 εi(K0,E) '

∏ f−1
i=0 Ei , where Ei = εi(K0,E) ' K0⊗K0,κi E .

Similarly, we have KE = ∏i, j Ei j with Ei j = K ⊗K ,κi j E . We will sometimes
identify an element x ∈ E with an element of Ei via the map x 7→ 1 ⊗ x , and
similarly for Ei j .

2.1.2. Recall that D is a finite free K0,E -module of rank d (see [BM02,
Section 3.1], for example), so that DK := K ⊗K0 D is a finite free KE -module
of rank d. In particular, we have natural decompositions D = ⊕ f−1

i=0 Di with
Di = εi(D) ' D ⊗K0,E Ei , and DK = ⊕

i, j DK ,i j with DK ,i j = D ⊗KE Ei j .
Note that Film DK and grm DK have similar decompositions, though of course
they need not be free. Given a multiset of integers {m i j } with 0 6 i 6 f − 1 and
0 6 j 6 e − 1, we define

Fil{mi j } DK :=
f−1⊕
i=0

e−1⊕
j=0

Filmi j DK ,i j ⊂ DK .

If m i j = m for all i, j , then of course Fil{mi j } DK = Film DK .

2.1.3. Let A be an S-algebra. We write AOE := A⊗Zp OE . This is a W (k)⊗Zp

OE -algebra, so that AOE '
∏ f−1

i=0 AOE ,i with AOE ,i = εi(AOE ) ' A⊗W (k),κi OE .
Similarly, we write AE := A ⊗Zp E , so that we have AE '

∏ f−1
i=0 AE,i with

AE,i := A ⊗W (k),κi E .
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Let us write ι for the isomorphism SOE '
∏ f−1

i=0 SOE ,i and ιi for the projection
SOE � SOE ,i . Note that SOE ,i = S⊗W (k),κi OE ' OEi JuK, where OEi denotes
the ring of integers in Ei .

Recall that π is a fixed uniformizer of K , with minimal polynomial E(u) over
K0. Write πi j = κi j(π) ∈ E . For each κi , we define Eκi (u) = ∏e−1

j=0(u − πi j)

in E[u], so that Eκi (u) is just the polynomial obtained by acting by κi on the
coefficients of E(u); note that identifying Ei with E will identify ιi(E(u)) with
Eκi (u).

Let fπ be the map S→ OK induced by u 7→ π . We will also write fπ for the
map fπ⊗Zp E : SE → (OK )E . We have surjections ιi j : (OK )E → KE → Ei j for
all i, j , and composing with fπ gives E-linear maps fi j := ιi j ◦ fπ : SE → Ei j .
Restricting fi j to SOE gives an OE -linear surjection SOE → OEi j that we also
denote fi j . (Here, OEi j denotes the ring of integers in Ei j .) Set Fil1

i j SE :=
ker( fi j) and Fil1 SOE := SOE ∩ Fil1

i j SE . Let Ei j(u) be the unique element in
SOE such that ι`(Ei j(u)) = u − πi j if ` = i and ι`(Ei j(u)) = 1 if ` 6= i . We see
that E(u)⊗ 1 =∏i, j Ei j(u) in SOE .

LEMMA 2.1.4. (1) Ei j(u) ∈ Fil1
i j SE .

(2)
⋂

i j Fil1
i j SE = Fil1 S ⊗Zp E.

(3) Fil1
i j SOE = Ei j(u)SOE .

Proof. Note that SE,i ⊂ K0JuK⊗K0,κi E ' EiJuK, so that elements in SE,i can be
regarded as power series with Ei -coefficients.

Unwinding the definitions, we see that fi j : SE → Ei j is the E-linear map
sending u to πi j . In fact the map fi j can be factored as

fi j : SE '
f−1∏
i ′=0

SE,i ′ →
f−1∏
i ′=0

(OK )E,i ′ → Ei j ,

where the second map is the product of the maps sending u to π ⊗ 1, while the
third map is the map OK ⊗W (k),κi E � OK ⊗OK ,κi j E on the i th factor and is zero
on the remaining factors. Now (1) is clear, and moreover an element h ∈ SE,i lies
in Fil1

i j SE if and only if h = (u − πi j)h′ for some h′ ∈ EiJuK. (We caution the
reader that h′ need not be in SE,i .) Then (2) and (3) follow easily.

For 0 6 ` 6 f − 1, define Fil1
i j SE,` := Fil1

i j SE ∩ SE,` and Fil1
i j SE,` :=

Fil1
i j SOE ∩SOE,` . Note that unless ` = i we have Fil1

i j SE,` = SE,`, and similarly
for SE,`.
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2.1.5. Let N be the W (k)-linear differential operator on S such that N (u) =
−u, and extend N to SOE in the unique E-linear way. It is easy to check that
N is compatible with ι in the following sense: if N is the OE -linear differential
operator on OE,iJuK such that N (u) = −u, then ιi(N (x)) = N (ιi(x)) for any
x ∈ SOE .

Let D := S ⊗W (k) D be the Breuil module attached to D (see for
example [Bre97, Section 6]). We have a natural isomorphism DK 'D⊗S, fπOK ;
therefore, we also have a natural isomorphism DK ,i j ' D ⊗SE , fi j Ei j . We again
denote the projection D � DK by fπ , and the projection D � DK � DK ,i j

by fi j .
REMARK 2.1.6. Since DK = ⊕i, j DK ,i j , it is easy to check that fπ = ⊕i, j fi j .
This is a useful fact in the Qp-rational theory. Unfortunately, this fails in general
in the integral theory (unless e = 1), essentially because the idempotents in
K ⊗Qp E may not be contained in OK ⊗Zp OE . While it is not hard to see that
fi j(SOE ) = OEi j , the map fπ : SOE → ⊕i, jOEi j in general is not surjective:
indeed fπ (SOE ) = OK ⊗Zp OE , and this need not equal ⊕i, jOEi j unless e = 1.

2.1.7. Let {m i j } be a collection of integers indexed by i = 0, . . . , f − 1 and
j = 0, . . . , e − 1. We recursively define a filtration Fil{mi j }D ⊆ D. We first set
Fil{mi j }D = D if m i j 6 0 for all i, j . Then define

Fil{mi j }D = {x ∈ D : fi j(x) ∈ Filmi j DK ,i j for all i, j, and N (x) ∈ Fil{mi j−1}D}.
This is a direct generalization of the usual filtration Film D on D defined
in [Bre97, Section 6], and evidently Film D = Fil{mi j }D when m i j = m for all
i, j .

2.1.8. Let us discuss a slight variation of the filtration Fil{mi j }D defined in 2.1.7.
Recall that SE '

∏ f−1
`=0 SE,`. Then D =⊕ f−1

`=0 D` with D` = D⊗SE SE,`. We also
have Fil{mi j }D =⊕ f−1

`=0 Fil{mi j }D` with Fil{mi j }D` = Fil{mi j }D⊗SE SE,`. Note that
N (D`)⊂D` (because N is E-linear on D). We see easily that Fil{mi j }D` depends
only on the m`j for 0 6 j 6 e − 1, and we can define Fil{m`,0,...,m`,e−1}D` :=
Fil{mi j }D`. Note that Fil{mi,0,...,mi,e−1}Di also has the recursive description

{x ∈ Di : fi j(x) ∈ Filmi j DK ,i j for all j , and N (x) ∈ Fil{mi,0−1,...,mi,e−1−1}Di}.
The following proposition summarizes some useful properties of Fil{mi j }D and

Fil{mi,0,...,mi,e−1}Di .

PROPOSITION 2.1.9. With notation as in 2.1.7, the filtration Fil{mi j }D has the
following properties.

(1) If m i j > m ′i j for all i, j then Fil{mi j }D ⊆ Fil{m
′
i j }D.
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(2) N (Fil{mi j }D) ⊆ Fil{mi j−1}D.

(3) Fil{mi j }D is an SE -submodule of D;

(4) fπ (Fil{mi j }D) = ⊕i, j Filmi j DK ,i j .

(5) (Filr S)Fil{mi j−r}D ⊆ Fil{mi j }D for all r > 0.

(6) We have (Fil1
i ′ j ′ SE)Fil{mi j }D ⊆ Fil{m

′
i j }D with m ′i ′ j ′ = m i ′ j ′ + 1 and

m ′i j = m i j if (i, j) 6= (i ′, j ′).

(7) Suppose that E(u)x ∈ Fil{mi j }D with x ∈ D. Then N `(x) ∈ Fil{mi j−1−`}D
for all ` > 0.

(8) Suppose that Ei ′ j ′(u)x ∈ Fil{mi j }D with x ∈ D. Then x ∈ Fil{m
′
i j }D with

m ′i ′ j ′ = m i ′ j ′ − 1 and m ′i j = m i j if (i, j) 6= (i ′, j ′).

Analogous statements hold for the filtration Fil{mi,0,...,mi,e−1}Di of 2.1.8, replacing
D by Di and SE by SE,i . (Note that we have defined Fil1

i ′ j ′ SE,i below
Lemma 2.1.4.)

Proof. The proofs for Fil{mi,0,...,mi,e−1}Di are essentially the same as those for
Filmi j D, so we will concern ourselves exclusively with the latter case.

(1) This is a straightforward induction on m ′ = maxi, j {m ′i j }, with the case
m ′ 6 0 serving as the base case. Let us suppose that the statement is true for
m ′ − 1, and consider the situation for m ′. If x ∈ Fil{mi j }D, we certainly have
fi j(x) ∈ Filmi j DK ,i j ⊆ Film′i j DK ,i j , so it suffices to show that N (x) ∈ Fil{m

′
i j−1}D.

But N (x) ∈ Fil{mi j−1}D, and Fil{mi j−1}D ⊆ Fil{m
′
i j−1}D by induction, which

completes the proof.
(2) This is immediate from the definition.
For each of items (3)–(6), we proceed by induction on m = maxi, j {m i j }. These

statements are all trivial if m 6 0, except for (6), where we take m < 0 as the
base case. For each of these items in turn, let us suppose that the statement is
true for m − 1, and consider the situation for m.

(3) Pick s ∈ SE and x ∈ Fil{mi j }D. It is clear from the definitions that
fi j(sx) = fi j(s) fi j(x) ∈ Filmi j DK ,i j for all i, j , so it remains to show that
N (sx) = N (s)x + s N (x) is inside Fil{mi j−1}D. Since N (x) ∈ Fil{mi j−1}D, and
Fil{mi j−1}D is an SE -module by induction, we see that s N (x) ∈ Fil{mi j−1}D. For
the other term, we know from (1) that Fil{mi j }D ⊆ Fil{mi j−1}D. Therefore x , and
hence N (s)x , is in Fil{mi j−1}D (again using the induction hypothesis).
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We now prove (6), (5), and (4) in that order.
(6) Let x = sy with s ∈ Fil1

i ′ j ′ SE and y ∈ Fil{mi j }D. We note that fi j(sy) ∈
Filmi j DK ,i j if (i, j) 6= (i ′, j ′), and fi ′ j ′(sy) = 0 ∈ Filmi ′ j ′+1 DK ,i ′ j ′ . It remains
to show that N (x) = N (s)y + s N (y) lies in Fil{m

′
i j−1}D. We have N (s)y ∈

Fil{mi j }D ⊆ Fil{m
′
i j−1}D by (3) and (1). On the other hand, N (y) is in Fil{mi j−1}D

by definition, and so by the induction hypothesis we have s N (y) ∈ Fil{m
′
i j−1}D.

This completes the induction.
(5) This follows by an argument essentially identical to the proof of (6), using

fi j(s) = 0 for all i, j if s ∈ Filr S, and that N (Filr S) ⊆ Filr−1 S for r > 1.
(4) Pick x = (xi j) ∈ ⊕i, j Filmi j DK ,i j . Since xi j ∈ Filmi j DK ,i j ⊆ Filmi j−1 DK ,i j ,

by induction there exists x̂ ∈ Fil{mi j−1}D such that fi j(x̂) = xi j for all i, j . Note
that N (E(u)) is relatively prime to E(u), so there exists R(u) ∈ K0[u] such that
E(u) divides 1+R(u)N (E(u)). Set H(u) := R(u)E(u), and write N (H(u))+1
= E(u)Q(u). Define

ŷ :=
m−1∑
`=0

H(u)`N `(x̂)
`! .

It is easy to check that fi j(ŷ) = fi j(x̂) = xi j for all i, j . Now, we have

N (ŷ) = N (x̂)+
m−1∑
`=1

1
`! (`H(u)`−1 N (H(u))N `(x̂)+ H(u)`N `+1(x̂))

= H(u)m−1

(m − 1)! N
m(x̂)+

m−1∑
`=1

(1+ N (H(u)))H(u)`−1 N `(x̂)
(`− 1)!

= H(u)m−1

(m − 1)! N
m(x̂)+

m−1∑
`=1

Q(u)R(u)`−1 E(u)`N `(x̂)
(`− 1)! .

Since x̂ ∈ Fil{mi j−1}D, repeated applications of (2) and (5) show that E(u)`N `(x̂)
is in Fil{mi j−1}D for all `. Since E(u) divides H(u), we also have H(u)m−1D ⊆
Fil{m−1}D ⊆ Fil{mi j−1}D. By (5) we conclude that ŷ ∈ Fil{mi j }D as required, and
the induction is complete.

(7) First we show that fi j(N `(x)) ∈ Fil{mi j−1−`} DK ,i j for all i, j , proceeding
by induction on `. Note that N (E(u)x) = N (E(u))x + E(u)N (x) lies
in Fil{mi j−1}D, and so fi j(N (E(u))x) ∈ Filmi j−1 DK ,i j for all i, j . Since
fi j(N (E(u))) 6= 0, we see that fi j(x) ∈ Filmi j−1 DK ,i j for all i, j . This proves
the case ` = 0. In general, we have

N `+1(E(u)x) =
`+1∑
n=0

(
`+ 1

n

)
N `+1−n(E(u))N n(x) ∈ Fil{mi j−1−`}D,
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using (2) to deduce the containment. After applying fi j to both sides of the above
equation, each term on the right-hand side with n 6= ` will be known to belong
to Fil{mi j−1−`} DK ,i j . For n < `, this follows from the induction hypothesis, while
the term with n = ` + 1 vanishes because fi j(E(u)) = 0. We conclude that the
same is true for the term with n = `, and so (again using that fi j(N (E(u))) 6= 0)
we deduce that fi j(N `(x)) ∈ Fil{mi j−1−`} DK ,i j .

Now, the claim N `(x) ∈ Fil{mi j−1−`}D is automatic for ` > maxi, j {m i j }.
Suppose that we have N `(x) ∈ Fil{mi j−1−`}D, or in other words N (N `−1(x)) ∈
Fil{mi j−1−`}D. Since we also have fi j(N `−1(x)) ∈ Fil{mi j−1−(`−1)} DK ,i j from
the previous paragraph, we deduce that N `−1(x) ∈ Fil{mi j−1−(`−1)}D. Now (7)
follows by (reverse) induction on `.

(8) Again we proceed by induction on m = maxi j {m i j }. Since Ei ′ j ′(u)x ∈
Fil{mi j }D, we have fi j(Ei ′ j ′(u)x) ∈ Filmi j DK ,i j . Then fi j(x) ∈ Filmi j DK ,i j for
any (i, j) 6= (i ′, j ′), because fi j(Ei ′ j ′(u)) 6= 0 in that case. Note that

N (Ei ′ j ′(u)x) = N (Ei ′ j ′(u))x + Ei ′ j ′(u)N (x) ∈ Fil{mi j−1}D. (2.1.10)

Applying fi ′ j ′ to (2.1.10) and noting that fi ′ j ′(N (Ei ′ j ′(u))) 6= 0, we see that
fi ′ j ′(x) ∈ Filmi ′ j ′−1 DK ,i ′ j ′ . Thus fi j(x) ∈ Film′i j DK ,i j for all i, j . It remains
to show that N (x) ∈ Fil{m

′
i j−1}D. Note that Ei ′ j ′(u)x ∈ Fil{mi j }D implies that

E(u)x ∈ Fil{mi j }D, and (7) with ` = 0 shows that that x ∈ Fil{mi j−1}D. Hence
N (Ei ′ j ′(u))x ∈ Fil{mi j−1}D, and then (2.1.10) gives Ei ′ j ′(u)N (x) ∈ Fil{mi j−1}D.
By induction, we see that N (x) ∈ Fil{m

′
i j−1}D, and we are done.

REMARK 2.1.11. An argument analogous to the proof of Proposition 2.1.9(1)
shows that Fil{mi j }D = Fil{max(mi j ,0)}D.

The next proposition shows that the filtration Fil{mi j }D is essentially
characterized by certain of the properties listed in Proposition 2.1.9.

PROPOSITION 2.1.12. Fix elements ni j ∈ Z∪ {∞} indexed by i = 0, . . . , f − 1
and j = 0, . . . , e − 1, and let S be the set of collections of integers {m i j }
with m i j 6 ni j for all i, j . Suppose that we have another filtration of D by
additive subsets F̃il

{mi j }D, defined for all {m i j } ∈ S and satisfying the following
properties.

(1) F̃il
{mi j }D = D if m i j 6 0 for all i, j .

(2) For each {m i j } ∈ S there exists r > 0 such that (Filr S)D ⊆ F̃il
{mi j }D.
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(3) The filtration F̃il
{mi j }D satisfies properties (2) and (4) of Proposition 2.1.9,

as well as E(u) · F̃il
{mi j−1}D ⊆ F̃il

{mi j }D, for all {m i j } ∈ S .

Then for all {m i j } ∈ S we have F̃il
{mi j }D = Fil{mi j }D.

An analogous statement holds for the filtration Fil{mi,0,...,mi,e−1}Di of 2.1.8,
replacing D by Di .

Proof. The proof for Di is the same as the proof for D, so again we concentrate
on the latter case. As usual, we proceed by induction on m = maxi j {m i j }, with
the base case m = 0 coming from (1). Suppose that the claim holds for m − 1,
and consider the situation for m.

Pick x ∈ F̃il
{mi j }D. By hypotheses 2.1.9(4) and 2.1.9(2) respectively, we

have fi j(x) ∈ Filmi j DK ,i j and N (x) ∈ F̃il
{mi j−1}D. By induction, F̃il

{mi j−1}D =
Fil{mi j−1}D, so x ∈ Fil{mi j }D by definition, and we have shown that F̃il

{mi j }D ⊆
Fil{mi j }D.

Conversely, pick x ∈ Fil{mi j }D. By hypothesis 2.1.9(4), there exists y ∈
F̃il
{mi j }D such that fi j(y) = fi j(x) for all i, j . We can (and do) modify y so

that x = y + E(u)z with z ∈ D and y still in F̃il
{mi j }D. This is possible because

any s ∈ Fil1 S can be written as E(u)s ′+ s ′′ with s ′ ∈ S[1/p] and s ′′ ∈ Filr S for
r � 0; now use hypothesis (2).

Now E(u)z = x − y ∈ Fil{mi j }D (from the second paragraph of the proof),
so z ∈ Fil{mi j−1}D by Proposition 2.1.9(7). Then z ∈ F̃il

{mi j−1}D by induction,
and hypothesis (3) with r = 1 shows that E(u)z ∈ F̃il

{mi j }D. We conclude that
x = y + E(u)z ∈ F̃il

{mi j }D, as desired.

2.2. Some general facts about integral p-adic Hodge theory. Suppose in
this section that the Hodge–Tate weights of V lie in the interval [0, r ]. Let T ⊂ V
be a G K -stable OE -lattice, and let M be the Kisin module attached to T by the
theory in [Kis06, Liu08]; see the statements of [GLS14, Definition 3.1, Theorem
3.2, Definition 3.3, Proposition 3.4] for a concise summary of the definitions and
properties that we will need. The object M is a finite free SOE -module with
rank d = dimE V , together with an OE -linear ϕ-semilinear map ϕ : M → M
such that the cokernel of 1 ⊗ ϕ : S ⊗ϕ,S M → M is killed by E(u)r . As in
[GLS14, Section 3], we use the contravariant functor TS to associate Galois
representations to Kisin modules.

Set M∗ =S⊗ϕ,SM, which by [Liu08, Corollary 3.2.3] (or [GLS14, Theorem
3.2(4)]) we can view as a subset of D. Define

Fil{mi j }M∗ :=M∗ ∩ Fil{mi j }D,
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and MK ,i j = fi j(M
∗) ⊂ DK ,i j . Similarly, we define M∗

i = M∗ ⊗SE SE,i and
Fil{mi,0,...,mi,e−1}M∗

i :=M∗
i ∩ Fil{mi,0,...,mi,e−1}Di . Note that 1⊗ ϕ :M∗ →M is an

S-linear map. By [Liu08, Corollary 3.2.3] one also has that

Filr M∗ = {x ∈M∗ | (1⊗ ϕ)(x) ∈ E(u)rM}. (2.2.1)

LEMMA 2.2.2. Let {m i j } be nonnegative integers indexed by i = 0, . . . , e−1 and
j = 0, . . . , f − 1. Fix a pair (i ′, j ′), and define m ′i j = m i j + 1 if (i, j) = (i ′, j ′)
and m ′i j = m i j otherwise. Then we have the following.

(1) MK ,i j is an OE -lattice inside DK ,i j .

(2) Fil{mi j }M∗/Fil{m
′
i j }M∗ is a finite free OE -module.

(3) If Filmi ′ j ′+1 DK ,i ′ j ′ = 0, then Fil{m
′
i j }M∗ = Ei ′ j ′(u)Fil{mi j }M∗.

Moreover, the natural analogues of (2) and (3) hold for the filtration on M∗
i .

Proof. (1) Note that MK := fπ (M∗) ⊂ DK is a full OK -lattice. Indeed, MK '
M∗/E(u)M∗ is a finite free OK ⊗Zp OE -module of rank d because M is finite
SOE -free of rank d . Then (1) follows quickly from this fact.

As usual, the proofs of (2) and (3) will be the same for M∗
i as for M∗, and so

we concentrate on the latter case.
(2) It is clear from the definition of Fil{mi j }M∗ that Fil{mi j }M∗/Fil{m

′
i j }M∗

injects into Fil{mi j }D/Fil{m
′
i j }D. By Proposition 2.1.9(6), Fil{mi j }D/Fil{m

′
i j }D is

an SE/Fil1
i ′ j ′ SE = Ei ′ j ′-module. In particular, it is p-torsion free, so the same

is true of Fil{mi j }M∗/Fil{m
′
i j }M∗. On the other hand, Fil{mi j }M∗/Fil{m

′
i j }M∗ is

an SOE/Fil1
i ′ j ′ SOE = OEi ′ j ′ -module. Since it is p-torsion free and finitely

generated (note that M∗ is finite SOE -free and SOE is noetherian), we see that
Fil{mi j }M∗/Fil{m

′
i j }M∗ is a finite free OE -module.

(3) Let S be the set of tuples {ni j } with ni j 6 m ′i j for all i, j . Fix any r >
maxi, j {m ′i j }, define

F̃il
{m′i j }D = (Fil1

i ′ j ′ SE)Fil{mi j }D + (Filr S)D,

and define F̃il
{ni j }D = Fil{ni j }D for all other tuples {ni j } ∈ S . (It is easy to check

using (1) and (5) of Proposition 2.1.9 that the above definition does not depend
on the choice of r .) Our first goal is to show that Fil{m

′
i j }D = F̃il

{m′i j }D. This will
follow from Proposition 2.1.12 once we can show that the following hold.
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(i) N (F̃il
{m′i j }D) ⊆ Fil{m

′
i j−1}D.

(ii) fπ (F̃il
{m′i j }D) =⊕i, j Film′i j DK ,i j .

(iii) E(u) · Fil{m
′
i j−1}D ⊆ F̃il

{m′i j }D.

To check (i), let s ∈ Fil1
i ′ j ′ SE and x ∈ Fil{mi j }D. Then N (sx) = N (s)x +

s N (x). We have N (s)x ∈ Fil{mi j }D ⊆ Fil{m
′
i j−1}D. Similarly, N (x) ∈

Fil{mi j−1}D; by Proposition 2.1.9(6), we have s N (x), and so also N (sx) in
Fil{m

′
i j−1}D. Since N ((Filr S)D) ⊆ N (Fil{r}D) ⊆ Fil{m

′
i j−1}D as well, this

checks (i).
Now let us check property (ii). Certainly fπ does map (Fil1

i ′ j ′ SE)Fil{mi j }D
into

⊕
i, j Film′i j DK ,i j , and we have to check that this map is surjective. (Since

fπ (Filr S) = 0, the (Filr S)D term does not affect the statement.) Choose an
element (xi j) ∈ ⊕i, j Fil{m

′
i j } DK ,i j . Note that xi ′ j ′ = 0 by our hypothesis that

Filmi ′ j ′+1 DK ,i ′ j ′ = 0. By Proposition 2.1.9(4), there exists y ∈ Fil{mi j }D such
that fi j(y) = xi j if i 6= i ′ and fi ′ j(y) = (1/(πi ′ j − πi ′ j ′))xi ′ j if j 6= j ′. We see
that fi j(Ei ′ j ′(u)y) = xi j for all i, j , and this checks property (ii).

Finally, property (iii) is an immediate consequence of the factorization E(u)=∏
i, j Ei j(u) together with Proposition 2.1.9(6) applied to E(u) · Fil{m

′
i j−1}D

repeatedly at all pairs other than our fixed (i ′, j ′).
Now turn to the statement we wish to prove. It is clear from the definitions

and Proposition 2.1.9(6) that Ei ′ j ′(u)Fil{mi j }M∗ ⊆ Fil{m
′
i j }M∗. Conversely, take

x ∈ Fil{m
′
i j }M∗. By the first part of the proof, we can write x = sy + s ′y′ with

s ∈ Fil1
i ′ j ′ SE , s ′ ∈ Filr S, y ∈ Fil{mi j }D, and y′ ∈ D. Since M∗ is finite SOE -free,

we can choose e1, . . . , ed ∈M∗ that are an SOE -basis of M∗ (and hence also an
SE -basis of D). We write x =∑n anen in terms of this basis, with an ∈ SOE for
all n. The expression x = sy+ s ′y′ shows that an ∈ Fil1

i ′ j ′ SE +Filr S = Fil1
i ′ j ′ SE

as well. Hence an ∈ Fil1
i ′ j ′ SE ∩ SOE = Ei ′ j ′(u)SOE by Lemma 2.1.4(3). Now

x = Ei ′ j ′(u)y′′ with y′′ ∈M∗. To conclude, we need to show that y′′ ∈ Fil{mi j }D,
and this follows from Proposition 2.1.9(8).

As an application, we describe the Kisin modules of crystalline characters.

LEMMA 2.2.3. Suppose that V is a crystalline character such that HTκi j (V ) =
{ri j } with ri j > 0 for all i, j . Choose basis elements ei ∈M∗

i for all i . Then we
have ϕ(ei−1) = αi

∏e−1
j=0 Ei j(u)ri j · ei with αi ∈ OEJuK× for all i .

Proof. Choose r > maxi, j ri j . We claim that Filr M∗
i =

∏e−1
j=0 Ei j(u)r−ri j ·M∗

i for
all i . It is immediate from the definition that Fil{ri j }D = D, so that Fil{ri j }M∗ =
M∗ as well. Now the claim follows by repeatedly applying Lemma 2.2.2(3).
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Recall that we have M∗ = S⊗ϕ,S M, so that ei−1 (and not ei ) is a generator
of M∗

i . Also recall from [GLS14, Lemma 4.3(1)] that we have Filr M∗
i =

{x ∈ M∗
i : (1 ⊗ ϕ)(x) ∈ Eκi (u)r Mi}. Writing ϕ(ei−1) = α′i ei , we see that

Filr M∗
i = {βei−1 : Eκi (u)r | βα′}. From the shape of Filr M∗ we deduce that

α′i = αi
∏e−1

j=0 Ei j(u)ri j for some unit αi , as desired.

2.3. Pseudo-Barsotti–Tate representations

Definition 2.3.1. Fix integers ri ∈ [1, p] for all i . We say that a two-dimensional
crystalline E-representation V of G K is pseudo-Barsotti–Tate (or pseudo-BT) of
weight {ri} if for all 0 6 i 6 f −1 we have HTκi,0(V ) = {0, ri}, and HTκi j (V ) =
{0, 1} if j 6= 0. (Strictly speaking, we should say that V is pseudo-BT with
respect to the labelling κi j of the embeddings HomQp(K , E).)

Equivalently, a two-dimensional crystalline representation V is pseudo-BT if
and only if the following hold.

• dimE gr0 DK ,i j = 1 for all i, j .

• dimE grri DK ,i0 = 1 with ri ∈ [1, p] for all i .

• dimE gr1 DK ,i j = 1 for all j 6= 0.

Note that a pseudo-BT representation is actually Barsotti–Tate if and only if
ri = 1 for all i . For the remainder of this section, we assume that V is pseudo-BT.

2.3.2. As in the previous subsection, we let T ⊂ V be an G K -stable OE -lattice,
and let M be the Kisin module attached to T . Write MK ,i j = fi j(M

∗) ⊂ DK ,i j .
Note that M∗ is a rank-two finite free SOE -module. Set Film MK ,i j := MK ,i j ∩
Film DK ,i j . By definition, we have the following.

• Fil1 MK ,i j is a saturated rank-one free OE -submodule of MK ,i j .

• Filri MK ,i0 = Fil1 MK ,i0 and Filri+1 MK ,i0 = {0}.
• Fil2 MK ,i j = {0} if j 6= 0.

In the next few pages, we will establish several results about the structure
of the submodules Fil{n,0,...,0}M∗

i of M∗
i , following roughly the same strategy as

in [GLS14, Section 4]. We remark that until Corollary 2.3.10, none of these
results will actually use the pseudo-BT hypothesis, only that the crystalline
representation V has nonnegative Hodge–Tate weights and HTκi,0(V ) = {0, ri}.

We begin with following proposition, which should be compared with
[GLS14, Proposition 4.5].
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PROPOSITION 2.3.3. Suppose that there exists an SOE ,i -basis {ei , fi} of M∗
i

such that fi ∈ Fil{ri ,0...,0}M∗
i and fi,0(fi) generates Filri MK ,i0. Then for any n > ri

we have

Fil{n,0,...,0}M∗
i = SOE ,i(u − πi,0)

nei ⊕SOE ,i(u − πi,0)
n−ri fi .

Proof. We first prove by induction that for 0 6 n 6 ri we have

Fil{n,0,...,0}Di = SE,i(u − πi,0)
nei ⊕ SE,i fi + (Filn SE,i)Di . (2.3.4)

The case that n = 0 is trivial, as {ei , fi} is a basis of M∗
i . Suppose that

the statement is valid for n − 1, and consider the statement for n. Define
F̃il
{n,0,...,0}Di to be equal to the right-hand side of (2.3.4), and set F̃il

{m,0,...,0}Di =
Fil{m,0,...,0}Di for m < n. The conditions of Proposition 2.1.12 for this filtration
are straightforward to check: use fi ∈ Fil{ri ,0,...,0}Di to see that N (fi) ∈
F̃il
{n−1,0,...,0}Di = Fil{n−1,0,...,0}Di , so property (2) of 2.1.9 holds; then, to verify

property (4) of 2.1.9, note that for 1 6 n 6 ri , Filn DK ,i0 = Filri DK ,i0 is
generated by fi,0(fi) by hypothesis. By Proposition 2.1.12, we deduce that
F̃il
{n,0,...,,0}Di = Fil{n,0,...,0}Di , as desired.
Now, by Lemma 2.2.2 for Di , it suffices to show that

Fil{ri ,0,...,0}M∗
i = SOE ,i(u − πi,0)

ri ei ⊕SOE ,i fi .

Evidently SOE ,i(u − πi,0)
ri ei ⊕ SOE ,i fi ⊆ Fil{ri ,0,...,0}M∗

i . For the converse, let
x ∈ Fil{ri ,0,...,0}M∗

i . Then, by (2.3.4) we have x = (s(u−πi,0)
ri + t)ei + (s ′+ t ′)fi

with s, s ′ ∈ SE,i and t, t ′ ∈ Filri SE,i . Since x ∈M∗
i , we see that s(u−πi,0)

ri + t ∈
SOE and s ′ + t ′ ∈ SOE . Note that s(u − πi,0)

ri + t is in Filri SE,i ∩ SOE , and
since this is just (u − πi,0)

riSOE , we are done.

Via the identity M∗ = S ⊗ϕ,S M, we can regard Mi−1 as a ϕ(S)-
submodule of M∗

i such that S ⊗ϕ(S) Mi−1 = M∗
i . (Note that the analogous

statement immediately preceding the published version of [GLS14, Theorem
4.22] contains a mistake. See Appendix A for a correction.) The following
proposition is our key result on the structure of Fil{ri ,0,...,0}M∗

i , and may be
compared with [GLS14, Proposition 4.16].

PROPOSITION 2.3.5. (1) There exists a basis {ei−1, fi−1} of Mi−1 such that
fi,0(fi−1) generates Filri MK ,i0.

(2) Suppose that p > 3. There exists a basis {e′i , f′i} of M∗
i such that e′i−ei−1 and

f′i − fi−1 are in mEM
∗
i and Fil{p,0,...,0}M∗

i = SOE ,i(u−πi,0)
pe′i ⊕SOE ,i(u−

πi,0)
p−ri f′i .
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Proof. (1) We know by Lemma 2.2.2(1) that fi,0(M
∗
i ) is an OEi -lattice inside

DK ,i0, so there exists an OEi -basis {ē, f̄} of MK ,i0 such that f̄ is a basis
of Filri DK ,i0. Pick any ϕ(SOE ,i)-basis {̃ei−1, f̃i−1} of Mi−1. Then { fi,0(̃ei−1),

fi,0(̃fi−1)} forms a basis of fi,0(M
∗
i ). Let A ∈ GL2(OE) be the matrix such that

( fi,0(̃ei−1), fi,0(̃fi−1))A = (ē, f̄). Then (ei−1, fi−1) = (̃ei−1, f̃i−1)A is the desired
basis.

(2) The proof is a minor variation of the proof of [GLS14, Proposition 4.16].
Let e := ei−1 and f := fi−1 be a basis of Mi−1 as in part (1). In this proof only,
we will write π := πi,0 and r := ri , to avoid too many subscripts and to make
the discussion easier to compare with the proof of [GLS14, Proposition 4.16].
We consider the following assertion.

(?) For each n = 1, . . . , r there exists f(n) ∈ Fil{n,0,...,0}M∗
i such that

f(n) = f+
n−1∑
s=1

π p−s(u − π)s(a(n)s e+ ã(n)s f)

with a(n)s , ã(n)s ∈ OEi . Once the assertion (?) is established, the proposition
follows from Proposition 2.3.3, taking e′i = e and f′i = f(r).

We prove (?) by induction on n. From the definition of Fil{1,0...,0}Di and the
defining property of f from (1), we see that f ∈ Fil{1,0,...,0}M∗

i , so that for the base
case n = 1 we can take f(1) = f.

Now assume that (?) is valid for some 1 6 n < r , and let us consider the case
n + 1. Set H(u) = (u − π)/π and

f̃(n+1) :=
n∑
`=0

H(u)`N `(f(n))

`! .

As in the proof of [GLS14, Proposition 4.16] (and the proof of
Proposition 2.1.9(4) of this paper), one computes that

N (f(n+1)) = H(u)n

n! N n+1(f(n))+
n∑
`=1

(1+ N (H(u)))H(u)`−1 N `(f(n))

(`− 1)! .

Then, using 1+N (H(u)) ∈ Fil1
i,0 SE,i , one deduces that N (̃f(n+1)) ∈ Fil{n,0,...,0}D,

and so f̃(n+1) ∈ Fil{n+1,0,...,,0}D. Now, by induction, we have

f̃(n+1) − f(n) =
n∑
`=1

(u − π)`
π ``! N `

(
f+

n−1∑
s=1

π p−s(u − π)s(a(n)s e+ ã(n)s f)

)

=
n∑
`=1

(u − π)`
π ``! N `(f)
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+
n∑
`=1

n−1∑
s=1

`∑
t=0

(
π p−s(u − π)`

π ``!
(
`

t

)
× N `−t((u − π)s)(a(n)s N t(e)+ ã(n)s N t(f))

)
. (2.3.6)

Write

N t(e) =
∞∑

m=0

(u − π)m(ct
me+ d t

mf) and N t(f) =
∞∑

m=0

(u − π)m (̃ct
me+ d̃ t

mf)

(2.3.7)
with ct

m, d t
m, c̃t

m, d̃ t
m ∈ E . After substituting (2.3.7) into (2.3.6) and expanding

the terms N `−t((u−π)s) using [GLS14, Lemma 4.13], we can collect terms and
write

f̃(n+1) = f(n) +
∞∑

m=1

(u − π)m(bme+ b̃mf) (2.3.8)

with each bm, b̃m ∈ E . Now we delete all terms of (u − π)-degree at least n + 1
from this expression, and define

f(n+1) := f(n) +
n∑

m=1

(u − π)m(bme+ b̃mf
)
.

It remains to show that π p−m | bm, b̃m , or in other words that if m 6 n then every
occurrence of (u − π)m in the terms collected to form (2.3.8) has coefficient
divisible by π p−m . A direct examination of these terms ( just as in the last part
of the proof of [GLS14, Proposition 4.16]) shows that this comes down to the
claim that π p−m | c`m, d`m, c̃`m, d̃`m for all 1 6 ` < p and 0 6 m < p. By [GLS14,
Corollary 4.11], this follows from Lemma 2.3.9 below (applied at ai = c`i , d`i ,
etc.), which generalizes [GLS14, Lemma 4.12]. (We remind the reader that,
except for [GLS14, Lemma 4.12], in the results in [GLS14, Section 4.2] our
ground field was an arbitrary finite extension of Qp.) The application of [GLS14,
Corollary 4.11] is where we use the hypothesis that p > 3.

Define S′ = W (k)Ju p, uep/pK[1/p] ∩ S, and set I` =
∑`

m=1 p`−mu pm S′ ⊂ S′.

LEMMA 2.3.9. Suppose that y ∈ I` for some 1 6 ` 6 p. Write y =∑∞i=0 ai(u−
π)i with ai ∈ K0. Then we have π p+(`−1)min(p,e) | a0 and π p+e−i+(`−1)min(p,e) | ai

in OK for 1 6 i 6 p − 1.

Proof. For any nonnegative integer n, let e(n) = b n
e c. Note that any x ∈ S can

be written uniquely as x =∑∞i=0 ai(ui/e(i)!) with ai ∈ W (k).
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By hypothesis, we have y = ∑`

m=1 p`−mu pm zm with zm ∈ S′. We can write
zm =

∑∞
j=0 (b j,mu pj/e(pj)!) with b j,m ∈ W (k). Then

y =
`∑

m=1

p`−m

( ∞∑
j=0

b j,m
u p( j+m)

e(pj)!

)

=
`∑

m=1

∞∑
j=0

p`−mb j,m
(u − π + π)p( j+m)

e(pj)!

=
`∑

m=1

∞∑
j=0

p`−m b j,m

e(pj)!

(
p( j+m)∑

i=0

(
p( j + m)

i

)
(u − π)iπ p( j+m)−i

)

=
∞∑

i=0

 `∑
m=1

∑
j>si,p,m

b j,mπ
p( j+m)−i p`−m

e(pj)!
(

p( j + m)
i

) (u − π)i ,
where si,p,m = max{0, i/p − m}. Since we only consider ai for 0 6 i 6 p, we
have si,p,m = 0 in all cases. Note that π pj/e(pj)! ∈ OK for all j > 0. Let vπ
denote the valuation on OK such that vπ (π) = 1. We first observe that vπ (a0) >
min16m6`(pm + e(`− m)) = p + (`− 1)min(p, e). If 1 6 i 6 p − 1, then p
divides

(p( j+m)
i

)
, so we get

vπ (ai) > min
16m6`

(pm − i + e(`− m)+ e) = p + e − i + (`− 1)min(p, e)

instead.

In what follows, when we write a product of matrices as
∏n

j=1 Ai , we mean
A1 A2 · · · An .

COROLLARY 2.3.10. Suppose that p > 3, and let M be the Kisin module
corresponding to a lattice in a pseudo-BT representation V of weight {ri}. There
exist matrices Z ′i j ∈ GL2(OE) for j = 1, . . . , e − 1 such that Filp,p...,p M∗

i =
SOE ,iαi,e−1 ⊕SOE ,iβi,e−1 with

(αi,e−1, βi,e−1) = (e′i , f′i)Λ′i,0
(

e−1∏
j=1

Z ′i jΛ
′
i j

)
,

where e′i , f
′
i are as in Proposition 2.3.5(2), Λ′i,0 =

((u−πi,0)
p 0

0 (u−πi,0)
p−ri

)
, and Λ′i j =((u−πi j )

p 0
0 (u−πi j )

p−1

)
for j = 1, . . . , e − 1.
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Proof. Define pm := {p, . . . , p, 0, . . . , 0}, where the tuple contains exactly m+1
copies of p. We prove by induction on m that there exist matrices Z ′i j ∈ GL2(OE)

for j = 1, . . . ,m such that

Filpm M∗
i = SOE ,iαi,m ⊕SOE ,iβi,m

with (αi,m, βi,m) := (e′i , f
′
i)Λ

′
i,0

(∏m
j=1 Z ′i jΛ

′
i j

)
. If m = 0, then this is

Proposition 2.3.5(2).
Suppose that the statement holds for m−1, and let us consider the statement for

m. We first show that M ′K ,im := fim(Filpm−1 M∗
i ) is an OEim -lattice inside DK ,im ,

or equivalently that { fim(αi,m−1), fim(βi,m−1)} is an Eim-basis of DK ,im . Since
{e′i , f′i} is a basis of M∗

i , it suffices to check that fim
(
Λ′i,0

(∏m−1
j=1 Z ′i jΛ

′
i j

))
is an

invertible matrix in GL2(E). This holds because Z ′i j ∈ GL2(OE) and fim(Λ
′
i j) ∈

GL2(E) for j < m.
The fact that M ′K ,im is an OEim -lattice inside DK ,im implies that there exists

an OEi -basis γ̄ ′, δ̄′ of M ′K ,im such that δ̄′ generates Fil1 DK ,im . Write ᾱm−1 :=
fim(αi,m−1) and β̄m−1 := fim(βi,m−1). Let Z ′im ∈ GL2(OE) be the matrix such
that (γ̄ ′, δ̄′) = (ᾱi,m−1, β̄i,m−1)Z ′im , and define (γm, δm) := (αi,m−1, βi,m−1)Z ′im .
Let qm := {p, . . . , p, 1, 0 . . . , 0}, where the tuple contains exactly m copies of
p. We claim that

Filqm M∗
i = SOE ,i(u − πim)γm ⊕SOE,i δm . (2.3.11)

We first show that (u − πim)γm, δm are in Filqm M∗
i . Note that γm, δm generate

Filpm−1 M∗ by construction, so by Proposition 2.1.9(6) for Di it suffices to show
that δm ∈ Filqm Di . Note that fim(δm) = δ̄′ ∈ Fil1 DK ,im , so we just need to check
that N (δm) ∈ Fil{p−1,...,p−1,0,0,...,0}Di , where there are m copies of p − 1 in the
superscript (see Remark 2.1.11). But this follows from the fact that αi,m−1 and
βi,m−1 are in Filpm−1 Di . Therefore, SOE,i (u − πim)γm ⊕SOE ,iδm ⊆ Filqm M∗

i .

Now pick x ∈ Filqm M∗
i ⊆ Filpm−1 M∗

i . We have x = aγm + bδm with a, b ∈
SOE ,i . It suffices to show that (u−πim) | a. Note that fim(x) = fim(a) fim(γm)+
fim(b) fim(δm) ∈ Fil1 DK ,im . But ( fim(γm), fim(δm)) is just (γ̄ ′, δ̄′), which is a
basis of DK ,im , and δ̄′ generates Fil1 DK ,im . This forces fim(a) = 0, and then
(u − πim) | a by Lemma 2.1.4. This completes the proof of (2.3.11).

Finally, recall that Fil2 DK ,im = {0} since V is pseudo-BT, so the equality
(2.3.11) together with Lemma 2.2.2(2) implies that

Filpm M∗
i = SOE ,i(u − πim)

pγm ⊕ (u − πim)
p−1SOE ,iδm .

That is, Filpm M∗
i is generated by (e′i , f

′
i)Λ

′
i,0

(∏m
j=1 Z ′i jΛ

′
i j

)
. This completes the

induction on m and proves the proposition.
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2.4. The structure theorem for pseudo-Barsotti–Tate Kisin modules. In
this subsection, we prove our main result about Kisin modules associated to
pseudo-BT representations. We retain the notation from the previous subsection.

THEOREM 2.4.1. Suppose that p > 3, and let M be the Kisin module
corresponding to a lattice in a pseudo-BT representation V of weight {ri}. Then
there exists an OEJuK-basis {ei , fi} of Mi for all 0 6 i 6 f − 1 such that

ϕ(ei−1, fi−1) = (ei , fi)X i

(
e−1∏
j=1

Λi,e− j Z i,e− j

)
Λi,0Yi ,

for X i , Yi ∈ GL2(OEJuK) with Yi ≡ I2 (mod mE), matrices Z i j ∈ GL2(OE) for
all j , and Λi,0 =

(1 0
0 (u−πi,0)

ri

)
and Λi j =

(1 0
0 u−πi j

)
for j = 1, . . . , e − 1.

Proof. For all i , we let {ei , fi} be the OEJuK-basis of Mi in Proposition 2.3.5(1),
and write ϕ(ei−1, fi−1) = (ei , fi)Ai , where Ai is a matrix with coefficients in
OEJuK. From (2.2.1), we see that Filp M∗

i is generated by (ei−1, fi−1)Bi , where Bi

is the matrix satisfying Ai Bi = (Eκi (u))p I2. On the other hand, Corollary 2.3.10
shows that Filp M∗

i (which by definition is equal to Fil{p,...,p}M∗
i ) is generated by

(αi,e−1, βi,e−1) = (e′i , f′i)Λ′i,0
(

e−1∏
j=1

Z ′i jΛ
′
i j

)
= (ei−1, fi−1)Y−1

i Λ′i,0

(
e−1∏
j=1

Z ′i jΛ
′
i j

)
.

Here, Yi is the matrix such that (e′i , f
′
i)Yi = (ei−1, fi−1), which by

Proposition 2.3.5(2) is congruent to the identity modulo mE . Therefore there
exists an invertible matrix X i ∈ GL2(OEJuK) such that (ei−1, fi−1)Bi = (αi,e−1,

βi,e−1)X−1
i . Hence we have

Y−1
i Λ′i,0

(
e−1∏
j=1

Z ′i jΛ
′
i j

)
X−1

i = Bi .

Then the relation Ai Bi = (Eκi (u))p I2 proves that

Ai = X i

(
e−1∏
j=1

Λi,e− j Z i,e− j

)
Λi,0Yi

with Z i j = (Z ′i j)
−1 and Λi j = Ei j(u)p(Λ′i j)

−1.
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3. Semisimple reductions modulo p of pseudo-BT representations

3.1. In this section, we use Theorem 2.4.1 to study the semisimple
representations that can be obtained as the reduction modulo p of pseudo-
BT representations. We begin with the following notation.

Definition 3.1.1. Suppose that s0, . . . , s f−1 are nonnegative integers and that
a ∈ k×E . Let M(s0, . . . , s f−1; a) be the Kisin module with natural kE -action (in
the sense of [GLS14, Section 3]) that has rank one over SOE⊗OE kE and satisfies
the following.

• M(s0, . . . , s f−1; a)i is generated by ei .

• ϕ(ei−1) = (a)i usi ei .

Here, (a)i = a if i ≡ 0 (mod f ) and (a)i = 1 otherwise. All Kisin modules of
rank one have this form (see, for example, [GLS14, Lemma 6.2]).

Write κ i for the embedding k → Fp induced by κi j (this is independent of j).
For brevity we will sometimes write ωi for the fundamental character ωκ i .

We refer the reader to [GLS14, Section 3] for the definition of the
contravariant functors TS that associate a representation of G K∞ to each
torsion or finite free Kisin module.

LEMMA 3.1.2. We have TS(M(s0, . . . , s f−1; a)) ' χ |G K∞ for a unique
character χ : G K → k×E , and χ satisfies χ |IK '

∏ f−1
i=0 ω

si
i .

Proof. Choose any integers ri j > 0 such that
∑

j ri j = si . By Lemma 2.2.3
(together with [GLS14, Lemma 6.4] and an analysis of the Kisin modules
associated to unramified characters as in the proof of [GLS14, Lemma 6.3]),
we see that M(s0, . . . , s f−1; a) is isomorphic to M ⊗OE kE for a Kisin module
M corresponding to a lattice T in a crystalline character V with Hodge–Tate
weights HTκi j (V ) = {ri j }. Then χ = T ⊗OE kE . The character χ is unique,
since K∞/K is totally wildly ramified, so that restriction to G K∞ is faithful on
characters of G K .

For the last part of the statement it suffices to check that ψ i j |IK = ωi , where
ψi j is a crystalline character whose κi ′ j ′-labelled Hodge–Tate is 1 if (i ′, j ′) =
(i, j) and is 0 otherwise. For this, see [Con11, Proposition B.3] and the proof of
[GLS14, Proposition 6.7](1).

We write ∆(λ1, . . . , λd) for the diagonal matrix with diagonal entries
λ1, . . . , λd .

PROPOSITION 3.1.3. Assume that p > 3, let M be the Kisin module
corresponding to a lattice in a pseudo-BT representation V of weight {ri},
and write M =M⊗OE kE .
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Suppose that N ⊂M is a sub-ϕ-module such that M/N is free of rank one as
an SOE ⊗OE kE -module. Then N ' M(s0, . . . , s f−1; a) for some a ∈ k×E , with
si = ri + xi or si = e − 1− xi for some xi ∈ [0, e − 1] for all i .

Proof. Choose a basis {ei , fi} for Mi as in Theorem 2.4.1. Since we will work in
M for the remainder of the proof, no confusion will arise if we write {ei , fi} also
for the image of that basis in M.

A generator ei−1 of Ni−1 has the form (ei−1, fi−1) · (v,w)T for some v,
w ∈ kEJuK, by hypothesis at least one of which is a unit. We know from
Theorem 2.4.1 that

ϕ(ei−1) = (ei , fi)X i

(
e−1∏
j=1

Λi,e− j Z i,e− j

)
Λi,0 · (ϕ(v), ϕ(w))T,

where X i and Z i j are the reductions modulo mE of X i and Z i j , where Λi,0 =
∆(1, uri ), and where Λi j = ∆(1, u) for 1 6 j 6 e − 1.

Observe that each entry of (ϕ(v), ϕ(w))T is either a unit or divisible by u p,
and at least one is a unit. Since we have ri 6 p for all i , it follows that the largest
power of u dividing the column vector Λi,0 · (ϕ(v), ϕ(w))T is either uri or u0.

For any s > 0, if y is a column vector of length two that is exactly divisible by
us , it is easy to see that that ∆(1, u) · y is exactly divisible by either us or us+1.
On the other hand, if Z is invertible, then Z · y is still exactly divisible by us .
Applying these observations iteratively to the invertible matrices X i and Z i j , and
to the matrices Λi j = ∆(1, u) for 1 6 j 6 e− 1, we see that ϕ(ei−1) is divisible
exactly by usi , where si = ri + x ′i or si = x ′i and 0 6 x ′i 6 e− 1 is the number of
times that we took us+1 rather than us when considering the effect of the matrix
Λi j . Setting xi = x ′i in the first case and xi = e − 1 − x ′i in the latter case, the
proposition follows.

If V is a pseudo-BT representation of weight {ri} and λ = κ i ∈ Hom(k,Fp),
we write rλ := ri .

THEOREM 3.1.4. Assume that p > 3. Let T be a lattice in a pseudo-BT
representation V of weight {ri}, and assume that T = T ⊗OE kE is reducible.
Then there is a subset J ⊆ Hom(k,Fp) and integers xλ ∈ [0, e − 1] such that

T |IK '
(∏

λ∈J ω
rλ+xλ
λ

∏
λ6∈J ω

e−1−xλ
λ ∗

0
∏

λ6∈J ω
rλ+xλ
λ

∏
λ∈J ω

e−1−xλ
λ

)
.

Proof. Let M be the Kisin module associated to the lattice T . We have T |G K∞ '
TS(M). From (the proof of) [GLS14, Lemma 5.5], we see that M is reducible
and has a submodule N as in Proposition 3.1.3 such that T has a quotient
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character χ with χ |G K∞ ' TS(N). Take J = {κ i : si = e−1−xi}. (In particular,
if it happens that e − 1 − xi = r + xi , then we have i ∈ J .) The result follows
from Lemma 3.1.2 (and a determinant argument to compute the sub-character
of T ).

We now give the analogue of Theorem 3.1.4 when T is absolutely irreducible.
Let k2 denote the unique quadratic extension of k inside the residue field of K .
We say that a subset J ⊆ Hom(k2,Fp) is balanced if for each λ ∈ Hom(k2,Fp)

exactly one of λ and λq lies in J , with q = p f . If λ ∈ Hom(k2,Fp), write rλ for
rλ|k . The result is as follows.

THEOREM 3.1.5. Assume that p > 3. Let T be a lattice in a pseudo-BT
representation V of weight {ri}, and assume that T = T ⊗OE kE is absolutely
irreducible. Then there is a balanced subset J ⊆ Hom(k2,Fp) and integers
xλ ∈ [0, e − 1] so that xλ depends only on λ|k and

T |IK '
∏
λ∈J

ω
rλ+xλ
λ

∏
λ6∈J

ω
e−1−xλ
λ

⊕∏
λ6∈J

ω
rλ+xλ
λ

∏
λ∈J

ω
e−1−xλ
λ . (3.1.6)

Proof. Note that V restricted to the unramified quadratic extension K2 of K
remains pseudo-BT, and for each embedding κ ′ : K2 → Qp extending κ : K →
Qp we have HTκ ′(V |G K2

) = HTκ(V ). Applying Theorem 3.1.4 to the lattice
T |G K2

shows that T |IK has the form (3.1.6), except that J need not be balanced,
nor must xλ = xλq . It remains to be seen that these additional conditions may
be taken to hold. Assume that χ : IK → F×p is a character of niveau 2 f such
that χ ⊕ χq is equal to a representation as in the right-hand side of (3.1.6); to
complete the proof, we wish to show that χ⊕χq is also equal to a representation
as in (3.1.6) with J balanced and xλ = xλq . We apologize to the reader for the
argument that follows, which is entirely elementary but long and unenlightening.

It follows from [BLGG13, Corollary 4.1.20] that, if e > p, then as J varies
over all balanced sets and the xλ ∈ [0, e − 1] vary over all possibilities with
xλ = xλq , the right-hand side of (3.1.6) exhausts all representations χ ⊕ χq of
niveau 2 f with determinant

∏
λ∈Hom(k,Fp)

ω
rλ+e−1
λ . The theorem is then automatic

in this case, since T |IK must have this determinant as well. For the remainder of
the argument, then, we assume that e 6 p − 1.

Fix a character κ ′0 extending κ0, and define κ ′i for i ∈ Z by (κ ′i+1)
p = κ ′i . Write

xi for xκ ′i for i ∈ Z. Similarly, define ri for all i ∈ Z so that ri+ f = ri . Define
J1 = J ∩ ( f + J )
J2 = J c ∩ ( f + J )c

J3 = J ∩ ( f + J )c

J4 = J c ∩ ( f + J )
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so that J is balanced if and only if J1 = J2 = ∅. To simplify notation, we will
for instance write i ∈ J1 in lieu of κ ′i ∈ J1, and we will write ωi for ωκ ′i . (We
stress that the symbol ωi here denotes a fundamental character of level 2 f , and
that the symbols ωi and xi are indexed modulo 2 f .) The condition that the two
summands on the right-hand side of (3.1.6) are qth powers of one another is
equivalent to∏

i∈J1

ω
ri+xi+xi+ f−(e−1)
i

∏
i∈J2

ω
(e−1)−ri−xi−xi+ f
i

∏
i∈J3

ω
xi−xi+ f
i

∏
i∈J4

ω
xi+ f−xi
i = 1.

Write yi for the exponent of ωi in the above expression. Since ri ∈ [1, p] for all
i and e 6 p − 1, we have

yi ∈ [−p + 3, 2p − 2] if i ∈ J1

yi ∈ [−2p + 2, p − 3] if i ∈ J2

yi ∈ [−p + 2, p − 2] if i ∈ J3

yi ∈ [−p + 2, p − 2] if i ∈ J4.

Note that yi = yi+ f for all i , so we can consider the yi as being labelled cyclically
with index taken modulo f . As in the proof of [GLS14, Lemma 7.1], one checks
that, since

∏
i ω

yi
i = 1 with yi ∈ [−2p + 2, 2p − 2] for all i , the tuple (y0, . . . ,

y f−1) must have the shape

a0(p, 0, . . . , 0,−1)+ a1(−1, p, 0, . . . , 0)+ · · · + a f−1(0, . . . , 0,−1, p)

with |ai | ∈ {0, 1, 2} for all i , and in fact either ai = 2 for all i , or ai = −2 for all
i , or else ai ∈ {0,±1} for all i . But if ai = 2 for all i , so that yi = 2p − 2 for all
i , we would have to have J = {0, . . . , 2 f − 1} with ri = p and e = xi = p − 1
for all i . But then χq = χ ; that is, χ has niveau f rather than niveau 2 f , which
is a contradiction. The case where ai = −2 for all i is similarly impossible. So
in fact we must have ai ∈ {0,±1} for all i . We now consider separately the case
where some ai is equal to 0, and the case where ai = ±1 for all i .

First let us suppose that at least one ai is equal to 0. The cyclic set of those i
with yi 6= 0 (with index i taken modulo f ) must break up as a disjoint union of
sets of the form (i, i + 1, . . . , i + j) with yi = ±1, yi+ j = ±p, and yi+1, . . . ,

yi+ j−1 ∈ {±p±1}. For every such interval [i, i+ j], choose a representative of i
modulo 2 f (that we also denote i), and perform the following operation (noting
that since yi ∈ [−p+2, p−2] for i ∈ J3∪ J4, we have i+1, . . . , i+ j ∈ J1∪ J2):

• replace J with J4{i, . . . , i+ j} if i ∈ J1∪ J2, or else with J4{i+1, . . . , i+ j}
if i ∈ J3 ∪ J4;

• replace x` with x`+ f for each ` ∈ [i, i + j].
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Here,4 denotes symmetric difference. It is easy to check that this operation does
not change χ , and that for the new choice of J and the xi we have yi = 0 for
all i . We now have ri + xi = e − 1 − xi+ f for each i ∈ J1 ∪ J2, so for each
pair {i, i + f } ⊆ J1 ∪ J2 we can again replace J with J4{i} and xi with xi+ f

without changing χ . When this operation is complete, our new set J is balanced.
Furthermore, yi = 0 for all i , and so xi = xi+ f for all i , and this case is complete.

Finally, suppose that ai = ±1 for all i . Then J1∪ J2 = {0, . . . , 2 f −1}, and in
fact i ∈ J1 if ai = 1 while i ∈ J2 if ai = −1. Note that if i ∈ J1 and i + 1 ∈ J2 or
vice versa, then ri+ xi+ xi+ f −(e−1) = p+1 (so in particular both xi , xi+ f are
nonzero), while if i, i+1 ∈ J1 or i, i+1 ∈ J2, then ri+xi+xi+ f−(e−1)= p−1.

By symmetry, we can suppose without loss of generality that J1 6= ∅. If J2 =
∅, then some xi is not equal to e − 1 (otherwise we have xi = e − 1 for all i ,
so that ri = p − e for all i , and χ has niveau f ); changing our choice of κ0 (if
necessary), we suppose that x f−1 6= e− 1. On the other hand, if J2 6= ∅, then by
changing our choice of κ0 (if necessary) we suppose that 0 ∈ J1 but f − 1 ∈ J2.

Take J ′ = {0, . . . , f − 1}, and for each 0 6 i 6 f − 2 we set

x ′i = x ′i+ f =


xi if i ∈ J1, i + 1 ∈ J1

xi − 1 if i ∈ J1, i + 1 ∈ J2

xi+ f − 1 if i ∈ J2, i + 1 ∈ J1

xi+ f if i ∈ J2, i + 1 ∈ J2.

We take x ′f−1 = x ′2 f−1 = x f−1 + 1 if f − 1 ∈ J1, or x ′f−1 = x ′2 f−1 = x2 f−1 if
f − 1 ∈ J2. (In other words, if i = f − 1 we take the common value of x ′f−1,

x ′2 f−1 to be one more than the value that would otherwise have been given by the
above table.) Note that we have x ′i ∈ [0, e − 1] for all i by the observations and
choices in the two preceding paragraphs.

We claim that χ ′ := ∏ f−1
i=0 ω

ri+x ′i
i

∏2 f−1
i= f ω

e−1−x ′i
i is equal to χ . Since J ′ is

balanced and x ′i = x ′i+ f for all i , this will complete the proof. Checking the
claim is somewhat laborious, and we only give an indication of the argument.
We wish to show that χ ′χ−1 is trivial. Write χ ′χ−1 = ∏i ω

zi
i using the defining

formulae for χ and χ ′. The values of the zi are calculated by considering eight
cases, depending on whether or not i ∈ {0, . . . , f − 1}, whether or not i ∈ J1,
and whether or not i + 1 ∈ J1 (as well as making an adjustment by 1 when
i = f − 1, 2 f − 1). For instance, if i ∈ { f, . . . , 2 f − 1}, i ∈ J1, and i + 1 ∈ J2,
then we have

zi = (e − 1− (xi+ f − 1))− (ri + xi) = −p,

while if i ∈ { f, . . . , 2 f − 1}, i ∈ J1, and i + 1 ∈ J1 then zi = 1 − p if i 6=
2 f − 1 and zi = −p if i = 2 f − 1. (In all cases one finds that |zi | ∈ {0, 1,
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p − 1, p} and zi depends only on i , J1, and J2, not on the ri or the xi .) It is then
straightforward to check that

∏
i ω

zi
i = 1 (one just has to ‘carry’ by replacing

every ω±p
i with ω±1

i−1).

4. The weight part of Serre’s conjecture I: the semisimple case

For a detailed discussion of the weight part of Serre’s conjecture for GL(2),
we refer the reader to [BLGG13, Section 4]. In this section, we will content
ourselves with a brief explanation of the consequences of the results of the
previous sections for the weight part of Serre’s conjecture for (definite or
indefinite) quaternion algebras over totally real fields; we note that the analogous
results for compact at infinity unitary groups U(2) over CM fields follow
immediately from [BLGG13, Theorem 5.1.3], together with the discussion here.

4.1. Local Serre weights. In order to make our various definitions associated
to Serre weights, it will be convenient to work in the local setting of the previous
sections.

Definition 4.1.1. A Serre weight of GL2(k) is by definition an irreducible Fp-
representation of GL2(k), which is necessarily of the form

σa,b := ⊗λ∈Hom(k,Fp)
det bλ ⊗ Symaλ−bλ k2 ⊗k,λ Fp,

for some (uniquely determined) integers aλ, bλ with bλ, aλ− bλ ∈ [0, p− 1] for
all λ, and not all bλ equal to p − 1.

Note that σa,b has a natural model⊗λ∈Hom(k,kE ) det bλ⊗Symaλ−bλ k2⊗k,λ kE , and
it will sometimes be convenient for us to think of σa,b as being defined over kE

(or rather, it will be convenient for us to identify Hom(k, kE) with Hom(k,Fp)).

4.1.2. Suppose that r̄ : G K → GL2(Fp) is continuous. In [BLGG13] and [GK]
there are definitions of several sets of Serre weights W explicit(r̄), W BT(r̄), and
W cris(r̄). We now recall the definitions of W explicit(r̄) and W cris(r̄); see [GK,
Definition 4.5.6] for W BT(r̄).

Write ai , bi in place of aκ i , bκ i . We say that a de Rham lift r of r̄ has Hodge
type σa,b if for all 0 6 i 6 f − 1 we have HTκi,0(r) = {bi , ai + 1}, and if
HTκi j (r) = {0, 1} when j 6= 0. Note that a crystalline representation of Hodge
type σa,0 is pseudo-BT of weight {ai + 1}.
Definition 4.1.3. [BLGG13, Definition 4.1.4] W cris(r̄) is the set of Serre weights
σa,b for which r̄ has a crystalline lift of Hodge type σa,b.
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As in the previous section, let k2 denote the unique quadratic extension of k
inside the residue field of K .

Definition 4.1.4. [BLGG13, Definition 4.1.23] If r̄ is irreducible, then
W explicit(r̄) is the set of Serre weights σa,b such that there is a balanced subset
J ⊂ Hom(k2,Fp), and for each λ ∈ Hom(k,Fp) an integer 0 6 xλ 6 e− 1 such
that if we write xλ for xλ|k when λ ∈ Hom(k2,Fp), then

r̄ |IK
∼=
(∏

λ∈J ω
aλ+1+xλ
λ

∏
λ6∈J ω

bλ+e−1−xλ
λ 0

0
∏

λ6∈J ω
aλ+1+xλ
λ

∏
λ∈J ω

bλ+e−1−xλ
λ

)
.

If r̄ is reducible, then W explicit(r̄) is the set of weights σa,b for which r̄ has a
crystalline lift of type σa,b of the form(

χ ′ ∗
0 χ

)
.

In particular (see the remark after [BLGG13, Definition 4.1.14]), if σa,b ∈
W explicit(r̄) then it is necessarily the case that there is a subset J ⊆ Hom(k,Fp),
and for each λ ∈ Hom(k,Fp) there is an integer 0 6 xλ 6 e − 1 such that

r̄ |IK
∼=
(∏

λ∈J ω
aλ+1+xλ
λ

∏
λ 6∈J ω

bλ+xλ
λ ∗

0
∏

λ 6∈J ω
aλ+e−xλ
λ

∏
λ∈J ω

bλ+e−1−xλ
λ

)
,

and when r̄ is a sum of two characters this is necessary and sufficient.

4.1.5. The inclusion W explicit(r̄) ⊆ W cris(r̄) was proved in [BLGG13,
Proposition 4.1.25] and was conjectured there to be an equality [BLGG13,
Conjecture 4.1.26]; this equality is the main local result of this paper.

The definition of W BT(r̄) is unimportant for us in this paper; the only fact
that we will need is that, by [GK, Corollary 4.5.7], the inclusion W explicit(r̄) ⊆
W cris(r̄) can be refined to inclusions

W explicit(r̄) ⊆ W BT(r̄) ⊆ W cris(r̄),

so that our main result will show that both these inclusions are equalities.
Observe that the definitions of the sets W cris(r̄) and W explicit(r̄) involve our

fixed choice of embeddings κi,0. We will prove that these sets in fact do not
depend on this choice. Indeed the definition of W BT(r̄) does not involve any
choice of embeddings κi,0, so that once we have proved the equality W explicit(r̄) =
W cris(r̄) it follows automatically that W explicit(r̄) and W cris(r̄) do not depend on
any choice of embeddings either. On the other hand, this will also follow easily
and directly from the arguments in this paper, and so we will give a direct proof
as well.
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In the above language, the main local result of this section is the following.

THEOREM 4.1.6. Suppose that p > 3 and that r̄ is semisimple. Then we have
W explicit(r̄) = W cris(r̄). Moreover, these sets do not depend on our choice of
embeddings κi,0.

Proof. Suppose that σa,b ∈ W cris(r̄). Twisting, we may assume that bλ = 0 for
all λ. If r : G K → GL2(OE) is a pseudo-BT lift of r̄ of Hodge type σa,0, we can
freely enlarge the coefficient field E so that it satisfies our usual hypotheses, and
so that r ⊗OE kE is either reducible or absolutely irreducible.

Now for the first part of the result it remains to show that W cris(r̄) ⊆
W explicit(r̄); this is immediate from Theorems 3.1.4 and 3.1.5 and
Definitions 4.1.3 and 4.1.4, taking ri = ai + 1 for all i . The second part is
automatic, since the definition of W explicit(r̄) when r̄ is semisimple does not
depend on the choice of embeddings κi,0.

4.2. Global Serre weights. Let F be a totally real field, and continue to
assume that p > 2. Let ρ : G F → GL2(Fp) be continuous, absolutely irreducible,
and modular (in the sense that it is isomorphic to the reduction modulo p of a p-
adic Galois representation associated to a Hilbert modular eigenform of parallel
weight two). Let kv be the residue field of Fv for each v|p.

A global Serre weight is by definition an irreducible representation of the
group

∏
v|p GL2(kv), which is necessarily of the form σ = ⊗v|pσv with σv a

Serre weight of GL2(kv) as above. Let D be a quaternion algebra with centre F ,
which is split at all places dividing p and at zero or one infinite places. Then
[GK, Definition 5.5.2] explains what it means for ρ to be modular for D of
weight σ . (There is a possible local obstruction at the finite places of F at which
D is ramified to ρ being modular for D for any weight at all; following [GK,
Definition 5.5.3], we say that ρ is compatible with D if this obstruction vanishes.
Any ρ will be compatible with some D; indeed, we could take D to be split
at all finite places of F .) The following is a theorem of Gee and Kisin [GK,
Corollary 5.5.4].

THEOREM 4.2.1. Assume that p > 2, that ρ is modular and compatible with D,
that ρ|G F(ζp )

is irreducible, and if p = 5 assume further that the projective image
of ρ|G F(ζp )

is not isomorphic to A5.
Then ρ is modular for D of weight σ if and only if σv ∈ W BT(ρ|G Fv

) for
all v|p.

The main global result of this section is the following (which is an immediate
consequence of Theorem 4.1.6 in combination with the above result of Gee and
Kisin).
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THEOREM 4.2.2. Assume that p > 2, that ρ is modular and compatible with D,
that ρ|G F(ζp )

is irreducible, and if p = 5 assume further that the projective image
of ρ|G F(ζp )

is not isomorphic to A5.
Assume that ρ|G Fv

is semisimple for each place v|p. Then ρ is modular for D
of weight σ if and only if σv ∈ W explicit(ρ|G Fv

) for all v|p.

Modulo the hypotheses on the image of ρ (the usual hypotheses needed in
order to apply the Taylor–Wiles–Kisin method), Theorem 4.2.2 is the main
conjecture of Schein [Sch08].

Note that we have thus far said nothing about the case where ρ|G Fv
is reducible

but nonsplit, where W explicit(ρ|G Fv
) will depend on the extension class of ρ|G Fv

.
Our treatment of this more delicate case will occupy the remainder of the paper.
REMARK 4.2.3. If ρ|G Fv

is generic in a suitable sense, then [DS, Theorem 4.5]
implies that W explicit(ρ|G Fv

) = W BT(ρ|G Fv
) ∩ W explicit(ρ|ss

G Fv
). On the other hand,

we have inclusions

W BT(ρ|G Fv
) ⊆ W cris(ρ|G Fv

) ⊆ W cris(ρ|ss
G Fv
) = W explicit(ρ|ss

G Fv
),

where the equality is an application of Theorem 4.1.6, and so we see in this
case that W explicit(ρ|G Fv

) = W BT(ρ|G Fv
). In particular, we can already extend

Theorem 4.2.2 to the case where ρ|G Fv
is either semisimple or generic for all

v|p.
(We refer the reader [DS, Definition 3.5] for the definition of genericity that

we use here, but note that genericity implies that e 6 (p − 1)/2.)

5. The weight part of Serre’s conjecture II: the noncyclotomic case

In this section, we make a detailed study of the extensions of rank-one Kisin
modules and use these results to prove that if p > 3 then W explicit(r̄) = W cris(r̄)
for reducible representations r̄ ' (

χ ′ ∗
0 χ

)
with χ−1χ ′ 6= ε (see Theorem 5.4.1

below).

5.1. Extensions of rank-one Kisin modules. We begin with some basic
results on extensions of rank-one Kisin modules, mildly generalizing the results
in [GLS14, Section 7]. We begin with the following notation.

Definition 5.1.1. If N =M(s0, . . . , s f−1; a), define

αi(N) := 1
p f − 1

f∑
j=1

p f− j s j+i .

It is immediate from the definition that these constants satisfy the relations
αi(N) + si = pαi−1(N) for i = 0, . . . , f − 1, and indeed are uniquely defined
by them. We have the following easy lemma.
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LEMMA 5.1.2. Write N = M(s0, . . . , s f−1; a) and N
′ = M(s ′0, . . . , s ′f−1; a′).

There exists a nonzero map N→N
′
if and only if αi(N)−αi(N

′
) ∈ Z>0 for all i ,

and a = a′.

Proof. Such a map, if it exists, must take the form ei 7→ cuαi (N)−αi (N
′
)e′i for all i ,

where e′i is the basis element for N
′
i as in Definition 3.1.1, and c ∈ k×E .

We can now check the following analogue of [GLS14, Proposition 7.4].

PROPOSITION 5.1.3. Let N =M(s0, . . . , s f−1; a) and P =M(t0, . . . , t f−1; b)
be rank-one Kisin modules, and let M be an extension of N by P. Then we can
choose bases ei , fi of the Mi so that ϕ has the form

ϕ(ei−1) = (b)i uti ei

ϕ( fi−1) = (a)i usi fi + yi ei

with yi ∈ kEJuK a polynomial with deg(yi) < si , except that when there is a
nonzero map N → P we must also allow y j to have a term of degree s j +
α j(N)− α j(P) for any one choice of j .

Proof. The proof is essentially identical to the proof of [GLS14, Proposition
7.4] except for the analysis of the exceptional terms. Namely, it is possible to use
a simultaneous change of basis of the form f ′i = fi+ zi ei for i = 0, . . . , f −1 to
eliminate all terms of degree at least si in the yi , except that if there is a sequence
of integers di > si satisfying

di = p(di−1 − si−1)+ ti (5.1.4)

for all i (with subscripts taken modulo f ), and if a = b, then for some j the term
of degree d j in y j may survive. (Note that taking zi−1 to be a suitable monomial
of degree di−1 − si−1 will eliminate the term of degree di−1 in yi−1 but yield a
term of degree di in yi instead. This is more or less what we called a loop in the
proof of [GLS14, Proposition 7.4].)

Comparing with the defining relations for αi(N), αi(P), we must have

di = pαi−1(N)− αi(P) = αi(N)− αi(P)+ si ,

and these are integers greater than or equal to si provided that αi(N)− αi(P) ∈
Z>0 for all i . The result now follows from Lemma 5.1.2.

Next we combine Proposition 5.1.3 with Theorem 2.4.1 to study the
extensions of Kisin modules that can arise from the reduction modulo p of
pseudo-BT representations; this is our analogue of [GLS14, Theorem 7.9].
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THEOREM 5.1.5. Suppose that p > 3. Let T be a G K -stable OE -lattice in a
pseudo-BT representation of weight {ri}. Let M be the Kisin module associated
to T , and let M :=M⊗OE kE .

Assume that the kE [G K ]-module T := T⊗OE kE is reducible, so that there exist
rank-one Kisin modules N = M(s0, . . . , s f−1; a) and P = M(t0, . . . , t f−1; b)
such that M is an extension of N by P. Then for all i there is an integer xi ∈ [0,
e − 1] such that {si , ti} = {ri + xi , e − 1− xi}.

We can choose bases ei , fi of the Mi so that ϕ has the form

ϕ(ei−1) = (b)i uti ei

ϕ( fi−1) = (a)i usi fi + yi ei ,

where the following hold.

• yi ∈ kEJuK is a polynomial with deg(yi) < si .

• If ti < ri then the nonzero terms of yi have degrees in the set {ti} ∪ [ri , si − 1].
• Except that when there is a nonzero map N → P we must also allow y j to

have a term of degree s j + α j(N)− α j(P) for any one choice of j .

Proof. The fact that M is an extension of two rank-one Kisin modules follows
for example from [GLS14, Lemma 5.5], and the fact that {si , ti} = {ri + xi ,

e − 1 − xi} is an immediate consequence of Proposition 3.1.3 and determinant
considerations. After applying Proposition 5.1.3, it remains to check that if
ti < ri then the nonzero terms of yi have degrees in the set {ti} ∪ [ri , si − 1]
(except possibly for an exceptional term arising from the existence of a nonzero
map N→ P).

It is an immediate consequence of Theorem 2.4.1 that ϕ(Mi−1) contains
a saturated element (that is, an element not divisible by u in ϕ(Mi−1)) that
is divisible by uri in Mi . Such an element must be a saturated ϕ(S)-linear
combination of ϕ(ei−1) and ϕ( fi−1); that is, we must have γ, δ, at least one of
which is a unit, such that uri divides

ϕ(γ ) · ((a)i usi fi + yi ei)+ ϕ(δ) · (b)i uti ei .

The assumptions on {si , ti} imply that one of them is at least ri . Suppose, then,
that ti < ri . It follows that si > ri , so we have to have

uri | ϕ(γ )yi + ϕ(δ)(b)i uti .

If γ were a nonunit, then we would have u p | ϕ(γ ), so that uri divides both
terms in the above sum separately. But ti < ri , and so δ must also be a nonunit,
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which is a contradiction. It follows that γ is a unit. Replacing δ with δγ −1, we
can suppose that γ = 1, and we must be able to choose δ so that uri divides
yi + ϕ(δ)(bi)uti . That is, all terms of yi must have degree at least ri , except for
terms that could be cancelled by the addition of ϕ(δ)(bi)uti . These are the terms
of degree ti + pn with n ∈ Z>0. But ti + p > ri , so the only extra term we may
get this way is a term of degree ti .

Definition 5.1.6. Fix integers ri ∈ [1, p]. Suppose that N =M(s0, . . . , s f−1; a)
and P =M(t0, . . . , t f−1; b) are rank-one Kisin modules with {si , ti} = {ri + xi ,

e − 1− xi}. We let EψBT(N,P) denote the subset of Ext1(N,P) defined by the
conditions of Theorem 5.1.5. (The integers {ri} will be implicit in the notation.)

From the proof of Theorem 5.1.5 we see that EψBT(N,P) can be characterized
as the set of classes M ∈ Ext1(N,P) such that each ϕ(Mi−1) contains a saturated
element that is divisible by uri in Mi .

In the remainder of Section 5, we prove that if p > 3 then W explicit(r̄) =
W cris(r̄) for reducible representations r̄ ' (χ ′ ∗0 χ

)
with χ−1χ ′ 6= ε. We follow the

same basic strategy as in [GLS14, Sections 8–9], which relies on (but, as we will
explain, is necessarily somewhat more complicated than) a comparison between
the dimension of the space EψBT(N,P) and the dimension of an appropriate
local Bloch–Kato group H 1

f (G K ,−). Perhaps the main difference between the
arguments here and the arguments in [GLS14, Sections 8–9] is that certain
combinatorial issues which we were able to address in ad hoc ways in the
unramified case (particularly those in [GLS14, Section 8.2]) are rather more
involved in the ramified case, and so have had to be addressed systematically
(see Section 5.3).

5.2. Comparison of extension classes. We give a simple example that
illustrates why the proof that W explicit(r̄)= W cris(r̄) in the indecomposable case is
more complicated than one might initially expect, and in particular cannot follow
immediately from comparing the dimension of the space EψBT(N,P) with the
dimension of an appropriate local Bloch–Kato group H 1

f (G K ,−).
Example 5.2.1. Take K = Qp. The group H 1

f (GQp ,OE(ε
1−p)) is torsion (since

H 1
f (GQp , E(ε1−p)) is trivial) and its $ -torsion has rank one, corresponding

to the congruence ε1−p ≡ 1 (mod $). It follows that the subspace of
Ext1

kE [GQp ](1, 1) arising from crystalline extensions of ε p−1 by 1 is one
dimensional. (This extension comes from the reduction modulo$ of a nontrivial
extension T of OE(ε

p−1) by OE inside the split representation ε p−1 ⊕ 1.) By
Lemma 5.4.2 below, the subspace of Ext1

kE [G K∞ ](1, 1) arising from crystalline
extensions of OE(ε

p−1) by OE is also one dimensional.
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On the other hand, by Proposition 5.1.3 there are no nontrivial extensions of
M(0; 1) by M(p − 1; 1) at all. Why is this not a contradiction, given that the
Kisin modules corresponding to 1 and ε p−1 reduce to M(0; 1) and M(p − 1; 1)
respectively? The point is that, although the functor TS is an equivalence of
categories, the inverse functor from lattices to Kisin modules need not be exact;
and indeed the reduction modulo $ of the Kisin module corresponding to the
lattice T of the previous paragraph turns out to be an extension of M(p − 1; 1)
by M(0; 1) rather than the reverse.

5.2.2. Suppose that r̄ is the reduction modulo $ of an OE -lattice in a pseudo-
BT representation V of weight {ri}, so that by Theorem 5.1.5 there exist N
and P such that r̄ |G K∞ ' TS(M) for some M ∈ EψBT(N,P). To prove that
W explicit(r̄) = W cris(r̄), we wish to show that there exist crystalline characters
χ ′, χ : G K → O×E and an extension T of OE(χ) by OE(χ

′) such that T [1/p] is
pseudo-BT of weight {ri} and r̄ ' T ⊗OE kE .

It is natural to try to argue by choosing χ ′ and χ so that their corresponding
rank-one Kisin modules N,P are lifts of N,P respectively, and then comparing
the spaces H 1

f (G K ,OE(χ
−1χ ′)) and EψBT(N,P) by a counting argument.

Unfortunately, Example 5.2.1 shows that the Kisin module corresponding to an
element of the first group may not reduce to an element of the latter set, and so
an additional argument is needed.

We consider instead all pairs of crystalline characters χ̃ ′, χ̃ : G K → O×E with
reductions χ ′, χ , and such that χ̃ ′ ⊕ χ̃ is pseudo-BT of weight {ri}. We will
show that there is a preferred choice χ ′min, χmax (with Kisin modules Nmin,Pmax

respectively) with the property that the reduction modulo $ of any element
of any H 1

f (G K ,OE(χ̃
−1χ̃ ′)) can be shown to occur as the image under TS of

an element of EψBT(Nmin,Pmax). Then we can proceed by comparing H 1
f (G K ,

OE(χ
−1
maxχ

′
min)) with EψBT(Nmin,Pmax).

The construction of χ ′min, χmax can be found in the proof of Theorem 5.4.1. In
the rest of this subsection we begin to carry out the above strategy by proving
the following proposition, which will allow us to compare the spaces EψBT(N,

P) (or at least the generic fibres of the Kisin modules in those spaces) for certain
varying choices of N and P.

PROPOSITION 5.2.3. Suppose that we are given Kisin modules

N :=M(s0, . . . , s f−1; a) and P :=M(t0, . . . , t f−1; b)
as well as

N
′ :=M(s ′0, . . . , s ′f−1; a) and P

′ :=M(t ′0, . . . , t ′f−1; b)
such that the following hold.
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• There exist nonzero maps P→ P
′
and N

′→ N.

• si + ti = s ′i + t ′i = ri + e − 1 and max{si , ti},max{s ′i , t ′i } > ri for all i .

For each M ∈ EψBT(N,P) there exists M
′ ∈ EψBT(N

′
,P
′
) such that TS(M) ∼=

TS(M
′
).

Proof. The proof has two steps. First, we construct M
′ ∈ Ext1(N

′
,P
′
) such that

TS(M) ∼= TS(M
′
), and then we check that in fact M

′ ∈ EψBT(N
′
,P
′
).

We can choose bases ei , fi of the Mi so that ϕ has the form

ϕ(ei−1) = (b)i uti ei

ϕ( fi−1) = (a)i usi fi + yi ei

with the elements yi as in Theorem 5.1.5. First we define the Kisin module M
′′ ∈

Ext1(N
′
,P) by the formulae

ϕ(e′′i−1) = (b)i uti e′′i
ϕ( f ′′i−1) = (a)i us′i f ′′i + y′′i e′′i

with y′′i := u p(αi−1(N
′
)−αi−1(N))yi . It is easy to check that there is a morphism g :

M
′′ → M sending e′′i 7→ ei and f ′′i 7→ uαi (N

′
)−αi (N) fi for all i , and since g

induces an isomorphism M
′′[1/u] ∼→M[1/u] of étale ϕ-modules, it induces an

isomorphism TS(M)
∼→ TS(M

′′
).

Next, define the Kisin module M
′ ∈ Ext1(N

′
,P
′
) by the formulae

ϕ(e′i−1) = (b)i ut ′i e′i
ϕ( f ′i−1) = (a)i us′i f ′i + y′i e

′
i

with y′i := uαi (P)−αi (P
′
)y′′i . Again, it is easy to check that there is a morphism

g′ : M′′ → M
′

sending e′′i 7→ uαi (P)−αi (P
′
)e′i and f ′′i 7→ f ′i , and that g′ induces

an isomorphism TS(M
′
)
∼→ TS(M

′′
). Combining these calculations shows that

indeed TS(M) ∼= TS(M
′′
).

It remains to check that M
′ ∈ EψBT(N

′
,P
′
). Using the characterization

following Definition 5.1.6, we wish to show for each i that there is a saturated
element of ϕ(M

′
i−1) that is divisible by uri in M

′
i . When t ′i > ri , this is obvious

(since ϕ(e′i−1) will do), so we can suppose that t ′i < ri and so s ′i > ri .
Recall that y′i = uαi (P)−αi (P

′
)+p(αi−1(N

′
)−αi−1(N))yi . If αi−1(N

′
) > αi−1(N) then

we are done, since u p (and hence also uri ) divides y′i . We may therefore assume
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that αi−1(N
′
) = αi−1(N). Since si+ti = s ′i+t ′i for all i , it follows that αi−1(P

′
) =

αi−1(P) as well. Note that whenever there is a map P → P
′

with αi−1(P
′
) =

αi−1(P), we must have ti 6 t ′i . Indeed we have ti = pαi−1(P) − αi(P) and
t ′i = pαi−1(P

′
)− αi(P

′
), so that t ′i − ti = αi(P)− αi(P

′
) > 0 by Lemma 5.1.2.

In particular, we also have ti < ri , and the assumption that M ∈ EψBT(N,P)
implies that every term of yi has degree at least ri except possibly for a term of
degree ti . (Note that in the case that there is an extra term of degree di , we have
di > si , which is at least ri since ti < ri .) Since yi divides y′i , we see that every
term of y′i has degree at least ri except possibly for a term of degree

ti + αi(P)− αi(P
′
)+ p(αi−1(N

′
)− αi−1(N)) = ti + αi(P)− αi(P

′
).

This quantity is easily seen to be congruent to t ′i (mod p), so is either equal to
t ′i or is at least ri , and we are done, because we can subtract a constant multiple
of ϕ(e′i−1) from ϕ( f ′i−1) to obtain an element divisible by uri .

5.3. Maximal and minimal models. We now construct the maximal and
minimal Kisin modules to which we alluded in 5.2.2.

LEMMA 5.3.1. Fix integers ri ∈ [1, p]. Suppose that χ : G K → k×E is a
character, and let S be the space of rank-one Kisin modules P = M(t0, . . . ,

t f−1; b) such that the following hold.

• TS(P) = χ |G K∞ .

• ti ∈ [0, e − 1] ∪ [ri , ri + e − 1] for all i .

If S 6= ∅, then S contains a maximal model. That is, there exists Pmax ∈ S such
that there is a nontrivial map P→ Pmax for all P ∈ S .

Proof. Assume that S is nonempty. Then there exists some M(t ′0, . . . , t ′f−1; b) ∈
S , and every other element of S has the form M(t0, . . . , t f−1; b) (that is, the b is
the same).

Write χ |IK =
∏

i ω
mi
i with m i ∈ [0, p − 1] and not all equal to p − 1. For

0 6 i 6 f −2, let vi be the f -tuple (0, . . . ,−1, p, . . . , 0) with the−1 in the i th
position (where the leftmost position is the zeroth), and similarly let v f−1 be the
f -tuple (p, 0, . . . , 0,−1). It is straightforward to see from Lemma 3.1.2 that, if
M(t0, . . . , t f−1; b) ∈ S , then

(t0, . . . , t f−1) = (m0, . . . ,m f−1)+
f−1∑
i=0

civi (5.3.2)

with ci ∈ Z>0 for all i .
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If we have m i ∈ Ii := [0, e − 1] ∪ [ri , ri + e − 1] for all i , then it is clear
that Pmax := M(m0, . . . ,m f−1; b) is a maximal model, for example because
αi(Pmax) 6 αi(P) for all P ∈ S . This always holds for instance if e > p, or if
χ is unramified, so let us assume for the rest of the proof that e 6 p− 1 and that
χ is ramified, so that not every m i is equal to 0.

With these additional hypotheses, we have ri + e − 1 6 2p − 2 for all i , and
also the integers ci in (5.3.2) must all be 0 or 1. If P =M(t0, . . . , t f−1; b) with
integers ci as in (5.3.2), write J (P) := {i : ci 6= 0}. To complete the proof,
it suffices to show that there exists a subset J ⊆ {0, . . . , f − 1} such that the
following hold.
• If P ∈ S then J ⊆ J (P).

• There exists P
′ ∈ S such that J = J (P

′
).

For then, P
′

is Pmax. We construct the set J as follows. Note that if x is a
nonnegative integer with x 6∈ Ii , then x > e, so that also x + p 6∈ Ii .

Let K ⊆ {0, . . . , f − 1} be any set with the property that if P ∈ S then K ⊆
J (P). Write (m ′0, . . . ,m ′f−1) = (m0, . . . ,m f−1)+

∑
i∈K vi . Let P =M(t0, . . . ,

t f−1; b) be any element of S (here, we use our assumption that S is nonempty).
Suppose first that i ∈ K . Observe that ti ∈ {m ′i ,m ′i + p}, and since ti ∈ Ii it
follows by the last sentence in the previous paragraph that m ′i ∈ Ii . Now suppose
instead that i 6∈ K . Observe that ti ∈ {m ′i ,m ′i + p,m ′i − 1,m ′i + p − 1} ∩ Ii .
If in fact m ′i 6∈ Ii , it follows by the last sentence in the previous paragraph that
ti 6= m ′i ,m ′i + p, and therefore i ∈ J (P). Write ∆(K ) = {i 6∈ K : m ′i 6∈ Ii}; it
follows that K ∪∆(K ) is another set that is contained in J (P) for all P ∈ S .

Set J0 =∅, and iteratively define Ji = Ji−1∪∆(Ji−1) for i > 1. Eventually this
process stabilizes at some Jn . By construction, Jn ⊆ J (P) for all P ∈ S. Again
write (m ′0, . . . ,m ′f−1) = (m0, . . . ,m f−1) +

∑
i∈Jn

vi . We claim that m ′i ∈ Ii for
all i , so that Jn is the desired set J ; this is automatic if i ∈ Jn (by the first
observation in the previous paragraph), and if i 6∈ Jn follows from the fact that
∆(Jn) = ∅.

Evidently we must also have the following lemma, which essentially is dual
to the previous one.

LEMMA 5.3.3. Fix integers ri ∈ [1, p]. Suppose that χ ′ : G K → k×E is a
character, and let S be the space of rank-one Kisin modules N = M(s0, . . . ,

s f−1; a) such that the following hold.

• TS(N) = χ ′|G K∞ .

• si ∈ [0, e − 1] ∪ [ri , ri + e − 1] for all i .
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If S 6= ∅, then S contains a minimal model. That is, there exists Nmin ∈ S such
that there is a nontrivial map Nmin → N for all N ∈ S .

Proof. Indeed, if χ : G K → k×E is a character such that χχ ′|IK =
∏

i ω
ri+e−1
i and

M(t0, . . . , t f−1; b) is the maximal model for χ given by the previous lemma,
then the desired minimal model is given by M(s0, . . . , s f−1; a) with si = (ri +
e − 1)− ti .

Combining Proposition 5.2.3 with the above lemmas, we obtain the following
result, which was promised in 5.2.2.

PROPOSITION 5.3.4. Fix characters χ ′, χ : G K → k×E and integers ri ∈ [1, p].
There exist rank-one Kisin modules Nmin and Pmax with the following property: if
r̄ ∈ Ext1

kE [G K ](χ, χ
′) is the reduction modulo$ of an OE -lattice in a pseudo-BT

representation of weight {ri}, then r̄ |G K∞ ' TS(M) for some M ∈ EψBT(Nmin,

Pmax).
Moreover, if we write Nmin = M(s0, . . . , s f−1; a) and Pmax = M(t0, . . . ,

t f−1; b), then Nmin and Pmax can be chosen so that for all i we have si + ti =
ri + e − 1 and si , ti ∈ [0, e − 1] ∪ [ri , ri + e − 1].

Proof. If no such extensions r̄ exist, then the Proposition is vacuously true, so
we may suppose that some r̄ exists as in the statement of the Proposition. As
in the proof of Theorem 3.1.4, there exist rank-one Kisin modules N,P such
that r̄ |G K∞ ' TS(M) for some M ∈ EψBT(N,P). In particular, the set S of
Lemma 5.3.1 is nonempty (it contains P, or possibly N if r̄ |G K∞ is split), and
similarly the set S of Lemma 5.3.3 is nonempty. Let Pmax and Nmin be the
maximal and minimal models given, respectively, by those lemmas. (Note that
these depend only on χ , χ ′, and the integers {ri}, and not on r̄ .)

The fact that si , ti ∈ [0, e−1]∪ [ri , ri + e−1] is given to us by Lemmas 5.3.1
and 5.3.3, and the equality si + ti = ri + e − 1 comes from the proof of
Lemma 5.3.3. Now an application of Proposition 5.2.3 gives the claim in the
first paragraph of the Proposition when r̄ |G K∞ is nonsplit, while if r̄ |G K∞ is split
we can take M = Pmax ⊕Nmin.

5.4. The noncyclotomic case of the weight part of Serre’s conjecture. We
are now ready to prove the following result.

THEOREM 5.4.1. Suppose that p > 3 and that r̄ : G K → GL2(kE) is reducible,
and write r̄ ' (χ ′ ∗0 χ

)
. If χ−1χ ′ 6= ε, then W explicit(r̄) = W cris(r̄). Moreover, these

sets do not depend on our choice of embeddings κi,0.
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Proof. Suppose that σ ∈ W cris(r̄). We may freely enlarge E so that r̄ has a
crystalline lift of Hodge type σ defined over E . After twisting, we may assume
that σ has the shape ⊗i Symri−1 k2 ⊗k,κ i Fp with integers ri ∈ [1, p], and the
hypothesis that σ ∈ W cris(r̄) means that r̄ is the reduction modulo p of a lattice
in a pseudo-BT representation of weight {ri}. Let Nmin = M(s0, . . . , s f−1; a)
and Pmax = M(t0, . . . , t f−1; b) be the rank-one Kisin modules given to us by
Proposition 5.3.4 applied to χ ′, χ , and {ri}.

We construct a pair of crystalline characters χ ′min, χmax : G K →O×E as follows.
If ti > ri , we take the ordered pair (HTκi,0(χmax),HTκi,0(χ

′
min)) = (ri , 0); and for

j > 0 we take the pair (HTκi j (χmax),HTκi j (χ
′
min)) to be (1, 0) for exactly ti − ri

values of j and to be (0, 1) for exactly si values of j . On the other hand, if ti < ri ,
we take the pair (HTκi,0(χmax),HTκi,0(χ

′
min)) = (0, ri); and for j > 0 we take the

pair (HTκi j (χmax),HTκi j (χ
′
min)) to be (1, 0) for exactly ti values of j and to be

(0, 1) for exactly si − ri values of j . It is then possible to choose the unramified
parts of χ ′min, χmax so that they reduce to χ ′ and χ respectively.

Let us consider the extensions T of OE(χmax) by OE(χ
′
min) such that T [1/p]

is crystalline. Each of these is pseudo-BT of weight {ri}, and so (by the defining
property of Nmin,Pmax from Proposition 5.3.4) we must have T |G K∞ ' TS(M)

for some M ∈ EψBT(Nmin,Pmax).
The space of crystalline extensions of χmax by χ ′min, which we identify with

H 1
f (G K , E(χ−1

maxχ
′
min)), has dimension equal to the number of labelled Hodge–

Tate weights of χ ′min that exceed the corresponding weight of χmax. This is
precisely

d =
∑

i : ti>ri

si +
∑

i : ti<ri

(1+ si − ri).

It follows as in [GLS14, Lemma 9.3] that the image of H 1
f (G K ,OE(χ

−1
maxχ

′
min))

in H 1(G K , χ
−1χ ′) has dimension d if χ 6= χ ′ and dimension d + 1 if χ = χ ′.

By Lemma 5.4.2 below, the restriction map H 1(G K , χ
−1χ ′) → H 1(G K∞,

χ−1χ ′) is injective. (The application of Lemma 5.4.2 is the only place in the
argument that we need our assumption that χ−1χ ′ 6= ε.) It follows that the
number of elements of H 1(G K∞, χ

−1χ ′) that come from a crystalline extension
of χmax by χ ′min is exactly |kE |d+δ, where δ = 0 if χ 6= χ ′ and δ = 1 otherwise.

On the other hand, we know from Proposition 5.3.4 that the number of
elements of H 1(G K∞, χ

−1χ ′) that come from the reduction modulo p of some
pseudo-BT representation of weight {ri} is at most #EψBT(Nmin,Pmax). One
easily checks by counting, in the explicit description of the extensions in
Theorem 5.1.5, the number of terms in each yi that are permitted to be nonzero
(and noting that if χ = χ ′ there must exist a map Nmin → Pmax, by the
maximality of Pmax) that #EψBT(Nmin,Pmax) = |kE |d+δ as well.
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In particular, every element of H 1(G K∞, χ
−1χ ′) that comes from the reduction

modulo p of some pseudo-BT representation of weight {ri} must in fact come
from a lattice in a crystalline extension of χmax by χ ′min. Applying Lemma 5.4.2
again, the same must be true of every element of H 1(G K , χ

−1χ ′) that comes
from the reduction modulo p of some pseudo-BT representation of weight {ri}.
Since in particular r̄ is such an element, we deduce that σ ∈ W explicit(r̄), as
desired.

Finally, note that the Kisin modules Nmin and Pmax do not depend on the
choice of embeddings κi,0. Then the independence of W explicit(r̄) from the choice
of embeddings κi,0 follows from the characterization that σ ∈ W explicit(r̄) if and
only if r̄ |G K∞ = TS(M) for some M ∈ EψBT(Nmin,Pmax).

LEMMA 5.4.2. Let χ : G K → k×E be a continuous character. If χ 6= ε, then the
restriction map

H 1(G K , χ)→ H 1(G K∞, χ)

is injective. If χ = ε, then the kernel of the restriction map is the très ramifiée
line determined by the fixed uniformizer π .

Proof. If χ 6= 1, ε, this is a special case of [EGS, Lemma 7.4.3]. If χ = 1,
then H 1(G K , χ) = Hom(G K , kE) and H 1(G K∞, χ) = Hom(G K∞, kE), so if the
kernel of the restriction map is nonzero, there must be a Galois extension of K
of degree p contained in K∞. This can only happen if K contains a primitive pth
root of unity, in which case ε = 1, so χ = ε.

Finally, suppose that χ = ε. Kummer theory identifies the restriction map with
the natural map

K×/(K×)p → K×∞/(K
×
∞)

p,

and the kernel of this map is evidently generated by π .

6. The weight part of Serre’s conjecture III: the general case

6.1. (ϕ, Ĝ)-modules. In order to complete our arguments in the remaining
case, we will need to make use of the second author’s theory of (ϕ, Ĝ)-modules.
We refer the reader to [GLS14, Section 5.1] (specifically, from the start of that
section up to the statement of Theorem 5.2) for the definitions and notation that
we will use, as well as to [GLS14, (4.8)] for the definition of the operator τ .

6.1.1. Consider a (ϕ, Ĝ)-module with natural kE -action M̂, sitting in an
extension of (ϕ, Ĝ)-modules with natural kE -action

0→ P̂→ M̂→ N̂→ 0,
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where the underlying Kisin modules N,P are given by N =M(s0, . . . , s f−1; a)
and P =M(t0, . . . , t f−1; b) for some a, b, with {si , ti} = {ri + xi , e − 1 − xi},
and the underlying extension of Kisin modules is in EψBT(N,P). We say that
such a (ϕ, Ĝ)-module is of reducible pseudo-BT type and weight {ri} if for all
x ∈ M there exist α ∈ R and y ∈ R ⊗ϕ,S M such that τ(x) − x = αy and
vR(α) > p/(p − 1)+ p/e.

LEMMA 6.1.2. Suppose that p > 3, and that r̄ : G K → GL2(kE) is reducible
and arises as the reduction modulo p of a pseudo-BT representation r of weight

{ri}. Then there is a (ϕ, Ĝ)-module with natural kE -action M̂ such that M̂ is of

reducible pseudo-BT type and weight {ri}, and T̂ (M̂) ∼= r̄ .

Proof. Let M̂ be the (ϕ, Ĝ)-module arising as the reduction modulo p of
the (ϕ, Ĝ)-module corresponding to r by [GLS14, Theorem 5.2(2)]. Then the
underlying Kisin module M is of the required kind by Theorem 5.1.5, and
this extension can be extended to an extension of (ϕ, Ĝ)-modules by [GLS14,
Lemma 5.5]. Finally, the claim about the action of τ is immediate from [GLS14,
Corollary 5.10].

We have the following generalization of [GLS14, Lemma 8.1].

LEMMA 6.1.3. Suppose that p > 3, and take M ∈ EψBT(N,P). Except possibly
for the case that ri = p and ti = 0 for all i = 0, . . . , f − 1, there is at most one

(ϕ, Ĝ)-module M̂ of reducible pseudo-BT type and weight {ri} with underlying
Kisin module M.

Proof. We follow the proof of [GLS14, Lemma 8.1]. Since by definition M is

contained in the HK -invariants of M̂, it suffices to show that the τ -action on
R̂⊗ϕ,S M is uniquely determined. As usual, we write ei , fi for a basis of Mi as
given by Theorem 5.1.5. We can write

τ(ei−1, fi−1) = (ei−1, fi−1)

(
δi βi

0 γi

)
with δi , βi , γi ∈ (R̂/pR̂) ⊗Fp kE ⊂ R ⊗Fp kE . If ζ ∈ R ⊗Fp kE is written
ζ = ∑n

i=1 yi ⊗ zi with z1, . . . , zn ∈ kE linearly independent over Fp, write
vR(ζ ) = mini{vR(yi)}. By assumption, we have vR(δi −1), vR(γi −1), vR(βi) >
p/(p − 1)+ p/e for all i .

Recalling that M is regarded as a ϕ(S)-submodule of R̂ ⊗ϕ,S M, we may
write ϕ(ei−1, fi−1) = (ei , fi)ϕ(Ai) with Ai =

(
(b)i uti xi

0 (a)i usi

)
. Since ϕ and τ
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commute, we have

ϕ(Ai)

(
ϕ(δi) ϕ(βi)

0 ϕ(γi)

)
=
(
δi+1 βi+1

0 γi+1

)
τ(ϕ(Ai)).

We obtain the following formulae:

u ptiϕ(δi) = δi+1(εu)pti , u psiϕ(γi) = (εu)psiγi+1 (6.1.14)

and

(b)i u ptiϕ(βi)+ ϕ(xi)ϕ(γi) = δi+1τ(ϕ(xi))+ (a)i(εu)psiβi+1, (6.1.15)

where for succinctness we have written (a)i , (b)i in lieu of 1⊗ (a)i , 1⊗ (b)i in
the preceding equation.

Let η ∈ R be the element defined in [GLS14, Lemma 6.6(2)], so that ϕ f (η) =
εη. (K/Qp is assumed to be unramified throughout [GLS14, Section 6], but
it is easily checked that [GLS14, Lemma 6.6(2)] remains valid with the same
proof in our setting.) From (6.1.14) we see that ϕ f (δi) = δiε

∑ f−1
j=0 p f− j ti+ j , and

now [GLS14, Lemma 6.6(2)] together with the requirement that vR(δi − 1) > 0
implies that

δi = η
∑ f−1

j=0 p f− j ti+ j ⊗ 1

for all i . Similarly, we must have γi = η
∑ f−1

j=0 p f− j si+ j ⊗ 1 for all i . So at least the
δi , γi are uniquely determined.

Now suppose that there exists some other extension of M to a (ϕ, Ĝ)-module

M̂′. Then the τ -action on M̂′ is given by some δ′i , β
′
i , and γ ′i that also satisfy

(6.1.14) and (6.1.15), and indeed we have already seen that δ′i = δi and γ ′i = γi .

Let β̃i = βi − β ′i . Taking the difference between (6.1.15) for M̂ and M̂′ gives

(b)i u ptiϕ(β̃i) = (a)i(εu)psi β̃i+1,

which implies that

bu
∑ f−1

j=0 u p f− j ti+ j
ϕ f (β̃i) = a(εu)

∑ f−1
j=0 u p f− j si+ j

β̃i .

Considering the valuations of both sides, and recalling that vR(π) = 1/e, we see
that if β̃i 6= 0 then

vR(β̃i) = 1
e(p f − 1)

f−1∑
j=0

p f− j(si+ j − ti+ j). (6.1.16)
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But since si− ti 6 ri+e−1 is at most p+e−1 with equality if and only if ti = 0
and ri = p, the right-hand side of (6.1.16) is at most (p/e(p − 1))(p+ e− 1) =
p/(p − 1) + p/e with equality if and only if ti = 0 and ri = p for all i . In
particular, since vR(βi), vR(β

′
i ) > p/(p − 1) + p/e, either βi = β ′i for all i , or

else ti = 0 and ri = p for all i , as required.

PROPOSITION 6.1.17. Suppose that p > 3, and let M̂ be a (ϕ, Ĝ)-module of
reducible pseudo-BT type and weight {ri} with underlying Kisin module M.
Suppose that we have N

′
,P
′

as in the statement of Proposition 5.2.3, and let
M
′

be the Kisin module provided by that proposition. Then there is a (ϕ, Ĝ)-

module M̂
′

of reducible pseudo-BT type and weight {ri} with underlying Kisin

module M
′
, such that T̂ (M̂) ∼= T̂ (M̂

′
).

Proof. From the proof of Proposition 5.2.3, we see that there is a Kisin module
M
′′

and there are morphisms g : M′′ → M, g′ : M′′ → M
′
, both of which

induce isomorphisms after inverting u. Using these isomorphisms, the Ĝ-action
on R̂⊗ϕ,S M induces a Ĝ-action on R̂⊗ϕ,S M

′[1/u], and it is enough to show
that this preserves R̂⊗ϕ,SM

′
and makes it a (ϕ, Ĝ)-module of reducible pseudo-

BT type and weight {ri}.
Since HK acts trivially on u and M, and since τ(u) = εu and (ε − 1) ∈ I+,

we see that we only need to check that τ(M
′
) ⊂ R̂ ⊗ϕ,S M

′
, and that for all

x ∈ M
′

there exists α ∈ R and y ∈ R ⊗ϕ,S M
′

such that τ(x) − x = αy and
vR(α) > p/(p − 1)+ p/e.

Take bases ei , fi of Mi and e′i , f ′i of M
′
i as in the proof of Proposition 5.2.3.

Writing

τ(ei−1, fi−1) = (ei−1, fi−1)

(
δi βi

0 γi

)
,

an easy calculation shows that

τ(e′i−1, f ′i−1) = (e′i−1, f ′i−1)

(
δ′i β

′
i

0 γ ′i

)
,

where

δ′i = δiε
p(αi−1(P

′
)−αi−1(P)),

β ′i = βi(u p(αi−1(N
′
)−αi−1(N)+αi−1(P)−αi−1(P

′
)) ⊗ 1)ε p(αi−1(N

′
)−αi−1(N)),

γ ′i = γiε
p(αi−1(N

′
)−αi−1(N)).
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(The factors of p in the above exponents come from the fact that τ acts on the
left-hand side of the twisted tensor product R̂⊗ϕ,S M

′
.) Now, ε is a unit, so it is

enough to check that the exponent of u in the expression for β ′i is nonnegative;
but this is immediate from Lemma 5.1.2.

We are now in a position to prove that W explicit(r̄) = W cris(r̄) in the reducible
cyclotomic case, and so to deduce this equality in full generality (for p 6= 2).

THEOREM 6.1.18. Suppose that p > 3 and that r̄ : G K → GL2(kE) is a
continuous representation. Then W explicit(r̄) = W BT(r̄) = W cris(r̄). Moreover,
these sets do not depend on our choice of embeddings κi,0.

Proof. Recall that we have inclusions W explicit(r̄) ⊆ W BT(r̄) ⊆ W cris(r̄) by [GK,
Corollary 4.5.7], so it is enough to check that W cris(r̄) ⊆ W explicit(r̄). Suppose
that σ ∈ W cris(r̄). As in the proof of Theorem 5.4.1, we may assume that σ
has the shape ⊗i Symri−1 k2 ⊗k,κ i Fp with integers ri ∈ [1, p], and that r̄ is the
reduction modulo p of a lattice in a pseudo-BT representation of weight {ri}.
By Theorem 4.1.6, we may assume that r̄ is an extension of χ by χ ′; by
Theorem 5.4.1, we may assume that χ−1χ ′ = ε.

Suppose first that not all of the ri are equal to p. We may replace the appeals
to Lemma 5.4.2 in the proof of Theorem 5.4.1 with appeals to Lemma 6.1.2,
Lemma 6.1.3, and Proposition 6.1.17; then the count of Kisin modules remains
valid, and the argument goes through as before. (Recall that the only place that
the assumption that χ−1χ ′ 6= ε was used in the proof of Theorem 5.4.1 was in the
appeals to Lemma 5.4.2. In particular, the construction of χmax and χ ′min carries
over to the case that χ−1χ ′ = ε.)

Finally, in the case that all of the ri are equal to p, the same argument applies
unless r̄ has a model where all of the ti = 0. In this case, we see that the character
χmax in the proof of Theorem 5.4.1 is unramified, while HTκi,0(χ

′
min) = p and

HTκi, j (χ
′
min) = 1 if j > 0.

Then every extension of χmax by an unramified twist of χ ′min is automatically
crystalline. So, it suffices to show that any extension of χ by χ ′ lifts to an
extension of χmax by a twist of χ ′min by an unramified character with trivial
reduction. This may be proved by exactly the same argument as [GLS14, Lemma
9.4] (see [GLS12, Proposition 5.2.9], which proves the claim in the case that
K/Qp is totally ramified).

REMARK 6.1.19. Suppose that r̄ is an extension of χ by χ ′, and let χmax, χ
′
min be

the crystalline lifts of χ, χ ′ constructed in the proof of Theorem 5.4.1. Recall that
there is a choice in this construction, namely χmaxand χ ′min are only specified up
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to twist by unramified characters with trivial reduction. It follows immediately
from our arguments that this choice is immaterial, that is, that the image of
the map H 1

f (G K ,OE(χ
−1
maxχ

′
min)) → H 1(G K , χ

−1χ ′) does not depend on the
particular choice of χmax, χ

′
min, except for the case where ri = p for all i and

χmax is unramified (see [BDJ10, Remark 3.10]).

6.2. Conclusion of the proof of the weight part of Serre’s conjecture. We
now extend the results of Section 4, using our analysis of the extension classes
of reducible lifts to complete the proof of the weight part of Serre’s conjecture.

Continue to assume that p > 2, let F be a totally real field, and let ρ : G F →
GL2(Fp) be continuous, irreducible, and modular. Again, let D be a quaternion
algebra with centre F , which is split at all places dividing p and at at most one
infinite place. The main global result of this paper is the following.

THEOREM 6.2.1. Assume that p > 2, that ρ is modular and compatible with D,
that ρ|G F(ζp )

is irreducible, and if p = 5 assume further that the projective image
of ρ|G F(ζp )

is not isomorphic to A5.
Then ρ is modular for D of weight σ = ⊗v|pσv if and only if σv ∈

W explicit(ρ|G Fv
) for all v|p.

Proof. The result is immediate from Theorems 4.2.1 and 6.1.18.

6.3. Dependence on the restriction to inertia. We conclude the paper by
checking (when p > 3) that the local weight set W explicit(r̄) = W cris(r̄) depends
only on the restriction to inertia r̄ |IK . This statement is part of the formulation of
some versions of the weight part of Serre’s conjecture. For instance, when K/Qp

is unramified, the definition of the weight set W BDJ(r̄) in [BDJ10] is modified
in certain cases to ensure that W BDJ(r̄) depends only on r̄ |IK (see the definition
immediately preceding [BDJ10, Remark 3.10]). An immediate consequence of
the following result (and its proof) is that the local weight set defined in [BDJ10]
is equal to the local weight set considered in this paper (again, when p > 3).

PROPOSITION 6.3.1. Suppose that p > 3. Let r̄ , r̄ ′ : G K → GL2(kE) be two
continuous representations with r̄ |IK ' r̄ ′|IK . Then W explicit(r̄) = W explicit(r̄ ′).

Proof. When K/Qp is unramified, the corresponding statement for the weight
set W BDJ(r̄) is proved in [BDJ10, Proposition 3.13]. The proof carries over to
this context nearly word for word, except that in the special case where r̄ ss '
χ ⊕ χ is scalar and the class in H 1(G K , kE) defining r̄ as an extension of χ by
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χ is unramified it is built into the definitions that W BDJ(r̄) = W BDJ(χ ⊕ χ). (In
the notation of [BDJ10], this is the containment Lur ⊆ Lα in this case.) In our
context, it remains to show that W explicit(r̄) = W explicit(χ ⊕ χ).

We must prove that, if χ ⊕ χ has a pseudo-BT lift of weight {ri}, then so
does r̄ . Let Nmin and Pmax be the rank-one Kisin modules given to us by (the
proof of) Proposition 5.3.4, with corresponding parameters s0, . . . , s f−1 and t0,

. . . , t f−1 as in that Proposition. In the special case where ri = p and ti = 0 for
all i (which is only possible when ε = 1 on G K ), the proof of Theorem 6.1.18
already shows that every extension of χ by χ has a pseudo-BT lift of weight {ri},
so for the rest of the proof we assume that we are not in this case.

Write E for the set EψBT(Nmin,Pmax). Note that by construction (since Pmax

and Nmin have the same generic fibre χ ) there exists a nonzero map Nmin →
Pmax. We can therefore define a nontrivial element M ∈ E by taking yi = 0 for
all i (in the notation of Theorem 5.1.5), except that y0 is taken to have a nonzero
term of degree d := s0 + α0(Nmin)− α0(Pmax). Indeed we obtain a line’s worth
of such elements.

Let K p be the unramified extension of K of degree p, with residue field kp, and
suppose without loss of generality that kp embeds into kE . Define M

′ = kp⊗kM,
with ϕ extended kp-semilinearly to M

′
. It is straightforward to check that the

Kisin module M
′

is split. We briefly indicate how to see this. Write the Kisin
module M

′
as an extension as in Proposition 5.1.3. The field K p has inertial

degree p f . The extension parameters y′i defining M
′

are all zero, except for
terms of degree d in y′0, . . . , y′(p−1) f , all with the same coefficient. Since terms
of this degree are part of a loop (in the terminology of the proof of [GLS14,
Proposition 7.4]), there is a change of variables which replaces y′i f with 0 for
each 0 < i < p and replaces y′0 with y′0 + . . . y′(p−1) f = py′0 = 0.

Let T be a lattice in a pseudo-BT representation of G K of weight {ri} such that
T |G K∞ ' TS(M). Since TS is faithful on E , the representation T is nonsplit.

By Lemmas 6.1.2 and 6.1.3, there is a unique (ϕ, Ĝ)-module M̂ of reducible

pseudo-BT type and weight {ri} with T̂ (M̂) ' T . Evidently we have T |G(K p )∞ '
TS(M

′
). Since T |G K p

is still pseudo-BT but M
′

is split, another application of
Lemma 6.1.3 shows that T |G K p

itself must be split. (We remark that, if ε 6= 1 on
G K , the fact that T |G K p

is split can be deduced more easily from Lemma 5.4.2.)
It follows that the extension class in H 1(G K , kE) defining T as an extension of
χ by χ lies in the kernel of the restriction map H 1(G K , kE) → H 1(G K p , kE);
that is, it is unramified. Since the unramified subspace of H 1(G K , kE) is a line,
we have T ' r̄ , and r̄ has the desired pseudo-BT lift (namely T ).
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Appendix A. Corrigendum to [GLS14]

We take this opportunity to correct a minor but unfortunate mistake in
[GLS14]. In the sentence preceding the published version of [GLS14, Theorem
4.22], we write that when we regard M as a ϕ(S)-submodule of M∗, we
are regarding Ms+1 as a submodule of M∗

s . As noted in Section 2.3 of the
present paper, this should be Ms−1 rather than Ms+1. Although the main results
of [GLS14] about the weight part of Serre’s conjecture are unaffected, the
statement of [GLS14, Theorem 4.22] and many of the ensuing Kisin module
and (ϕ, Ĝ)-module formulae in [GLS14, Sections 6–8] have some indices that
are off by one. (This issue does not affect the structure or content of any of the
arguments in the paper, only the statements.)

For instance, where we write in [GLS14, Theorem 4.22] that

ϕ(e1,s, . . . , ed,s) = (e1,s+1, . . . , ed,s+1)XsΛsYs,

we should instead have

ϕ(e1,s−1, . . . , ed,s−1) = (e1,s, . . . , ed,s)XsΛsYs,

and the other corrections are all of a similar nature. Corrected versions of the
paper are available on our websites and on the arXiv. (Alternately, many of the
calculations in [GLS14, Sections 6–8] are generalized by results in Sections 3,
5, and 6 of the present paper.)
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[BP12] C. Breuil and V. Paškūnas, ‘Towards a modulo p Langlands correspondence for
GL2’, Mem. Amer. Math. Soc. 216(1016) (2012), vi+114.

[Con11] B. Conrad, ‘Lifting global representations with local properties’, Preprint, 2011.
[CV92] R. F. Coleman and J. F. Voloch, ‘Companion forms and Kodaira–Spencer theory’,

Invent. Math. 110(2) (1992), 263–281.
[DS] F. Diamond and D. Savitt, ‘Serre weights for locally reducible two-dimensional

Galois representations’, J. Inst. Math. Jussieu, to appear.
[Edi92] B. Edixhoven, ‘The weight in Serre’s conjectures on modular forms’, Invent. Math.

109(3) (1992), 563–594.
[EGS] M. Emerton, T. Gee and D. Savitt, ‘Lattices in the cohomology of Shimura curves’,

Invent. Math., to appear.
[Fon94] J.-M. Fontaine, ‘Representations p-adiques semi-stables’, Astérisque 223 (1994),
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Math. J. 54(1) (1987), 179–230.

https://doi.org/10.1017/fmp.2015.1 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2015.1

	Introduction
	Notation
	Galois theory.
	Hodge–Tate weights.
	p-adic period rings.


	Kisin modules attached to pseudo-Barsotti–Tate representations
	Finer filtrations on Breuil modules
	
	
	
	
	
	

	Some general facts about integral p-adic Hodge theory
	Pseudo-Barsotti–Tate representations
	

	The structure theorem for pseudo-Barsotti–Tate Kisin modules

	Semisimple reductions modulo p of pseudo-BT representations
	

	The weight part of Serre's conjecture I: the semisimple case
	Local Serre weights
	
	

	Global Serre weights

	The weight part of Serre's conjecture II: the noncyclotomic case
	Extensions of rank-one Kisin modules
	Comparison of extension classes
	

	Maximal and minimal models
	The noncyclotomic case of the weight part of Serre's conjecture

	The weight part of Serre's conjecture III: the general case
	(,)-modules
	

	Conclusion of the proof of the weight part of Serre's conjecture
	Dependence on the restriction to inertia

	Corrigendum to GLS-BDJ
	References




