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1. Introduction
Let L be a degenerate elliptic operator in divergence form

Lu=— Z Dj(aij(m)Diu(ac)), Dj = aij7 (1.1)

ij=1

and the coefficients a;; are measurable, real-valued functions defined on a bounded open
set 2 C R™, satisfying the degenerate ellipticity condition

n

EPw(z) < Y ai(2)&8 < v(@)é]?, VEER™, ae x €L, (1.2)
ij=1
aij(r) = a;i(z), (1.3)
where w and v are weight functions (that is, w,v € L{ (R"), w(z) > 0 and v(z) > 0 a.e.

in R).
The main purpose of this paper (see Lemma 4.13 and Theorem 4.14) is to establish
that a weak solution u € H%2(§2,w,v) for the Dirichlet problem

n
Luzg—ZDjfj, in §2,
= (P)

u—1 € HS’Q(_Q,M,U),

can be approximated by a sequence of solutions of non-degenerate elliptic equations.
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The first step is to prove a general approximation theorem for A,-weights (p > 1) (see
Lemma 4.13), and to this end we will need the definition of dyadic cubes (Definition 4.10)
and the Jones Factorization Theorem (Theorem 4.11). Lemma 4.13 is the key point for
Theorem 4.14, and the crucial point consists of showing that a weak limit of a sequence
of solutions of approximate problems is in fact a solution of the original problem.

The plan of the paper is the following: § 2 is devoted to introducing and studying the
‘weighted Sobolev spaces’ H*?(£2,w) and W*P(§2, w), and the existence of a solution to
the Dirichlet problem. In § 3 we will present a short proof to the approximation theorem
in the case w = v (the proof is like the one given in Theorem 3.14 of [6]). Finally, in §4
we generalize the results in the case w # v.

We make the following basic assumption on the weights w and v.

The weighted Sobolev inequality (WSI). There is an index ¢ = 20, ¢ > 1, such
that for every ball B and every f € Lip,(B) (i.e. f € Lip(B) whose support is contained
in the interior of B),

(1](15,)/B|fqux>l/q < CRp (u}(lB)/BWfFde)l/Q’ (1.4)

with the constant C independent of f and B, Rp is the radius of B and the symbol V
indicates the gradient, v(B) = [ v(z)dz and w(B) = [, w(z)dz (see [2]).

1/q 1/2
(/ |f|qux) <CBuwaw (/ |Vf|2wdm) ,
B B

where Cp , » is called the Sobolev constant and

Thus, we can write

[v(B)]"/*Rp
w(B)]*/2
For instance, the WSI holds if w and v are as in Theorem 4.8, Chapter X, of [11],

or if w and v are as in Theorem 1.5 of [1]. In case w = v, see Theorem 1.2 of [5] or
Theorem 15.23 of [9].

Cpuwv=C (1.5)

2. Definitions and basic results

In this section, we present a brief discussion of the function spaces H*?(£2,w), W*P(£2, w)
and their basic properties, and we prove the existence and uniqueness for the Dirichlet
problem.

Throughout this paper we assume that 2 C R™ is a fixed bounded open set.

Definition 2.1. Let 2 C R™ and let w be a weight function. We shall denote by
LP(2,w), 1 < p < oo, the Banach space of all measurable functions, f, defined in {2 for
which

1/p
I fllzr(2w) = (/Q |f(2)|Pw(z) dx) < 0.
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Definition 2.2. The weight w belongs to the Muckenhoupt class, w € A,(R™), 1 <
p < o0, if there is a constant C' (called Ap-constant, C = C(w, p)) such that

1 1 -
</ wdx) (/ w1 dx) < C, whenl<p< oo,
Ql Jo Qf Joq

and

1
(/ wda:) < Cessinfw, when p=1,
Q| Q Q

for all cubes @ in R, C is independent of @, where |Q| denotes the n-dimensional
Lebesgue measure in R™ (see [10]).

We have that A; C A; C 4, forall 1 < ¢ <p.

Remark 2.3. If w € A,, then w is a doubling weight (that is, w(B(z,2r)) <
Cw(B(x,r)), where C = 2"°C(w, p)) (see Corollary 15.7 in [9]).

Proposition 2.4. Let 1 < p < oo and {2 C R™.
(a) If f € LP(2,w) and w7/ € Ly(£2), then f € Ly (£2) (with 1/p+ 1/p’ = 1).
(b) If fry — f in LP(2,w) and w™?' /P € L,(R), then f,, — f in L1(£2).

Proof. It is an immediate consequence of Hélder’s inequality.
Note that, if w € A,, then we have w /P € Ly(£2). O

Definition 2.5. Let 2 C R™, 1 < p < 0o and let w be a weight function.

(a) The space H*P(2,w), k € N, is defined as the closure of C*°(§2) with respect
to the norm

fully = ([ woPo@ass > [ |Dau<x>|pw<x>dx)l/p.

1]k

(b) The space H(’f’p(.Q,w) is defined as the closure of C§°(§2) with respect to the

o folosr = ( 3 [ D“u(x»pw(x)dx)l/p.

1<[al<k
The spaces H*2(2,w) and Hg’Q(Q,w) are Hilbert spaces.
(c) The dual space of H'2(£2,w) is the space

(H"?(2,w)" = H 2 (2,w)
= {g—divf cf=0y 0 ),
fi

with 2 and £ ¢ L*(2,w), i= 1,...,n}.
w w
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If T=g—divfe H 2(2,w), then (see [4])
(T,u) = /Qg(x)u(x) dz + Z/Q fi(x)Dju(z)dz, Yue H“?(02,w).

Definition 2.6. Let 2 C R" and let w be a weight function. The space W*P (2, w)
is defined by

WhP(Q,w) = {u € LP(2,w) : D*u € LP(2,w), |a| <k}
with norm
||u||Wkp (Qw) = ( Z / |Daupojdl')
0<|al<k
The spaces WP (£2,w) are Banach spaces. The Banach spaces Wéf P(£2,w) arise by taking
the closure of C§°(£2) in W*P (02, w).

Theorem 2.7 (the Muckenhoupt Theorem). Let w be a weight in R™ and let

[M(f)](x) = su |Q|/ |f(y)| dy

be the Hardy—Littlewood maximal function. Then, for p > 1,
M : LP(R",w) = LP(R", w)
is continuous (that is, || M f|1»rn o) < Cul| fllLr®n w)) if and only if w € A,,.
The constant C; depends only on n, p and the Ap-constant C(w,p) of w.
Proof. See [7, Chapter IV, Corollary 4.3]. O
Theorem 2.8. Ifw € A,, 1 < p < oo, then H*P(02,w) = WFP(2,w).
Proof. See [3, Proposition 3.5]. O
Definition 2.9. We say that an element u € H2(2,w) is a weak solution of

- 9 f
Lu:g—jzz:lefj7 w1th;,;]€L2(Q7w),

if

/ a;j(x)Dyu(z)Djp(x) d
2

_Z/ fi(x <196+/Q (2)p(z)dz, Vo e Hy?(02,w).
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Theorem 2.10. Let L be the operator (1.1) and with coefficients a;; satisfying a;; =
aj; and the degenerate ellipticity condition

NéPw() < Y ai(2)&8 < Aw(@)[¢)?, VEER", ae x€ 2, (2.1)

i,7=1

where \ and A are positive constants. If ) € HY?(2,w), w € Ay, (g/w) € L?*(£2,w) and
(fj/w) € L*(£2,w), then the Dirichlet problem

Lu:g—Z:Djfj7 in {2,
= (D1)

u — ¢ € H(}72(Q7w)a
has a unique solution u € HY?(£2,w) and

fi

w

+

g
Hu||H1,2(Q7w) < C<H
w L2(2,w)

" |w||H1,2<Q,w>).

L2(2,w)

Proof. It is a consequence of the Lax—Milgram Theorem and the proof follows the
lines of Theorem 2.2 of [5] and Theorem 8.3 of [8], by using Theorem 1.2 of [5] (the WSI
in the case w = v): if w € 4, 1 < p < 00, there exist constants Cy; and § positive such
that for all v € C§°(£2) and all o satisfying 1 < o < (n/(n —1)) + 9,

[ullLre (2.w) < ColllVulllLe(o.w) (2.2)
(o as in the WSI). O

3. The approximation theorem in the case where w = v

The following lemma can be proved in exactly the same way as Lemma 2.1 in [6]. Our
lemma provides a general approximation theorem for A, weights (1 < p < co) by means
of weights which are bounded away from 0 and infinity and whose Ap-constants depend
only on the Ap-constant of w.

Lemma 3.1. Let o, 3 > 1 be given and let w € Ay, p > 1, with A,-constant C(w,p)
and let a;; = aj; be measurable, real-valued functions satisfying

n

Ao(@)|E]? < Y ag(2)&8 < Aw(w)€)? (3.1)

i,j=1

for all ¢ € R"™ and a.e. x € {2 C R"™. Then there exist weights w,g > 0 a.e. and measurable

[

real-valued functions a; f such that the following conditions are met.
(1) e1(1/8) < wap < coa in §2, where ¢1 and ¢y depend only on w and f2.

(ii) There exist weights @1 and &g such that &1 < wap < @2, where @; € A, and
C(@;,p) depends only on C(w,p) (i =1,2).
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(iil) wag € Ap, with constant C(wag,p) depending only on C(w,p) uniformly on «
and .

(iv) There exists a closed set Fnp3 such that wag = w in Fap and weg ~ &1 ~ @9
in F,p3 with equivalence constants depending on « and (3 (i.e. there are positive
constants co3 and Cyp such that cas@; < wag < Capy, i = 1,2). Moreover,
Fop C Fop, ifa < o, B < f', and the complement of |, 55, Fop has zero
measure.

(V) wap = w a.e. in R as a, § — oo.

(vi)

n

Noap(@)l€ < Y aff (@) < Awapla)lgl,

3,j=1
> laf (@)] < Cwagl(x)
i,j=1
for every £ € R™ and a.e. x € {2, with constant C' independent of «, f3.
Proof. The proof of this lemma follows the lines of Lemma 2.1 in [6]. O

Let us now state the main result of this section. The proof is like the one given in
Theorem 3.14 of [6], and we present a short proof.

Theorem 3.2. Assume w € As.

(I) With the same notation and hypotheses as in Theorem 2.10. Then the solution
u € HY2(02,w) of the problem

Lu:g—ZDjfj, in 2,
j=1 (D1)
= € Hy”(12,w),

is the weak limit in H%?(§2,&1) of a sequence of solutions u,, € HV2(£2,wy,) of

the problems
Lot = gm — Y Djfjm,}
U, — 1 € Hy? (02, w0),
where wp = Wmm, Lmum = =32D;(af™ (@) Divm), fim = fi(w/wm)™Y/? and
Gm = g(w/wm)’l/2 (Winm,s a;}™ and @ are as in Lemma 3.1).

(I1) Moreover, ifu € Hy”(§2,w) is the solution of the equation Lu = — 3 D; f;, with
fij/w € LP(2,w), p > 2n — €’ (choosing €' appropriately), then u is the uniform
limit of (U, )men In any compact subset of {2, where u,, € H&’Z(Q,wm) is a
solution of the problem

(Prm)

w )(1—p)/p

Wm

Lmum:_ZDjfjm7 with fjm:fj(
j=1
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Proof. We shall denote A™(z) = (af}™(2))i j=1,....n-
(I) First, we note that

Consequently, we have T, = g — Y Dj fim € H~Y2(£2,w,,). Using the fact that u,,
is a solution of the problem (P,,), by Theorem 2.10 we obtain (because w,, € As)

Im
Wm

g

L2(02,wm) HW

fim

Wm

fi

w

L2(2,wm)

and ’

L2(97W)'

n

fimllnaa, < (][22 By L ol
Wm L2(97w,,”) j=1 Wm L2(Q,wm)
g || £
- O(H + Z = + leHl’?(Q,w)) =G, (32
Yizew) Sl%llczew

where the constant C is independent of m. By Lemma 3.1 (ii) &1 < w,y,, we obtain

lumll 2060 < lumlla2( 2w

<o([:
w

Consequently, {u,,} is a bounded sequence in H?(£2,&;). Therefore there is a sub-
sequence, again denoted by {u,,}, and @ € H»2(£2,01) such that u,, — @ weakly in
L?(£2,&1) and Vu,, — Vi weakly in L?(£2,&;) (see Theorem 1.31 of [9]). We have that
@ € H?(2,w) (the proof proceeds as in Theorem 3.14 of [6]).

We need to show that @ is a weak solution of the equation La = g — )" D, f;, that is

/ ai;(2) Dyii(z) Dyp(x) d = / o)) de + / f(@)Dypla) de, Vi € HYA(2,w).
(9] (9] 0

2
L2 (2w)  j=1

fi

w

+ |¢||H1’2(.Q,u)> = (. (3.3)

L2?2(2,w)

Using the fact that u,, is a solution of (P,,), we have Lty = g — > D; fjm, that is
/Qa?;m(x)Dium(x)ngp(x) dx

= [ @@+ [ fn@Dipta)da. Vo€ By (@)
Moreover, over Fy, (for m > k) we have the following properties:
(i) w=wm,
(ii) g = gm and f; = fjm; and
(iil) af™(7) = aij(x).
If o € Hy?(2,w), we get
G:H"Y(2,01) = R,

Glu) = /Q a33(2) Dsu(x) Dy () x ()

is a bounded linear functional.
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Using this fact and the properties (i)—(iii) we obtain

/Faij(z)Diﬁ(z)ngo(z)dm: lim a;;" (2)Dim () Djp(z) dw

m—r o0 Fk

— lim ( /Q A () Dyt (2) D p(x) da

m—r o0

- /Q o @)D Dyp) dx)

hm(@%@ﬂ@m%xjm@@ﬂﬂﬂ

- [ @D D) dr) 6.0

(recall that u,, is a solution of (P,,)). We have, by the Lebesgue-dominated convergence
theorem and @y € Ao,

/gmgoda:—>/g<pdx and /fijjgpdx—>/ fiDjpdz. (3.5)
Q Q Q Q

Using } [a]}(2)| < Cwyy (), with C independent of m, we obtain

/ a?}mDiuijgo dx
QNFg

</ a7 | Dy | D] da
NEFEC

k

< / Cwp|Ditm | |Djpldx  (C is independent of m)
QNFg

=C |Dium|w71n/2|chp|w3n/2dm
QNFg

1/2 1/2
< C(/ |Dium|2wm dz) </ \Dj<p|2wm dx)
QNFg QNFg

1/2
<cac, (/ o dx> (by (3.2))
Feng
= CCC[wm(FE N 2)V2.

By Theorem 2.9, Chapter IV, of [7], there exist constants 6 > 0, C > 0 such that, if
2 CQ, (Q, is a fixed cube), then

cI\G
wom(FE N Q) < Ga(FEN Q) < CLDQ(Q(,)(:g’“D .

Using Lemma 3.1, we know that |F}¢| = 0 when k& — oco. Then
wm(FEN2) -0 when k — oo,

and we obtain
lim a;;" (2)Ditm () Djp(z) dz = 0. (3.6)

k—oo JonFg

https://doi.org/10.1017/50013091500000079 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500000079

Solutions of degenerate elliptic equations 371

Therefore, by (3.5) and (3.6) we conclude

/Q 453 (2) Dyi(z) Dyp(r) d = /Q o(z)p(z) dz + /Q £3(2)Dyip() de

that is, @ is a solution of the equation Lu = g — 2?21 D; f;. Therefore u = @ (by the
uniqueness of Theorem 2.10).

(IT) Now we will prove the second part of the theorem.

If w € Ay, then there exists € > 0 such that w € Ay (see Theorem 15.13 (open-
end property) in [9] or Proposition 4.5, Chapter IX, in [11]). We choose ¢’ = ne and
p>2n —¢' =2n—en. We have that p/n>2 —-candw € Ay_. C A,y

By Theorem 2.3.15 of [5], if u is a weak solution of the equation Lu = —)" D;f;,
and f;/w € LP(£2,w), w € Ay /p, then u is locally Holder continuous in {2, i.e. there exist
constants C' > 0 and A (0 < A < 1), such that if z, € 2,0 < p < R < & dist(z,, 092), we

have
1 1/2 .
osc u< C[( / u?w dx) + ‘ ]p , (3.7)
B(wo,p) w(Br) /By L?(Bp,w)

where C' and A are independent of u, p and x,, and oscp,, ) v is the oscillation over
B(x,, p) of u.
Applying this result for the solution of the equations

fi

w

Ly, = _ZDjfjv‘m
j=1

Uy € Hé’2(ﬂ,wm), wm € Az, with fin, = f; (w/wy)I7P)/Pand using (3.2), we obtain

1 1/2 7,
0SC  Up < C’K/ u? W d:p) 4| ]p/\
B(wmp) wW(BR> Br Wm Lp(vam)
<C [ _ (o) fi ] S
@1(Br) WillLe(Qw)
Therefore, the sequence {u,, } is locally equicontinuous. Moreover, by Lemma 2.3.14 of [5],
we have
ess sup |ty | < C" Jim .
B(ZL‘O,P) Wm LP(Q7Wm)
Hence, using || fjm/wm | r(2.wn) = I1f5/@llLr(2,0), we obtain
ess su fi A
plum| <C P,
B(zo,p) Wl Lr(02,w)

that is, {u,, } is a locally uniformly bounded sequence.
We can apply the Arzela—Ascoli Theorem and conclude that {u,,} converges to u
uniformly in compact subsets of (2. |
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4. Generalization of results in the case where w # v

In this section, we generalize some results in the cases w # v.

Definition 4.1. We shall say that the pair (v, w) satisfies the condition 4,, 1 < p < oo,
if there is a constant C' such that

1
(@/ () dx) <|Ql|/ w11 () dx>p < C, when1<p< o,
Q Q

il
— | v(z)dz < Cessinfw, whenp=1,
Q| Q Q

and

for all cubes @ in R™. The smallest constant C' will be called the A,-constant for the pair
(w,v).

Remark 4.2. Since the coefficients of the operator L satisfy (1.2), then w(z) < v(x).
In this case, if the couple (v,w) € A,, we have v € A, and w € A, (Definition 2.2).

Definition 4.3. Let 2 C R™ be a bounded domain and let w, v be weights.

(a) The space H®*2(2,w,v), k € N, is defined as the closure of C*°({2) with respect
to the norm

1/2
lull zr2 (2,00 = </ u%dx—l—/(AVu,Vw dx + Z / |Dau|2wdx) ,
“ “ 2<jal<h 2

where A = (a;;(x)) is the coefficient matrix of the operator L defined in (1.1)
and the symbol V indicates the gradient.

(b) The space H{f’z(ﬂ,w7 v) is defined as the closure of C§°({2) with respect to the
norm

k 1/2
lull g2 0.0y = (/vau,vm de+ Y /QDau|2wdx) .
|a]=2
The spaces H*2(£2,w,v) and Hg’Q(Q,w, v) are Hilbert spaces.

Definition 4.4. Let 2 C R™ be a bounded domain and let v, w be weights. We define
the space

Wk2(0,w,v)
= {u € L*(2,v): / (AVu, Vu) dz < oo and D%u € L*(2,w), 2 < |a| < k‘},
Q

with the norm

1/2
lullwe2(0,w.0) = (/ UQUder/(AVu,Vu) dz + Z / |D°‘u2wdx) ,
I7; 2 f?)

2<al<k

where A = (a;;)i j=1,..n is the coefficient matrix of the operator L.
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Definition 4.5. We shall say that the pair of weights (v,w) satisfies the condition S,
(p > 1) if there is a constant C' (called the Sp-constant) such that

/ |M (uxq)(z)|Pv(z)de < Cu(Q) < oo, for every cube @,
Q

where M is the Hardy-Littlewood maximal function, g = w= %@~V and u(Q) =
fQ,u(x) dx.

Remark 4.6. If (v,w) € S, then (v,w) € A,.

Theorem 4.7. If (v,w) € Sy and w < v, then H*2(2, w,v) = Wk2(02,w,v).

Proof. The proof is the same as that of Theorem 2.8, using the Muckenhoupt Gen-
eralized Theorem (see [7, Chapter IV, Theorem 4.9]) and the WSI. O

Definition 4.8. We say that an element v € H'2?(£2,w,v) is a weak solution of the
equation Lu = g — div f if

/Q”z: aij(z) Dyu(w)Djp(x) dz = /99(93)@(9?) dx+jz:;/9fj(:v)Dj<p(w) dz
for every ¢ € Hé’z(ﬁ,w,v), where f = (f1,..., fn)-

Theorem 4.9. Suppose that the WSI holds and that (v,w) € As. Let L be the
operator (1.1) with (1.2) and (1.3). If » € HY(2,w,v), g/v € L) (2,v) and f;/w €
L?(02,w), then the Dirichlet problem

Lu:g—z:Djfj7 in {2,
s} (P)

u—1 € HS’Q(Q,w,v),
has a unique solution u € H?(2,w,v) and

9

v

fi

w

+
LY (2.0)

lull e < cg,w,v( ; |w||H1,z<Q,w,v)),

L2(2,w)
where Cq, ., , is the Sobolev constant (see (1.5)).

Proof. The proof is very similar to that of Theorem 2.10, replacing Theorem 1.3 of [5]
by the WSI, and by Remark 4.2 we have w € A3 and v € As,. O

Definition 4.10. For k € Z, we consider the lattice I}, = 27*Z" formed by those
points of R” whose coordinate are integral multiples of 27%. Let Dj, be a collection of
cubes determined by I, that is, those cubes with side length 2% and vertices in I7.
The cubes belonging to D = |J* Dy, are called dyadic cubes.
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Note that if @1,Q2 € D and |@Q1] < |Q2], then either Q1 C Q2 or else Q1 and Qs
do not overlap (by which we mean that their interiors are disjoint, int @1 Nint Q = 0),
where |@| denotes the n-dimensional Lebesgue measure in R™ (see Chapter II of [7]).

We will need the following theorem.

Theorem 4.11 (the Jones Factorization Theorem). For 1 < p < oo, w € A,, if

and only if there exist wg,w, € A; such that w = wow}_p.

Proof. See [7, Chapter IV, Corollary 5.3]. O

Remark 4.12. Now we will prove a generalization for Lemma 3.1 in the case where
(v,w) € A,. With the condition (1.2), we know by Remark 4.2 that v € A, and w € A,.
We will prove the approximation in the following cases.

Case 1. (v,w) € A;.

Case 2. (v,w) € A,, p > 1. In this case we assume that v € A, and w € A, (see
Remark 4.2). Then by the Jones Factorization Theorem there exist vy, v1,wp, w1 € A
such that v = vov; ¥ and w = wow] ?. We will assume the following hypotheses:

(a) wo < wp and (vg,wp) € A; and
(b) v1(z) < wi(x) < Cror(x).
We may now prove the following lemma.

Lemma 4.13. Let o, 3 > 1 be given and let there be a pair of weights (v,w) € A,,
1 < p < o0, satisfying the hypotheses as above and measurable real-valued functions a;;

satisfying
w(@)|E? < Y ai(@)&& < [€Pv(x), (4.1)
i,j=1
ai]‘ (l‘) = aji(x), (42)

for every £ € R", a.e. x € (2. Then there exist weights wag = 0, vag = 0 and measurable
functions af‘f such that:

(1) 011(1/,8) < Wap < 01204, 021(1/ﬁ) < Vap < CQQO( in Q, with 011 and 012
depending only on w and {2, and Cs; and Css depending only on v and §2;

(ii) there exist weights &y, &2, 01,02 € Ay, such that &1 < wag < W2 and U1 < Vag <
U2;

(iii) wapg and vap are A, weights;

(iv) there exists a closed set Gog such that weg(r) = w(z) and veg(r) = v(x) in
Gap. Moreover, Go3 C Gypr, if @ < o and § < [/, and the complement of
Ua,8>1Ga,3 has zero measure;
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(V) wap = w and v — v a.e. in R™, as «, § tend to infinity; and

(vi)

/\|€|2waﬂ Z G, glg_] ‘§|2vaﬁ(x)

i,j=1

Y laff (@) < Coapla),

i,j=1

for all £ € R", a.e. x € (2, with C' independent of «, 3, where \is a positive
constant.

Proof. Case 1. In this case we denote wag = Wa, Vag = Va, @ J’G = af; and Gap = Ga
(in (i)—(vi)). Since we are interested in approximating within {2, we can suppose without

loss of generality that w,v € L'(R").

If (v,w) € Ay, that is,
1 / .
— [ v(z)dz < Cessinfw
Ql Jq Q

by Remark 4.2, we have v € A; and w € A;. For each a > 1, we define
Uf={zeR": Mw)(z) >a} and V) ={xeR": M(v)(z) > a}

(U and V! are open sets because M (w) and M (v) are lower semicontinuous functions),
where M is the usual Hardy-Littlewood maximal operator, i.e.

M(w)(@) = sup = / w(y)| dy.
@3 Q)
Using the fact that 0 < w(z) < v(z), we have M(w)(z) < M(v)(z). Consequently,
Ur cvg.
By using Calderon—Zygmund decomposition (see [7, Chapter II, Theorem 1.12]) there
are two families of non-overlapping cubes {Qf*} and {I}'}, where Qf* and I} are maximal
dyadic cubes, such that

= U QF and V= U e, (CZ1)
1 1
a< = w(r)dr <2"a and o < — v(m) dz < 2"a, (CZ2)
Q7| Jgp 11g1
wr)<a inFf=(UN° and v(z)<a in G;r = (V;h)e, (CZ3)

where E° denotes the complement of a set E;

U < C/ w(z)dz and |va+|<§/ o(@) da. (C74)
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Since U} C V' for each Qf, there exists only one I (k = k(I)) such that Qf C I
(recall that Qf and I} are maximal dyadic cubes). We define the weights w, and v, by

> 1
ale) = (w| [ o dy) Y (2) + w(@)yps (@),

—( 1
vl = 3 [ o0 )0 + ) o),
=N re
where xg denotes the characteristic function of a set F.
We will show that wq () < 2"ve ().
(1) If x € GF C FF, then v, (z) = v(z) and w,(x) = w(z). Consequently, w,(z) <
Ve ().
(2) If z ¢ GY, then x € I (for a unique cube). Hence,

1

=== v(y) dy.
T Ie )

Vo ()

For the weight w,, there are two possible cases as follows.

(a) = € QY C Iy. In this case, by property (CZ2) of the Calderon-Zygmund decom-
position, we have

1 1

= | wdy<2'a 2" v(y) dy = 2"va(2).
QP Je

wa () el
: SR g

(b) x € I — Q, where Q; = UQY, with Q C I, that is, z € FJ. Hence, using
property (CZ3) of the Calderon-Zygmund decomposition, we obtain

Therefore wy () < 2"v,(x) in £2.
Since w € A7 and v € A; we have that (see Lemma 2.1 of [6])

(I1) we € Ay and v, € Ay, with C(wq, 1) depending only on C(w,1) and C(vq, 1)
depending only on C(v,1);

(I11) wq — w and v, — v a.e. in R™ when a — oo;

(III1) min{l,w} € A;, min{l,v} € A; and min{l,w(z)} < wa(z) < Cw(z),
min{l,v(z)} < vo(x) < Cv(z) (C depends only on C(w,1) and C' depends
only on C(v,1)); and
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(IV1)

C1 € wu(z) < 2", with C; = min{l,w}(y) dy,

|Q0|

Cy < vo(x) < 2", with Cp = min{1,v}(y) dy,
0

@
where Qg is a fixed cube such that 2 C Q.
We need to show that w, and v, satisfy properties (i)—(v). We have the following.
> (i) Follows from (IV1),
2" 2 we(z) = Cr > % and 2"a > va(x) = Co > %,
> (ii) We define the weights @1, @2, 01 and ¥9 by
O1(z) = min{l,w(z)} and @s(x) = Cw(x),
o1(z) = min{1,v(z)} and y(z) = Cv(z)
(C and C are as in (III1)). We have that &y, @9, 91 and @ € A; (by (II11)) and
01(2) S wa(z) < Oa(z), D1(x) < vo(x) < Va(x).
> (iii) Follows from (I1).
> (iv) Define G, = G. By definition v, (z) = v(z) in Ga, and ws(z) = w(x) in G,
(because G, = GE C E).
Moreover, if o < o we have U;r, C Uo‘f. Then
Ga = GE = (UF) € (UL = Gt = G,
Furthermore, by (CZ4) we obtain |(Uy>1Ga)¢| = 0.
> (v) Follows straightforwardly from (II1).

Let us now prove (vi).
We define the coefficients ag; by

a%(w)—i< = 00 ) 12 () + 03 (2D ()

2\ ig
We have the following.
(1) If z € GY C F, then afj(x) = a;j(z) and wa(z) = w(z) and va(z) = v(z).
Therefore, the condition

n

EPwa(z) < > afi(2)€&; < | valz)

ij=1

is valid.
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(2) If z ¢ GY, then x € I* (for a unique cube). In this case,

1

a (x)zﬁ s

ij aij(y) dy.

Consequently, using condition (4.1), we get
. 1 1
@6 = e [ 66 dy <P e [ o) dy = €Prao)
gl Jre gl Jre

We need to show that ) af(7)&:€; > Awe (z)|€]?. There are two possible cases as follows.
(a) If x € Qf C Ij}. We have that
1
121 Jig

ai;(2)6:&5 = ai; (&€ dy > € w(y) dy. (4.3)

| Jag

Using (v,w) € A; and property (CZ2) of the Calderon—Zygmund decomposition,

we obtain
1 ) 1
a< = v(y)dy < Cessinfw < C— [ w(y)dy. (4.4)
I Ig Iy Th Ie
Consequently,
1 @ 11 1 1
Tar | wWdy = 5 2 oo w(y)dy = 5 =wa(x). (4.5)
] Jre C = 2 [QF] Jgo 2nC

Hence, combining (4.3) and (4.5), we obtain

1
4@ > 5ol Pwala).

(b) If x € I — Qk, (Qp = UQY, with QF C IY), that is, z € F. In this case, we
have w,(z) = w(z).

Hence, using (4.4) and condition (CZ3) of the Calderon-Zygmund decomposi-
tion, we obtain

1
agy(x)&ik; = o] /Ia ai;j(y)&i€; dy

> P [ w(y)dy
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Therefore, in both cases we obtain

n

- < 1
MNéPwa () < Z ag;(x)€i€; < 1€)%va (),  where A = e

i,j=1
Let us now check the second condition in (vi). Again, there are two possible cases.
(a) If x € G C F, then afy(2) = a;(x) and v, (z) = v(z). The condition is true.
(b) If x ¢ G, then z € I (for a unique cube).

In this case,
1

= aij(y) dy.
751 Sy 0

Hence,
o 1
|aij(x)| < 79 |aij(y)| dy
] Jre

1
<C—/ v(y)dy
177y "
= Cuy(z).

Therefore, in both cases we have

> laf(@)] < Cvalz)

4,j=1

with constant C' independent of a.
Case 2. If (v,w) € Ap, p > 1. By Remark 4.2 we have w € A, and v € A,, and by the
Jones Factorization Theorem there are weights wg, w1, vo and v in A; such that

p p

v = fuovi* and w = wowf
and we assume the following hypotheses (see Remark 4.12):
(a) wo < vo and (vo,wp) € Ag;
(b) v1(z) S wi(z) < Crvg(z).

Since we are interested in approximating within {2, we may assume, without loss of
generality, that wg, wi, v and vy € L*(R™).
For each a > 1, we define

Ujo ={z € R": M(wo)(z) >a} and Vi, ={zeR"™: M(v)(z) > a}

(UJ ,, and VOTa are open sets). By the Calderon—-Zygmund decomposition there exist two
families of maximal dyadic cubes {Qf;} and {I§ }, for wo and vo, respectively, satisfying
the analogous conditions of Case (1) ((CZ1)—(CZ4)). Using the hypotheses that wg < vy,
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we have
(ag) Q5 C 15y (with k = E(1));
(bo) Gg o= (Vola)® € (Uga)® = Fya-
For each 0 > 1, we define
Uy ={z € R": M(w)(z) > s/},
Vf,rﬂ ={z e R": M(v;)(z) > Y/ P~}

Since v; < wp, we have Vl+ﬁ C Uff 5- By the Calderon—Zygmund decomposition, there
exist two families of maximal dyadic cubes {Qil} and {I 15 ) for wi and vy, respectively,
satisfying conditions (CZ1)—(CZ4). We have

(a1) IV, C QY (with I =1(k));
(b1) Ff,rg = (Uffg)c C (Vf,r,@)c = Gfﬁ-

We define the weights

[ enls) ) xa ) + (o, (@)

w0(s) o )1z () + o). (o)

15|/Qa w1(y) dy)fo’l(:v)+w1(x)XFiB(x)’

D)) g, () + 012, ()

We have, as in Case 1,
(Wo)a € 2™(vo)e and (v1)g < 2™ (w1)g.
Now we define the weights w,s and vas by

wap(w) = (wo)a(@)[(w1)p]' 7" (2),

vap () = (v0)a()[(v1)s]" " (2).

We have that (wo)a, (V0)a, (w1)s and (v1)g satisfy (using the same argument that
given in Lemma 2.1 of [6]) the following conditions.

(I12) (wo)a, (v0)as (w1)p and (v1)s € A;.

(I12) (wo)a — wo, (Vo)a — Vo, (w1)g — wi and (v1)g — v1 a.e. in R™ when o — o0,
8 — oo.
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(I112) min{1,wp}, min{1,w}, min{l, vy} and min{l,v;} are weights in A; and

min{l,wo(z)} < (wo)a(z) < Crwo(z), min{l,w;(z)

} < (w)p(e) < Cown (),
min{1,vg(x)} < (vo)a(z) < C3vo(x), min{l,vi(z)} <

(v1)p(z) < Cyvr(2).

(IV2)
- A 1 .
Cy € (wo)al(z) < 2"a, with C; = W mln{l,wo}dy,
0
Cy < (v0)a(z) < 2", with Cy = \Q ‘ min{l,vo}dy,
0
Cs < (w1)g(z) < 2n @Y (=1 with C3 = —— min{1,ws } dy,
\Qo\ Qo
~ ~ 1
Cy < (v1)p(x) < 2"pY @Y with €y = — min{1, v } dy,
@l Jao

where Qg is a fixed cube such that 2 C Q.
We need to show that weights was and v,g satisfy properties (i)—(v).
> (i) Follows from (IV2). In fact,
wap (@) = (wo)a(x)[(w1)s] P (2)
> él(2n51/(p—1))1—p
_ Gyramgt
wap (@) = (wo)a(x)[(w1)s] P(2)
< 2“04(03)1717
= 2"(C5) Pa.
Analogously, Co2"1=P) 31 <y, 4(z) < 27(Cy) Pa.
> (ii) We define the weights @1, @2, 01 and T2 by
() = [min{l,wo(sc)}]wi_p(:v) and  @y(z) = [min{1,w; (2)}]* Pwo(z),
01(x) = [min{l,vo(x)}]v%fp(x) and  ¥y(z) = [min{1, vy (x)}] Poo(x).

By (I112) and the Jones Factorization Theorem, we have that @y, &g, U1 and 0y
are Ap-weights.

> (iii) Follows from (12) and the Jones Factorization Theorem.

> (iv) We define the closed sets Gog by

Gap = G{, ﬂFffﬁ and  Fog = Fy, ﬂ Gy
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If a <o and B < A, we have

Ufw CUsar Vot CVilh Uiy CcUT, Vi Vi

Nej

Hence,

Flirﬂ = (U;Cﬁ)c C (UlJtﬁ’)C = Ffﬁ’ and Gaa = (VEJJ,FQ)C C (‘/E)J,ra’)c = GOJr,a"

Thus
Gop =G o NF 3 CGY NF = Gap.

Moreover, if x € G,g, we have

wap(2) = (wo)a(@)[(w1)p]' P (2) = wo(2)(w1)' P (2) = w(a).

And by (bg) and (by) we obtain G,g C Fus. In this case, if z € Gop C Fu3, we
have

Vap(2) = (v0)a(2)[(v1)p]' P (2) = vo(x)(v1)' 7P (2) = v(a).
Furthermore, by (CZ4), (bg) and (b;) we obtain

‘( U Gaﬁ) = Gy
a,Bf>1 a,3>1

=| () (GSanF)
a,B3>1

-| N v,
a,B3>1

< Vol + U]

< E/ vo(x)dx—i—E wi(z)dz, forall o, > 1.
(0% n ,8 R™

Thus |(Ua,g>1Gap)¢| = 0.
> (v) Follows from (I12).

Let us now prove (vi). We define the coefficients afjﬁ by

a2 (2) = [(m)dl—p(m{g(@ / o) dy) i (2)

T ag (@) @) xgs <x>},

0,

where {I& ) is the Calderon—-Zygmund decomposition of vg.
Let us check the first condition of (vi) for the coefficients a?jﬁ .
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(I) Ifx € Gop = G(‘{aﬂFfﬁ C Fop. In this case, since z € G, and € Ffﬁ C Gfﬂ
(see (b1)), we have

0 () = [(v1)s)' P (@)agj (21}~ ()
= v (2)ay(@)o] " (z)
= a;;(x).
And we have that wag(z) = w(z) and vag(z) = v(x). Consequently, we obtain

EPwas(@) < Y aff (2)6it; < €Pvas(@). (4.6)

i,j=1
(II) If x € Gap, then either z ¢ G(—;a or else = ¢ F:LJ,F,B'
>If z & G&a, then x € I, (for only one k). In this case,

1

5l Jrg,

ag (@) = [(v)s]' (=) aij(y)of ™ (y) dy,

and this implies, using condition (4.1) and v = vovifp,

1

—1
A aij(y)&&vY ™ (y) dy
okl JIg,

agf (@)&i€; = [(v1)]' ()

< [0l @)L [ o)t () dy
18| Ig,
NN
= 6P l()s]' ) / vo(y) dy

= [€1*[(v1)g] P (@) (v)a (@)

= |€[vap(2)-
On the other hand, since w = wow; ? and (v1)5 < 2"(w1)g, We obtain
a _ 1 _
aif (@)6:€; > ()] P @IEP 7 | whd™ 0 dy
0kl JIg,

> 16270 (1) 5] P () / W)t (9~ () dy
|IO,k g,

> 270D [(w) 5] P (@) e [ woly) dy. (4.7)
18] g,

There are two possible cases.
(1) Ifz € QF; C I§'},. In this case, using the same argument in (4.5), we obtain

1 1 1 1
wo(y)dy = 5—- wo(y) dy =
( ) 2nCO |Q8,l‘ Q&l ( ) QnCO

(wo)a(),

|I&k| IS
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where Cj is the Aj-constant for the pair (vg,wp). Hence, in (4.7) we obtain

n(1-p)
aif (@6t > 22nc 1)) (@) ) 2)

— s P (a). (43)

(2) If x € 1§}, — Qo,k, where Qo = UQG,, with QF, C I, that is, z € Ff,.
In this case (wg)a = wp and using the properties of the Calderon—Zygmund
decomposition, we obtain

1 o 1 1
— w dy > — > —wo(a) = =—(wp) (). 4.9
|I(()¥7k| I(‘ik O(y) Y CO CO 0( ) CO( 0) ( ) ( )
Therefore,

n

WO € Pwap(@) < D aif (1068 < [l vap(@):

i,j=1

>If z & Fffﬂ and x € G({a C F},. In this case, we have z € Iﬁk C Q’f’l (for
only one k and | = I(k), by (a1)). Thus

aif ()61 = (v1)y " (@)as; (@) 6600 (x)
< (1) P (@)ool (2) €
= (1) P (x)vo (@) €]
= (v1)5 "(x)(vo)a(@)[€[?
= vag(2)[€]*.
On the other hand, since wi(z) < Cyvi(z) (Remark 4.12) and (v1)g(z) <

2" (w1)g(x), we obtain

aif (@)6&; = (1) P (@)a(@)6:&00 (o)
1) P (@)w (@) (2) ¢
0P () P (@)w(@) p‘l( )lgf?
PPl P (2w (z) O Pwb T ()€
n(- p>cl P(wi)p P >wo<:c)|5|2
O P (wi) P (@) (wo)a ()
2"C1) ' Pwas(x)IE[. (4.10)

—(4.10) we conclude that

A\ VARV

[\Dl\Dl\D

VAA

Therefore, by (4.6) and (4.8

n

NeéPwap(@) < Y aifl (@)€& < € vap (@),

ij=1

where X\ = min{1,1/2"7C,1/(2"C;)P~'}.
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We need to show the second condition of (vi). Again, there are two possible cases.

(1) If x € Gap, then a%ﬁ(:ﬁ) =a;j(z) and vag(x) = v(z). Hence the condition is
valid.

(2) f z € Gagp, then x € I§; . In this case, since v = vovy P, we have

o @) < (0l @)y [ st 0 dy
<@ e [ Cowt Wy
=l @ gy [ et )y
=l " @y [ )y
= Cln)s] (@) o)ale)

= Cvgp(x).

Therefore, in both cases we obtain

n

> 1aff (@) < Cvapla)

i,j=1
with constant C' independent of o and £.

O

Let us now state the main result of this section. Using Lemma 4.13 we can prove that
the solution u € H'2(£2,w,v) for the Dirichlet problem

n
Lu:g—ZDjfj, in £2,

j=1
u—1 € H3’2(Q,w,v),

with the conditions (4.1) and (4.2), can be approximated by a sequence of solutions of
non-degenerate elliptic equations.

Theorem 4.14. Suppose that the WSI holds and let (v,w) € Sy. If g/v € L7 (2, v),
fi/w € L*(2,w) and ¢ € H"2(£2,w,v), then the solution u € H“2(£2,w,v) of the prob-
lem

Lu:g—ZDjfj, in {2,
= P)
u—1 € Hé’z((?,w,v),
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is the weak limit in H'2(£2,&1, ;1) of a sequence of solutions u,, € HY?(§2,wy,vy) of
the problems

Lyptum = gm — ZDjfjm’

j=1 (Pm)
Um — 7/} € HSJ(Q?wmavm),
With Wy, = Wmm and Vm = Umm, L, = =Y D; (a}';mDium), fim=1; (w/wm)_l/2 and

Gm = g(v/vy) "9 (where Wi, Vimm, @1, 1 and aji™ are as in Lemma 4.13).

Proof. By Remark 4.6 we have that (v,w) € A, and by Theorem 4.7 we have
HY2(02,w,v) = Wh2(2,w,v). We denote by A™ = (a{?m)i,j:17,,,,n the coefficient matrix
of the operator L,,.

First, we note that

fim

Wm

fi

w

g m

Um

9

v

and ‘
L(Q")'(Q,Um)

L(29) (2,v) L2(2,wm) ‘ L?2(2,w)

Since u,, is a solution of (P,,), by Theorem 4.9 we obtain

9m fim
[ PP | - e Hlmcann )
Um || L20) (2,0) Wm I L2(02,wm)
g i
< C( - + = + ||w||H112(Q,w,v)>
Ve (2.0) WlL2(0,w)
= Cl7
where the constant C' is independent of m, since @1 < w,, < &y and 71 < v,, < U, and
we have
[vm (£2)] /4
C C
B Jom(@PET
7 1/q
< [132(9)] Co.
[&1 (£2)]/2
Consequently,

lum |l 2(02.60,00) < Ul H02 (200 ,0m) < O,

that is, u,, is a bounded sequence in H1:2(§2, &1, 7;). Hence, there exists a subsequence,
again denoted by {u,,}, which converges weakly to an element @ € H2({2,&1,71),

Up — @ in HY2(02,01,71).
We need to show that @ € H'2(£2,w,v) and that @ is a solution of the equation

Li=g—-Y D,f;
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The proof that & € HY?(2,w,v) is similar to the proof in Theorem 3.2 (I) (by Theo-
rem 4.7 we have H'2(02,w,v) = W'2(02,w,v)). To prove that La = g — > D, f;, we
need to show that

/aijDiﬂchde:/gng$+/ fiDjpdz, Vo € Hy?(2,w,v).
2 2 o)

Fix G = Gk (as in Lemma 4.13). Using the fact that w,, is a solution of (P,,), and in
Gy we have wy, = w, Uy, =0, gm = ¢, fjm = f; and @™ = a;; (with m > k), we obtain

/ aijDiuDjpdr = lim [ aif™ DiupDjpdx
G

m—r 00 Gk

= lim (/ angiuijgodx—/ a;';’mDiuijsde)
Q

m— oo
NG

= lim (/ gmcpder/ fijjgadxf/ angiuijgodx).
m=oo\J 2 Q NG

As demonstrated in Theorem 3.2 (I), we have

(a) lim gmso=/g<pdar;
(93 (9]

m—o0

m—r oo

b) lim fimDjpdx = fiD;pdz; and
o Jam P

(c) since [|@]| 1.2 (2w ,0m) < C1 (C1 independent of m), and the matrix A™ is sym-
metric and v,, < U2, we have

/ a;;" Dium Do dz| </ [{A™ VU, V)| dz
2NG§ NGy

< / (AmVum,Vum>1/2<z4mv%v$0>l/2 dz
2nGS

1/2
< (/ (A" U, Vg, dx>
2NGS
1/2
X </ (A"Vp, V) dz)
2nGe

1/2
< lumlamnn [ 190 de)
2NGS,

1/2
<Gy </ IV o|* v dx)
2GS

< CLC,[um (2N GS)Y2.

Applying [7, Theorem 2.9, Chapter IV], there exist constants § > 0 and C > 0
such that, if 2 C Qo (Qo is a fixed cube), then

c1\O
v (2N G) < B(2NGY) < Ca(Qo) (mlcr;ﬁkl) '
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Hence, since |2 N G%| — 0 when k£ — oo (by construction of Gj), we obtain

U (2NGY) =0 when k — oo.
Therefore, by (a), (b) and (c), we can conclude that
[ ss@Di@Dipta)ds = [ s+ [ f@Dipl) ds,

that is, @ is a solution of the equation
n
Li=g—-Y D,f;
j=1

Therefore, we conclude that @ = u (by the uniqueness of the Theorem 4.9). (]

Remark 4.15. The uniform convergence on compacts does not immediately generalize
to the unequal weights cases.

In cases where w = v, it is necessary to prove the Holder continuity (3.7) that: if u is
a solution of Lu = 0, then

< M -1
osc u < osc  u,
B(z,p) M + 1 B(z,8p)
where M is independent of p, u and z (see Lemma 2.3.11 in [5]).
But in cases where w # v, if u is a solution of Lu = 0, then

eCulz,p) _ 1
0sC U <X —————— OsC u,
B(a.p)  eCr@r) +1 B(z,2p)

where

(see §5 in [2]).
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