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1. Introduction

Let L be a degenerate elliptic operator in divergence form

Lu = −
n∑

i,j=1

Dj(aij(x)Diu(x)), Dj =
∂

∂xj
, (1.1)

and the coefficients aij are measurable, real-valued functions defined on a bounded open
set Ω ⊂ R

n, satisfying the degenerate ellipticity condition

|ξ|2ω(x) �
n∑

i,j=1

aij(x)ξiξj � v(x)|ξ|2, ∀ξ ∈ R
n, a.e. x ∈ Ω, (1.2)

aij(x) = aji(x), (1.3)

where ω and v are weight functions (that is, ω, v ∈ L1
loc(R

n), ω(x) > 0 and v(x) > 0 a.e.
in R

n).
The main purpose of this paper (see Lemma 4.13 and Theorem 4.14) is to establish

that a weak solution u ∈ H1,2(Ω, ω, v) for the Dirichlet problem

Lu = g −
n∑

j=1

Djfj , in Ω,

u − ψ ∈ H1,2
0 (Ω, ω, v),


 (P)

can be approximated by a sequence of solutions of non-degenerate elliptic equations.
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The first step is to prove a general approximation theorem for Ap-weights (p � 1) (see
Lemma 4.13), and to this end we will need the definition of dyadic cubes (Definition 4.10)
and the Jones Factorization Theorem (Theorem 4.11). Lemma 4.13 is the key point for
Theorem 4.14, and the crucial point consists of showing that a weak limit of a sequence
of solutions of approximate problems is in fact a solution of the original problem.

The plan of the paper is the following: § 2 is devoted to introducing and studying the
‘weighted Sobolev spaces’ Hk,p(Ω, ω) and W k,p(Ω, ω), and the existence of a solution to
the Dirichlet problem. In § 3 we will present a short proof to the approximation theorem
in the case ω = v (the proof is like the one given in Theorem 3.14 of [6]). Finally, in § 4
we generalize the results in the case ω �= v.

We make the following basic assumption on the weights ω and v.

The weighted Sobolev inequality (WSI). There is an index q = 2σ, σ > 1, such
that for every ball B and every f ∈ Lip0(B) (i.e. f ∈ Lip(B) whose support is contained
in the interior of B),(

1
v(B)

∫
B

|f |qv dx

)1/q

� CRB

(
1

ω(B)

∫
B

|∇f |2ω dx

)1/2

, (1.4)

with the constant C independent of f and B, RB is the radius of B and the symbol ∇
indicates the gradient, v(B) =

∫
B

v(x) dx and ω(B) =
∫

B
ω(x) dx (see [2]).

Thus, we can write(∫
B

|f |qv dx

)1/q

� CB,ω,v

(∫
B

|∇f |2ω dx

)1/2

,

where CB,ω,v is called the Sobolev constant and

CB,ω,v = C
[v(B)]1/qRB

[ω(B)]1/2 . (1.5)

For instance, the WSI holds if ω and v are as in Theorem 4.8, Chapter X, of [11],
or if ω and v are as in Theorem 1.5 of [1]. In case ω = v, see Theorem 1.2 of [5] or
Theorem 15.23 of [9].

2. Definitions and basic results

In this section, we present a brief discussion of the function spaces Hk,p(Ω, ω), W k,p(Ω, ω)
and their basic properties, and we prove the existence and uniqueness for the Dirichlet
problem.

Throughout this paper we assume that Ω ⊂ R
n is a fixed bounded open set.

Definition 2.1. Let Ω ⊂ R
n and let ω be a weight function. We shall denote by

Lp(Ω, ω), 1 � p < ∞, the Banach space of all measurable functions, f , defined in Ω for
which

‖f‖Lp(Ω,ω) =
(∫

Ω

|f(x)|pω(x) dx

)1/p

< ∞.
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Definition 2.2. The weight ω belongs to the Muckenhoupt class, ω ∈ Ap(Rn), 1 �
p < ∞, if there is a constant C (called Ap-constant, C = C(ω, p)) such that(

1
|Q|

∫
Q

ω dx

)(
1

|Q|

∫
Q

ω−1/(p−1) dx

)p−1

� C, when 1 < p < ∞,

and (
1

|Q|

∫
Q

ω dx

)
� C ess inf

Q
ω, when p = 1,

for all cubes Q in R
n, C is independent of Q, where |Q| denotes the n-dimensional

Lebesgue measure in R
n (see [10]).

We have that A1 ⊂ Aq ⊂ Ap for all 1 < q � p.

Remark 2.3. If ω ∈ Ap, then ω is a doubling weight (that is, ω(B(x, 2r)) �
Cω(B(x, r)), where C = 2npC(ω, p)) (see Corollary 15.7 in [9]).

Proposition 2.4. Let 1 < p < ∞ and Ω ⊂ R
n.

(a) If f ∈ Lp(Ω, ω) and ω−p′/p ∈ L1(Ω), then f ∈ L1(Ω) (with 1/p + 1/p′ = 1).

(b) If fm → f in Lp(Ω, ω) and ω−p′/p ∈ L1(Ω), then fm → f in L1(Ω).

Proof. It is an immediate consequence of Hölder’s inequality.
Note that, if w ∈ Ap, then we have ω−p′/p ∈ L1(Ω). �

Definition 2.5. Let Ω ⊂ R
n, 1 � p < ∞ and let ω be a weight function.

(a) The space Hk,p(Ω, ω), k ∈ N, is defined as the closure of C∞(Ω̄) with respect
to the norm

‖u‖k,p =
(∫

Ω

|u(x)|pω(x) dx +
∑

1�|α|�k

∫
Ω

|Dαu(x)|pω(x) dx

)1/p

.

(b) The space Hk,p
0 (Ω, ω) is defined as the closure of C∞

0 (Ω) with respect to the
norm

‖u‖0,k,p =
( ∑

1�|α|�k

∫
Ω

|Dαu(x)|pω(x) dx

)1/p

.

The spaces Hk,2(Ω, ω) and Hk,2
0 (Ω, ω) are Hilbert spaces.

(c) The dual space of H1,2(Ω, ω) is the space

(H1,2(Ω, ω))∗ = H−1,2(Ω, ω)

=
{

g − div f : f = (f1, . . . , fn),

with
g

ω
and

fi

ω
∈ L2(Ω, ω), i = 1, . . . , n

}
.
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If T = g − div f ∈ H−1,2(Ω, ω), then (see [4])

〈T, u〉 =
∫

Ω

g(x)u(x) dx +
n∑

j=1

∫
Ω

fj(x)Dju(x) dx, ∀u ∈ H1,2(Ω, ω).

Definition 2.6. Let Ω ⊂ R
n and let ω be a weight function. The space W k,p(Ω, ω)

is defined by

W k,p(Ω, ω) = {u ∈ Lp(Ω, ω) : Dαu ∈ Lp(Ω, ω), |α| � k}

with norm

‖u‖W k,p(Ω,ω) =
( ∑

0�|α|�k

∫
Ω

|Dαu|pω dx

)1/p

.

The spaces W k,p(Ω, ω) are Banach spaces. The Banach spaces W k,p
0 (Ω, ω) arise by taking

the closure of C∞
0 (Ω) in W k,p(Ω, ω).

Theorem 2.7 (the Muckenhoupt Theorem). Let ω be a weight in R
n and let

[M(f)](x) = sup
Q�x

1
|Q|

∫
Q

|f(y)| dy

be the Hardy–Littlewood maximal function. Then, for p > 1,

M : Lp(Rn, ω) → Lp(Rn, ω)

is continuous (that is, ‖Mf‖Lp(Rn,ω) � CM‖f‖Lp(Rn,ω)) if and only if ω ∈ Ap.

The constant CM depends only on n, p and the Ap-constant C(ω, p) of ω.

Proof. See [7, Chapter IV, Corollary 4.3]. �

Theorem 2.8. If ω ∈ Ap, 1 < p < ∞, then Hk,p(Ω, ω) = W k,p(Ω, ω).

Proof. See [3, Proposition 3.5]. �

Definition 2.9. We say that an element u ∈ H1,2(Ω, ω) is a weak solution of

Lu = g −
n∑

j=1

Djfj , with
g

ω
,
fj

ω
∈ L2(Ω, ω),

if ∫
Ω

aij(x)Diu(x)Djϕ(x) dx

=
n∑

j=1

∫
Ω

fj(x)Djϕ(x) dx +
∫

Ω

g(x)ϕ(x) dx, ∀ϕ ∈ H1,2
0 (Ω, ω).
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Theorem 2.10. Let L be the operator (1.1) and with coefficients aij satisfying aij =
aji and the degenerate ellipticity condition

λ|ξ|2ω(x) �
n∑

i,j=1

aij(x)ξiξj � Λω(x)|ξ|2, ∀ξ ∈ R
n, a.e. x ∈ Ω, (2.1)

where λ and Λ are positive constants. If ψ ∈ H1,2(Ω, ω), ω ∈ A2, (g/ω) ∈ L2(Ω, ω) and
(fj/ω) ∈ L2(Ω, ω), then the Dirichlet problem

Lu = g −
n∑

j=1

Djfj , in Ω,

u − ψ ∈ H1,2
0 (Ω, ω),


 (D1)

has a unique solution u ∈ H1,2(Ω, ω) and

‖u‖H1,2(Ω,ω) � C
(∥∥∥∥ g

ω

∥∥∥∥
L2(Ω,ω)

+
∥∥∥∥fj

ω

∥∥∥∥
L2(Ω,ω)

+ ‖ψ‖H1,2(Ω,ω)

)
.

Proof. It is a consequence of the Lax–Milgram Theorem and the proof follows the
lines of Theorem 2.2 of [5] and Theorem 8.3 of [8], by using Theorem 1.2 of [5] (the WSI
in the case ω = v): if ω ∈ Ap, 1 < p < ∞, there exist constants CΩ and δ positive such
that for all u ∈ C∞

0 (Ω) and all σ satisfying 1 � σ � (n/(n − 1)) + δ,

‖u‖Lpσ(Ω,ω) � CΩ‖|∇u|‖Lp(Ω,ω) (2.2)

(σ as in the WSI). �

3. The approximation theorem in the case where ω = v

The following lemma can be proved in exactly the same way as Lemma 2.1 in [6]. Our
lemma provides a general approximation theorem for Ap weights (1 � p < ∞) by means
of weights which are bounded away from 0 and infinity and whose Ap-constants depend
only on the Ap-constant of ω.

Lemma 3.1. Let α, β > 1 be given and let ω ∈ Ap, p � 1, with Ap-constant C(ω, p)
and let aij = aji be measurable, real-valued functions satisfying

λω(x)|ξ|2 �
n∑

i,j=1

aij(x)ξiξj � Λω(x)|ξ|2 (3.1)

for all ξ ∈ R
n and a.e. x ∈ Ω ⊂ R

n. Then there exist weights ωαβ � 0 a.e. and measurable
real-valued functions aαβ

ij such that the following conditions are met.

(i) c1(1/β) � ωαβ � c2α in Ω, where c1 and c2 depend only on ω and Ω.

(ii) There exist weights ω̃1 and ω̃2 such that ω̃1 � ωαβ � ω̃2, where ω̃i ∈ Ap and
C(ω̃i, p) depends only on C(ω, p) (i = 1, 2).
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(iii) ωαβ ∈ Ap, with constant C(ωαβ , p) depending only on C(ω, p) uniformly on α

and β.

(iv) There exists a closed set Fαβ such that ωαβ ≡ ω in Fαβ and ωαβ ∼ ω̃1 ∼ ω̃2

in Fαβ with equivalence constants depending on α and β (i.e. there are positive
constants cαβ and Cαβ such that cαβω̃i � ωαβ � Cαβω̃i, i = 1, 2). Moreover,
Fαβ ⊂ Fα′β′ , if α � α′, β � β′, and the complement of

⋃
α,β�1 Fαβ has zero

measure.

(v) ωαβ → ω a.e. in R
n as α, β → ∞.

(vi)

λωαβ(x)|ξ|2 �
n∑

i,j=1

aαβ
ij (x)ξiξj � Λωαβ(x)|ξ|2,

n∑
i,j=1

|aαβ
ij (x)| � Cωαβ(x)

for every ξ ∈ R
n and a.e. x ∈ Ω, with constant C independent of α, β.

Proof. The proof of this lemma follows the lines of Lemma 2.1 in [6]. �

Let us now state the main result of this section. The proof is like the one given in
Theorem 3.14 of [6], and we present a short proof.

Theorem 3.2. Assume ω ∈ A2.

(I) With the same notation and hypotheses as in Theorem 2.10. Then the solution
u ∈ H1,2(Ω, ω) of the problem

Lu = g −
n∑

j=1

Djfj , in Ω,

u − ψ ∈ H1,2
0 (Ω, ω),


 (D1)

is the weak limit in H1,2(Ω, ω̃1) of a sequence of solutions um ∈ H1,2(Ω, ωm) of
the problems

Lmum = gm −
∑

Djfjm,

um − ψ ∈ H1,2
0 (Ω, ωm),

}
(Pm)

where ωm = ωmm, Lmum = −
∑

Dj(amm
ij (x)Dium), fjm = fj(ω/ωm)−1/2 and

gm = g(ω/ωm)−1/2 (ωmm, amm
ij and ω̃1 are as in Lemma 3.1).

(II) Moreover, if u ∈ H1,2
0 (Ω, ω) is the solution of the equation Lu = −

∑
Djfj , with

fj/ω ∈ Lp(Ω, ω), p > 2n − ε′ (choosing ε′ appropriately), then u is the uniform
limit of (um)m∈N in any compact subset of Ω, where um ∈ H1,2

0 (Ω, ωm) is a
solution of the problem

Lmum = −
n∑

j=1

Djfjm, with fjm = fj

(
ω

ωm

)(1−p)/p

.
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Proof. We shall denote Am(x) = (amm
ij (x))i,j=1,...,n.

(I) First, we note that∥∥∥∥ gm

ωm

∥∥∥∥
L2(Ω,ωm)

=
∥∥∥∥ g

ω

∥∥∥∥
L2(Ω,ω)

and
∥∥∥∥fjm

ωm

∥∥∥∥
L2(Ω,ωm)

=
∥∥∥∥fj

ω

∥∥∥∥
L2(Ω,ω)

.

Consequently, we have Tm = gm −
∑

Djfjm ∈ H−1,2(Ω, ωm). Using the fact that um

is a solution of the problem (Pm), by Theorem 2.10 we obtain (because ωm ∈ A2)

‖um‖H1,2(Ω,ωm) � C

(∥∥∥∥ gm

ωm

∥∥∥∥
L2(Ω,ωm)

+
n∑

j=1

∥∥∥∥fjm

ωm

∥∥∥∥
L2(Ω,ωm)

+ ‖ψ‖H1,2(Ω,ω)

)

= C

(∥∥∥∥ g

ω

∥∥∥∥
L2(Ω,ω)

+
n∑

j=1

∥∥∥∥fj

ω

∥∥∥∥
L2(Ω,ω)

+ ‖ψ‖H1,2(Ω,ω)

)
= C1, (3.2)

where the constant C is independent of m. By Lemma 3.1 (ii) ω̃1 � ωm, we obtain

‖um‖H1,2(Ω,ω̃1) � ‖um‖H1,2(Ω,ωm)

� C

(∥∥∥∥ g

ω

∥∥∥∥
L2(Ω,ω)

+
n∑

j=1

∥∥∥∥fj

ω

∥∥∥∥
L2(Ω,ω)

+ ‖ψ‖H1,2(Ω,ω)

)
= C1. (3.3)

Consequently, {um} is a bounded sequence in H1,2(Ω, ω̃1). Therefore there is a sub-
sequence, again denoted by {um}, and ũ ∈ H1,2(Ω, ω̃1) such that um → ũ weakly in
L2(Ω, ω̃1) and ∇um → ∇ũ weakly in L2(Ω, ω̃1) (see Theorem 1.31 of [9]). We have that
ũ ∈ H1,2(Ω, ω) (the proof proceeds as in Theorem 3.14 of [6]).

We need to show that ũ is a weak solution of the equation Lũ = g −
∑

Djfj , that is∫
Ω

aij(x)Diũ(x)Djϕ(x) dx =
∫

Ω

g(x)ϕ(x) dx +
∫

Ω

fj(x)Djϕ(x) dx, ∀ϕ ∈ H1,2
0 (Ω, ω).

Using the fact that um is a solution of (Pm), we have Lmum = gm −
∑

Djfjm, that is∫
Ω

amm
ij (x)Dium(x)Djϕ(x) dx

=
∫

Ω

gm(x)ϕ(x) dx +
∫

Ω

fjm(x)Djϕ(x) dx, ∀ϕ ∈ H1,2
0 (Ω, ωm).

Moreover, over Fk (for m � k) we have the following properties:

(i) ω = ωm,

(ii) g = gm and fj = fjm; and

(iii) amm
ij (x) = aij(x).

If ϕ ∈ H1,2
0 (Ω, ω), we get

G : H1,2(Ω, ω̃1) → R,

G(u) =
∫

Ω

aij(x)Diu(x)Djϕ(x)χFk
(x) dx

is a bounded linear functional.
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Using this fact and the properties (i)–(iii) we obtain∫
Fk

aij(x)Diũ(x)Djϕ(x) dx = lim
m→∞

∫
Fk

amm
ij (x)Dium(x)Djϕ(x) dx

= lim
m→∞

(∫
Ω

amm
ij (x)Dium(x)Djϕ(x) dx

−
∫

Ω∩F c
k

amm
ij (x)Dium(x)Djϕ(x) dx

)

= lim
m→∞

(∫
Ω

gm(x)ϕ(x) dx +
∫

Ω

fjm(x)Djϕ(x) dx

−
∫

Ω∩F c
k

amm
ij (x)Dium(x)Djϕ(x) dx

)
(3.4)

(recall that um is a solution of (Pm)). We have, by the Lebesgue-dominated convergence
theorem and ω̃2 ∈ A2,∫

Ω

gmϕ dx →
∫

Ω

gϕ dx and
∫

Ω

fjmDjϕ dx →
∫

Ω

fjDjϕ dx. (3.5)

Using
∑

|amm
ij (x)| � Cωm(x), with C independent of m, we obtain∣∣∣∣

∫
Ω∩F c

k

amm
ij DiumDjϕ dx

∣∣∣∣ �
∫

Ω∩F c
k

|amm
ij | |Dium| |Djϕ| dx

�
∫

Ω∩F c
k

Cωm|Dium| |Djϕ| dx (C is independent of m)

= C

∫
Ω∩F c

k

|Dium|ω1/2
m |Djϕ|ω1/2

m dx

� C

(∫
Ω∩F c

k

|Dium|2ωm dx

)1/2(∫
Ω∩F c

k

|Djϕ|2ωm dx

)1/2

� CC1Cϕ

(∫
F c

k∩Ω

ωm dx

)1/2

(by (3.2))

= CC1Cϕ[ωm(F c
k ∩ Ω)]1/2.

By Theorem 2.9, Chapter IV, of [7], there exist constants δ > 0, C > 0 such that, if
Ω̄ ⊂ Qo (Qo is a fixed cube), then

ωm(F c
k ∩ Ω) � ω̃2(F c

k ∩ Ω) � C ω̃2(Qo)
(

|F c
k |

|Qo|

)δ

.

Using Lemma 3.1, we know that |F c
k | → 0 when k → ∞. Then

ωm(F c
k ∩ Ω) → 0 when k → ∞,

and we obtain
lim

k→∞

∫
Ω∩F c

k

amm
ij (x)Dium(x)Djϕ(x) dx = 0. (3.6)
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Therefore, by (3.5) and (3.6) we conclude∫
Ω

aij(x)Diũ(x)Djϕ(x) dx =
∫

Ω

g(x)ϕ(x) dx +
∫

Ω

fj(x)Djϕ(x) dx;

that is, ũ is a solution of the equation Lu = g −
∑n

j=1 Djfj . Therefore u = ũ (by the
uniqueness of Theorem 2.10).

(II) Now we will prove the second part of the theorem.
If ω ∈ A2, then there exists ε > 0 such that ω ∈ A2−ε (see Theorem 15.13 (open-

end property) in [9] or Proposition 4.5, Chapter IX, in [11]). We choose ε′ = nε and
p > 2n − ε′ = 2n − εn. We have that p/n > 2 − ε and ω ∈ A2−ε ⊂ Ap/n.

By Theorem 2.3.15 of [5], if u is a weak solution of the equation Lu = −
∑

Djfj ,
and fj/ω ∈ Lp(Ω, ω), ω ∈ Ap/n, then u is locally Hölder continuous in Ω, i.e. there exist
constants C > 0 and λ (0 < λ < 1), such that if xo ∈ Ω, 0 < ρ < R < 1

16 dist(xo, ∂Ω), we
have

osc
B(xo,ρ)

u � C

[(
1

ω(BR)

∫
BR

u2ω dx

)1/2

+
∥∥∥∥fj

ω

∥∥∥∥
Lp(BR,ω)

]
ρλ, (3.7)

where C and λ are independent of u, ρ and xo, and oscB(xo,ρ) u is the oscillation over
B(xo, ρ) of u.

Applying this result for the solution of the equations

Lmum = −
n∑

j=1

Djfjm,

um ∈ H1,2
0 (Ω, ωm), ωm ∈ A2, with fjm = fj(ω/ωm)(1−p)/p, and using (3.2), we obtain

osc
B(xo,ρ)

um � C

[(
1

ωm(BR)

∫
BR

u2
mωm dx

)1/2

+
∥∥∥∥fjm

ωm

∥∥∥∥
Lp(Ω,ωm)

]
ρλ

� C

[
C1

ω̃1(BR)
+

∥∥∥∥fj

ω

∥∥∥∥
Lp(Ω,ω)

]
ρλ.

Therefore, the sequence {um} is locally equicontinuous. Moreover, by Lemma 2.3.14 of [5],
we have

ess sup
B(xo,ρ)

|um| � C

∥∥∥∥fjm

ωm

∥∥∥∥
Lp(Ω,ωm)

ρλ.

Hence, using ‖fjm/ωm‖Lp(Ω,ωm) = ‖fj/ω‖Lp(Ω,ω), we obtain

ess sup
B(xo,ρ)

|um| � C

∥∥∥∥fj

ω

∥∥∥∥
Lp(Ω,ω)

ρλ,

that is, {um} is a locally uniformly bounded sequence.
We can apply the Arzelà–Ascoli Theorem and conclude that {um} converges to u

uniformly in compact subsets of Ω. �
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4. Generalization of results in the case where ω �= υ

In this section, we generalize some results in the cases ω �= v.

Definition 4.1. We shall say that the pair (v, ω) satisfies the condition Ap, 1 � p < ∞,
if there is a constant C such that(

1
|Q|

∫
Q

v(x) dx

)(
1

|Q|

∫
Q

ω−1/(p−1)(x) dx

)p−1

� C, when 1 < p < ∞,

and
1

|Q|

∫
Q

v(x) dx � C ess inf
Q

ω, when p = 1,

for all cubes Q in R
n. The smallest constant C will be called the Ap-constant for the pair

(ω, v).

Remark 4.2. Since the coefficients of the operator L satisfy (1.2), then ω(x) � v(x).
In this case, if the couple (v, ω) ∈ Ap, we have v ∈ Ap and ω ∈ Ap (Definition 2.2).

Definition 4.3. Let Ω ⊂ R
n be a bounded domain and let ω, v be weights.

(a) The space Hk,2(Ω, ω, v), k ∈ N, is defined as the closure of C∞(Ω̄) with respect
to the norm

‖u‖Hk,2(Ω,ω,v) =
(∫

Ω

u2v dx +
∫

Ω

〈A∇u, ∇u〉 dx +
∑

2�|α|�k

∫
Ω

|Dαu|2ω dx

)1/2

,

where A = (aij(x)) is the coefficient matrix of the operator L defined in (1.1)
and the symbol ∇ indicates the gradient.

(b) The space Hk,2
0 (Ω, ω, v) is defined as the closure of C∞

0 (Ω) with respect to the
norm

‖u‖Hk,2
0 (Ω,ω,v) =

(∫
Ω

〈A∇u, ∇u〉 dx +
k∑

|α|=2

∫
Ω

|Dαu|2ω dx

)1/2

.

The spaces Hk,2(Ω, ω, v) and Hk,2
0 (Ω, ω, v) are Hilbert spaces.

Definition 4.4. Let Ω ⊂ R
n be a bounded domain and let v, ω be weights. We define

the space

W k,2(Ω, ω, v)

=
{

u ∈ L2(Ω, v) :
∫

Ω

〈A∇u, ∇u〉 dx < ∞ and Dαu ∈ L2(Ω, ω), 2 � |α| � k

}
,

with the norm

‖u‖W k,2(Ω,ω,v) =
(∫

Ω

u2v dx +
∫

Ω

〈A∇u, ∇u〉 dx +
∑

2�|α|�k

∫
Ω

|Dαu|2ω dx

)1/2

,

where A = (aij)i,j=1,...,n is the coefficient matrix of the operator L.
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Definition 4.5. We shall say that the pair of weights (v, ω) satisfies the condition Sp

(p > 1) if there is a constant C (called the Sp-constant) such that∫
Q

|M(µχQ)(x)|pv(x) dx � Cµ(Q) < ∞, for every cube Q,

where M is the Hardy–Littlewood maximal function, µ = ω−1/(p−1) and µ(Q) =∫
Q

µ(x) dx.

Remark 4.6. If (v, ω) ∈ Sp, then (v, ω) ∈ Ap.

Theorem 4.7. If (v, ω) ∈ S2 and ω � v, then Hk,2(Ω, ω, v) = W k,2(Ω, ω, v).

Proof. The proof is the same as that of Theorem 2.8, using the Muckenhoupt Gen-
eralized Theorem (see [7, Chapter IV, Theorem 4.9]) and the WSI. �

Definition 4.8. We say that an element u ∈ H1,2(Ω, ω, v) is a weak solution of the
equation Lu = g − div f if

∫
Ω

n∑
i,j=1

aij(x)Diu(x)Djϕ(x) dx =
∫

Ω

g(x)ϕ(x) dx +
n∑

j=1

∫
Ω

fj(x)Djϕ(x) dx

for every ϕ ∈ H1,2
0 (Ω, ω, v), where f = (f1, . . . , fn).

Theorem 4.9. Suppose that the WSI holds and that (v, ω) ∈ A2. Let L be the
operator (1.1) with (1.2) and (1.3). If ψ ∈ H1,2(Ω, ω, v), g/v ∈ L(2σ)′

(Ω, v) and fj/ω ∈
L2(Ω, ω), then the Dirichlet problem

Lu = g −
n∑

j=1

Djfj , in Ω,

u − ψ ∈ H1,2
0 (Ω, ω, v),


 (P)

has a unique solution u ∈ H1,2(Ω, ω, v) and

‖u‖H1,2(Ω,ω,v) � CΩ,ω,v

(∥∥∥∥g

v

∥∥∥∥
L(2σ)′ (Ω,v)

+
∥∥∥∥fj

ω

∥∥∥∥
L2(Ω,ω)

+ ‖ψ‖H1,2(Ω,ω,v)

)
,

where CΩ,ω,v is the Sobolev constant (see (1.5)).

Proof. The proof is very similar to that of Theorem 2.10, replacing Theorem 1.3 of [5]
by the WSI, and by Remark 4.2 we have ω ∈ A2 and v ∈ A2. �

Definition 4.10. For k ∈ Z, we consider the lattice Γk = 2−k
Z

n formed by those
points of R

n whose coordinate are integral multiples of 2−k. Let Dk be a collection of
cubes determined by Γk, that is, those cubes with side length 2−k and vertices in Γk.
The cubes belonging to D =

⋃∞
−∞ Dk are called dyadic cubes.
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Note that if Q1, Q2 ∈ D and |Q1| � |Q2|, then either Q1 ⊂ Q2 or else Q1 and Q2

do not overlap (by which we mean that their interiors are disjoint, intQ1 ∩ intQ2 = ∅),
where |Q| denotes the n-dimensional Lebesgue measure in R

n (see Chapter II of [7]).
We will need the following theorem.

Theorem 4.11 (the Jones Factorization Theorem). For 1 < p < ∞, ω ∈ Ap if
and only if there exist ω0, ω1 ∈ A1 such that ω = ω0ω

1−p
1 .

Proof. See [7, Chapter IV, Corollary 5.3]. �

Remark 4.12. Now we will prove a generalization for Lemma 3.1 in the case where
(v, ω) ∈ Ap. With the condition (1.2), we know by Remark 4.2 that v ∈ Ap and ω ∈ Ap.
We will prove the approximation in the following cases.

Case 1. (v, ω) ∈ A1.

Case 2. (v, ω) ∈ Ap, p > 1. In this case we assume that v ∈ Ap and ω ∈ Ap (see
Remark 4.2). Then by the Jones Factorization Theorem there exist v0, v1, ω0, ω1 ∈ A1

such that v = v0v
1−p
1 and ω = ω0ω

1−p
1 . We will assume the following hypotheses:

(a) ω0 � v0 and (v0, ω0) ∈ A1; and

(b) v1(x) � ω1(x) � C1v1(x).

We may now prove the following lemma.

Lemma 4.13. Let α, β > 1 be given and let there be a pair of weights (v, ω) ∈ Ap,
1 � p < ∞, satisfying the hypotheses as above and measurable real-valued functions aij

satisfying

ω(x)|ξ|2 �
n∑

i,j=1

aij(x)ξiξj � |ξ|2v(x), (4.1)

aij(x) = aji(x), (4.2)

for every ξ ∈ R
n, a.e. x ∈ Ω. Then there exist weights ωαβ � 0, vαβ � 0 and measurable

functions aαβ
ij such that:

(i) C11(1/β) � ωαβ � C12α, C21(1/β) � vαβ � C22α in Ω, with C11 and C12

depending only on ω and Ω, and C21 and C22 depending only on v and Ω;

(ii) there exist weights ω̃1, ω̃2, ṽ1, ṽ2 ∈ Ap, such that ω̃1 � ωαβ � ω̃2 and ṽ1 � vαβ �
ṽ2;

(iii) ωαβ and vαβ are Ap weights;

(iv) there exists a closed set Gαβ such that ωαβ(x) = ω(x) and vαβ(x) = v(x) in
Gαβ . Moreover, Gαβ ⊂ Gα′β′ , if α � α′ and β � β′, and the complement of
∪α,β>1Gα,β has zero measure;
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(v) ωαβ → ω and vαβ → v a.e. in R
n, as α, β tend to infinity; and

(vi)

λ̃|ξ|2ωαβ(x) �
n∑

i,j=1

aαβ
ij (x)ξiξj � |ξ|2vαβ(x)

n∑
i,j=1

|aαβ
ij (x)| � Cvαβ(x),

for all ξ ∈ R
n, a.e. x ∈ Ω, with C independent of α, β, where λ̃ is a positive

constant.

Proof. Case 1. In this case we denote ωαβ = ωα, vαβ = vα, aαβ
ij = aα

ij and Gαβ = Gα

(in (i)–(vi)). Since we are interested in approximating within Ω, we can suppose, without
loss of generality that ω, v ∈ L1(Rn).

If (v, ω) ∈ A1, that is,
1

|Q|

∫
Q

v(x) dx � C ess inf
Q

ω

by Remark 4.2, we have v ∈ A1 and ω ∈ A1. For each α > 1, we define

U+
α = {x ∈ R

n : M(ω)(x) > α} and V +
α = {x ∈ R

n : M(v)(x) > α}

(U+
α and V +

α are open sets because M(ω) and M(v) are lower semicontinuous functions),
where M is the usual Hardy–Littlewood maximal operator, i.e.

M(ω)(x) = sup
Q�x

1
|Q|

∫
Q

|ω(y)| dy.

Using the fact that 0 < ω(x) � v(x), we have M(ω)(x) � M(v)(x). Consequently,
U+

α ⊂ V +
α .

By using Calderon–Zygmund decomposition (see [7, Chapter II, Theorem 1.12]) there
are two families of non-overlapping cubes {Qα

l } and {Iα
k }, where Qα

l and Iα
k are maximal

dyadic cubes, such that

U+
α =

∞⋃
l=1

Qα
l and V +

α =
∞⋃

k=1

Iα
k , (CZ1)

α <
1

|Qα
l |

∫
Qα

l

ω(x) dx � 2nα and α <
1

|Iα
k |

∫
Iα

k

v(x) dx � 2nα, (CZ2)

ω(x) � α in F+
α = (U+

α )c and v(x) � α in G+
α = (V +

α )c, (CZ3)

where Ec denotes the complement of a set E;

|U+
α | � c

α

∫
Rn

ω(x) dx and |V +
α | � c

α

∫
Rn

v(x) dx. (CZ4)
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Since U+
α ⊂ V +

α for each Qα
l , there exists only one Iα

k (k = k(l)) such that Qα
l ⊂ Iα

k

(recall that Qα
l and Iα

k are maximal dyadic cubes). We define the weights ωα and vα by

ωα(x) =
∞∑

l=1

(
1

|Qα
l |

∫
Qα

l

ω(y) dy

)
χQα

l
(x) + ω(x)χF+

α
(x),

vα(x) =
∞∑

k=1

(
1

|Iα
k |

∫
Iα

k

v(y) dy

)
χIα

k
(x) + v(x)χG+

α
(x),

where χE denotes the characteristic function of a set E.
We will show that ωα(x) � 2nvα(x).

(1) If x ∈ G+
α ⊂ F+

α , then vα(x) = v(x) and ωα(x) = ω(x). Consequently, ωα(x) �
vα(x).

(2) If x �∈ G+
α , then x ∈ Iα

k (for a unique cube). Hence,

vα(x) =
1

|Iα
k |

∫
Iα

k

v(y) dy.

For the weight ωα, there are two possible cases as follows.

(a) x ∈ Qα
l ⊂ Iα

k . In this case, by property (CZ2) of the Calderon–Zygmund decom-
position, we have

ωα(x) =
1

|Qα
l |

∫
Qα

l

ω(y) dy � 2nα � 2n 1
|Iα

k |

∫
Iα

k

v(y) dy = 2nvα(x).

(b) x ∈ Iα
k − Qk, where Qk = ∪Qα

l , with Qα
l ⊂ Iα

k , that is, x ∈ F+
α . Hence, using

property (CZ3) of the Calderon–Zygmund decomposition, we obtain

ωα(x) = ω(x) � α <
1

|Iα
k |

∫
Iα

k

v(y) dy = vα(x).

Therefore ωα(x) � 2nvα(x) in Ω.

Since ω ∈ A1 and v ∈ A1 we have that (see Lemma 2.1 of [6])

(I1) ωα ∈ A1 and vα ∈ A1, with C(ωα, 1) depending only on C(ω, 1) and C(vα, 1)
depending only on C(v, 1);

(II1) ωα → ω and vα → v a.e. in R
n when α → ∞;

(III1) min{1, ω} ∈ A1, min{1, v} ∈ A1 and min{1, ω(x)} � ωα(x) � Cω(x),
min{1, v(x)} � vα(x) � C̃v(x) (C depends only on C(ω, 1) and C̃ depends
only on C(v, 1)); and
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(IV1)

C1 � ωα(x) � 2nα, with C1 =
1

|Q0|

∫
Q0

min{1, ω}(y) dy,

C2 � vα(x) � 2nα, with C2 =
1

|Q0|

∫
Q0

min{1, v}(y) dy,

where Q0 is a fixed cube such that Ω̄ ⊂ Q0.

We need to show that ωα and vα satisfy properties (i)–(v). We have the following.

� (i) Follows from (IV1),

2nα � ωα(x) � C1 � C1

α
and 2nα � vα(x) � C2 � C2

α
.

� (ii) We define the weights ω̃1, ω̃2, ṽ1 and ṽ2 by

ω̃1(x) = min{1, ω(x)} and ω̃2(x) = Cω(x),

ṽ1(x) = min{1, v(x)} and ṽ2(x) = C̃v(x)

(C and C̃ are as in (III1)). We have that ω̃1, ω̃2, ṽ1 and ṽ2 ∈ A1 (by (III1)) and
ω̃1(x) � ωα(x) � ω̃2(x), ṽ1(x) � vα(x) � ṽ2(x).

� (iii) Follows from (I1).

� (iv) Define Gα = G+
α . By definition vα(x) = v(x) in Gα, and ωα(x) = ω(x) in Gα

(because Gα = G+
α ⊂ F+

α ).

Moreover, if α � α′ we have U+
α′ ⊂ U+

α . Then

Gα = G+
α = (U+

α )c ⊂ (U+
α′)c = G+

α′ = Gα′ .

Furthermore, by (CZ4) we obtain |(∪α>1Gα)c| = 0.

� (v) Follows straightforwardly from (II1).

Let us now prove (vi).
We define the coefficients aα

ij by

aα
ij(x) =

∞∑
k=1

(
1

|Iα
k |

∫
Iα

k

aij(y) dy

)
χIα

k
(x) + aij(x)χG+

α
(x).

We have the following.

(1) If x ∈ G+
α ⊂ F+

α , then aα
ij(x) = aij(x) and ωα(x) = ω(x) and vα(x) = v(x).

Therefore, the condition

|ξ|2ωα(x) �
n∑

i,j=1

aα
ij(x)ξiξj � |ξ|2vα(x)

is valid.
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(2) If x �∈ G+
α , then x ∈ Iα

k (for a unique cube). In this case,

aα
ij(x) =

1
|Iα

k |

∫
Iα

k

aij(y) dy.

Consequently, using condition (4.1), we get

aα
ij(x)ξiξj =

1
|Iα

k |

∫
Iα

k

aij(y)ξiξj dy � |ξ|2 1
|Iα

k |

∫
Iα

k

v(y) dy = |ξ|2vα(x).

We need to show that
∑

aα
ij(x)ξiξj � λ̃ωα(x)|ξ|2. There are two possible cases as follows.

(a) If x ∈ Qα
l ⊂ Iα

k . We have that

aα
ij(x)ξiξj =

1
|Iα

k |

∫
Iα

k

aij(y)ξiξj dy � |ξ|2 1
|Iα

k |

∫
Iα

k

ω(y) dy. (4.3)

Using (v, ω) ∈ A1 and property (CZ2) of the Calderon–Zygmund decomposition,
we obtain

α <
1

|Iα
k |

∫
Iα

k

v(y) dy � C ess inf
Iα

k

ω � C
1

|Iα
k |

∫
Iα

k

ω(y) dy. (4.4)

Consequently,

1
|Iα

k |

∫
Iα

k

ω(y) dy � α

C
� 1

C

1
2n

1
|Qα

l |

∫
Qα

l

ω(y) dy =
1

2nC
ωα(x). (4.5)

Hence, combining (4.3) and (4.5), we obtain

aα
ij(x)ξiξj � 1

2nC
|ξ|2ωα(x).

(b) If x ∈ Iα
k − Qk, (Qk = ∪Qα

l , with Qα
l ⊂ Iα

k ), that is, x ∈ F+
α . In this case, we

have ωα(x) = ω(x).

Hence, using (4.4) and condition (CZ3) of the Calderon–Zygmund decomposi-
tion, we obtain

aα
ij(x)ξiξj =

1
|Iα

k |

∫
Iα

k

aij(y)ξiξj dy

� |ξ|2 1
|Iα

k |

∫
Iα

k

ω(y) dy

� |ξ|2 α

C
(by (4.4))

� |ξ|2 1
C

ω(x)

= |ξ|2 1
C

ωα(x)

� 1
2nC

|ξ|2ωα(x).
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Therefore, in both cases we obtain

λ̃|ξ|2ωα(x) �
n∑

i,j=1

aα
ij(x)ξiξj � |ξ|2vα(x), where λ̃ =

1
2nC

.

Let us now check the second condition in (vi). Again, there are two possible cases.

(a) If x ∈ G+
α ⊂ F+

α , then aα
ij(x) = aij(x) and vα(x) = v(x). The condition is true.

(b) If x �∈ G+
α , then x ∈ Iα

k (for a unique cube).

In this case,

aα
ij(x) =

1
|Iα

k |

∫
Iα

k

aij(y) dy.

Hence,

|aα
ij(x)| � 1

|Iα
k |

∫
Iα

k

|aij(y)| dy

� C
1

|Iα
k |

∫
Iα

k

v(y) dy

= Cvα(x).

Therefore, in both cases we have

n∑
i,j=1

|aα
ij(x)| � Cvα(x)

with constant C independent of α.
Case 2. If (v, ω) ∈ Ap, p > 1. By Remark 4.2 we have ω ∈ Ap and v ∈ Ap, and by the

Jones Factorization Theorem there are weights ω0, ω1, v0 and v1 in A1 such that

v = v0v
1−p
1 and ω = ω0ω

1−p
1

and we assume the following hypotheses (see Remark 4.12):

(a) ω0 � v0 and (v0, ω0) ∈ A1;

(b) v1(x) � ω1(x) � C1v1(x).

Since we are interested in approximating within Ω, we may assume, without loss of
generality, that ω0, ω1, v0 and v1 ∈ L1(Rn).

For each α > 1, we define

U+
0,α = {x ∈ R

n : M(ω0)(x) > α} and V +
0,α = {x ∈ R

n : M(v0)(x) > α}

(U+
0,α and V +

0,α are open sets). By the Calderon–Zygmund decomposition there exist two
families of maximal dyadic cubes {Qα

0,l} and {Iα
0,k}, for ω0 and v0, respectively, satisfying

the analogous conditions of Case (1) ((CZ1)–(CZ4)). Using the hypotheses that ω0 � v0,
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we have

(a0) Qα
0,l ⊂ Iα

0,k (with k = k(l));

(b0) G+
0,α = (V +

0,α)c ⊂ (U+
0,α)c = F+

0,α.

For each β > 1, we define

U+
1,β = {x ∈ R

n : M(ω1)(x) > β1/(p−1)},

V +
1,β = {x ∈ R

n : M(v1)(x) > β1/(p−1)}.

Since v1 � ω1, we have V +
1,β ⊂ U+

1,β . By the Calderon–Zygmund decomposition, there
exist two families of maximal dyadic cubes {Qβ

1,l} and {Iβ
1,k}, for ω1 and v1, respectively,

satisfying conditions (CZ1)–(CZ4). We have

(a1) Iβ
1,k ⊂ Qβ

1,l (with l = l(k));

(b1) F+
1,β = (U+

1,β)c ⊂ (V +
1,β)c = G+

1,β .

We define the weights

(ω0)α(x) =
∞∑

l=1

(
1

|Qα
0,l|

∫
Qα

0,l

ω0(y) dy

)
χQα

0,l
(x) + ω0(x)χF+

0,α
(x),

(v0)α(x) =
∞∑

k=1

(
1

|Iα
0,k|

∫
Iα
0,k

v0(y) dy

)
χIα

0,k
(x) + v0(x)χG+

0,α
(x),

(ω1)β(x) =
∞∑

l=1

(
1

|Qβ
1,l|

∫
Qβ

1,l

ω1(y) dy

)
χQβ

1,l
(x) + ω1(x)χF+

1,β
(x),

(v1)β(x) =
∞∑

k=1

(
1

|Iβ
1,k|

∫
Iβ
1,k

v1(y) dy

)
χIβ

1,k
(x) + v1(x)χG+

1,β
(x).

We have, as in Case 1,

(ω0)α � 2n(v0)α and (v1)β � 2n(ω1)β .

Now we define the weights ωαβ and vαβ by

ωαβ(x) = (ω0)α(x)[(ω1)β ]1−p(x),

vαβ(x) = (v0)α(x)[(v1)β ]1−p(x).

We have that (ω0)α, (v0)α, (ω1)β and (v1)β satisfy (using the same argument that
given in Lemma 2.1 of [6]) the following conditions.

(I2) (ω0)α, (v0)α, (ω1)β and (v1)β ∈ A1.

(II2) (ω0)α → ω0, (v0)α → v0, (ω1)β → ω1 and (v1)β → v1 a.e. in R
n when α → ∞,

β → ∞.
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(III2) min{1, ω0}, min{1, ω1}, min{1, v0} and min{1, v1} are weights in A1 and

min{1, ω0(x)} � (ω0)α(x) � C1ω0(x), min{1, ω1(x)} � (ω1)β(x) � C2ω1(x),

min{1, v0(x)} � (v0)α(x) � C3v0(x), min{1, v1(x)} � (v1)β(x) � C4v1(x).

(IV2)

C̃1 � (ω0)α(x) � 2nα, with C̃1 =
1

|Q0|

∫
Q0

min{1, ω0} dy,

C̃2 � (v0)α(x) � 2nα, with C̃2 =
1

|Q0|

∫
Q0

min{1, v0} dy,

C̃3 � (ω1)β(x) � 2nβ1/(p−1), with C̃3 =
1

|Q0|

∫
Q0

min{1, ω1} dy,

C̃4 � (v1)β(x) � 2nβ1/(p−1), with C̃4 =
1

|Q0|

∫
Q0

min{1, v1} dy,

where Q0 is a fixed cube such that Ω̄ ⊂ Q0.

We need to show that weights ωαβ and vαβ satisfy properties (i)–(v).

� (i) Follows from (IV2). In fact,

ωαβ(x) = (ω0)α(x)[(ω1)β ]1−p(x)

� C̃1(2nβ1/(p−1))1−p

= C̃12n(1−p)β−1,

ωαβ(x) = (ω0)α(x)[(ω1)β ]1−p(x)

� 2nα(C̃3)1−p

= 2n(C̃3)1−pα.

Analogously, C̃22n(1−p)β−1 � vαβ(x) � 2n(C̃4)1−pα.

� (ii) We define the weights ω̃1, ω̃2, ṽ1 and ṽ2 by

ω̃1(x) = [min{1, ω0(x)}]ω1−p
1 (x) and ω̃2(x) = [min{1, ω1(x)}]1−pω0(x),

ṽ1(x) = [min{1, v0(x)}]v1−p
1 (x) and ṽ2(x) = [min{1, v1(x)}]1−pv0(x).

By (III2) and the Jones Factorization Theorem, we have that ω̃1, ω̃2, ṽ1 and ṽ2

are Ap-weights.

� (iii) Follows from (I2) and the Jones Factorization Theorem.

� (iv) We define the closed sets Gαβ by

Gαβ = G+
0,α

⋂
F+

1,β and Fαβ = F+
0,α

⋂
G+

1,β .
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If α � α′ and β � β′, we have

U+
0,α′ ⊂ U+

0,α, V +
0,α′ ⊂ V +

0,α, U+
1,β′ ⊂ U+

1,β , V +
1,β′ ⊂ V +

1,β .

Hence,

F+
1,β = (U+

1,β)c ⊂ (U+
1,β′)c = F+

1,β′ and G+
0,α = (V +

0,α)c ⊂ (V +
0,α′)c = G+

0,α′ .

Thus
Gαβ = G+

0,α ∩ F+
1,β ⊂ G+

0,α′ ∩ F+
1,β′ = Gα′β′ .

Moreover, if x ∈ Gαβ , we have

ωαβ(x) = (ω0)α(x)[(ω1)β ]1−p(x) = ω0(x)(ω1)1−p(x) = ω(x).

And by (b0) and (b1) we obtain Gαβ ⊂ Fαβ . In this case, if x ∈ Gαβ ⊂ Fαβ , we
have

vαβ(x) = (v0)α(x)[(v1)β ]1−p(x) = v0(x)(v1)1−p(x) = v(x).

Furthermore, by (CZ4), (b0) and (b1) we obtain∣∣∣∣
( ⋃

α,β>1

Gαβ

)c∣∣∣∣ =
∣∣∣∣ ⋂
α,β>1

Gc
αβ

∣∣∣∣
=

∣∣∣∣ ⋂
α,β>1

(G+
0,α ∩ F+

1,β)c
∣∣∣∣

=
∣∣∣∣ ⋂
α,β>1

[(V +
0,α) ∪ (U+

1,β)]
∣∣∣∣

� |V +
0,α| + |U+

1,β |

� c

α

∫
Rn

v0(x) dx +
c

β

∫
Rn

ω1(x) dx, for all α, β > 1.

Thus |(∪α,β>1Gαβ)c| = 0.

� (v) Follows from (II2).

Let us now prove (vi). We define the coefficients aαβ
ij by

aαβ
ij (x) = [(v1)β ]1−p(x)

{ ∞∑
k=1

(
1

|Iα
0,k|

∫
Iα
0,k

aij(y)vp−1
1 (y) dy

)
χIα

0,k
(x)

+ aij(x)vp−1
1 (x)χG+

0,α
(x)

}
,

where {Iα
0,k} is the Calderon–Zygmund decomposition of v0.

Let us check the first condition of (vi) for the coefficients aαβ
ij .
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(I) If x ∈ Gαβ = G+
0,α∩F+

1,β ⊂ Fαβ . In this case, since x ∈ G+
0,α and x ∈ F+

1,β ⊂ G+
1,β

(see (b1)), we have

aαβ
i,j (x) = [(v1)β ]1−p(x)aij(x)vp−1

1 (x)

= v1−p
1 (x)aij(x)vp−1

1 (x)

= aij(x).

And we have that ωαβ(x) = ω(x) and vαβ(x) = v(x). Consequently, we obtain

|ξ|2ωαβ(x) �
n∑

i,j=1

aαβ
ij (x)ξiξj � |ξ|2vαβ(x). (4.6)

(II) If x �∈ Gαβ , then either x �∈ G+
0,α or else x �∈ F+

1,β .

� If x �∈ G+
0,α, then x ∈ Iα

0,k (for only one k). In this case,

aαβ
ij (x) = [(v1)β ]1−p(x)

1
|Iα

0,k|

∫
Iα
0,k

aij(y)vp−1
1 (y) dy,

and this implies, using condition (4.1) and v = v0v
1−p
1 ,

aαβ
ij (x)ξiξj = [(v1)β ]1−p(x)

1
|Iα

0,k|

∫
Iα
0,k

aij(y)ξiξjv
p−1
1 (y) dy

� [(v1)β ]1−p(x)|ξ|2 1
|Iα

0,k|

∫
Iα
0,k

v(y)vp−1
1 (y) dy

= |ξ|2[(v1)β ]1−p(x)
1

|Iα
0,k|

∫
Iα
0,k

v0(y) dy

= |ξ|2[(v1)β ]1−p(x)(v0)α(x)

= |ξ|2vαβ(x).

On the other hand, since ω = ω0ω
1−p
1 and (v1)β � 2n(ω1)β , we obtain

aαβ
ij (x)ξiξj � [(v1)β ]1−p(x)|ξ|2 1

|Iα
0,k|

∫
Iα
0,k

ω(y)vp−1
1 (y) dy

� |ξ|22n(1−p)[(ω1)β ]1−p(x)
1

|Iα
0,k|

∫
Iα
0,k

ω0(y)ω1−p
1 (y)vp−1

1 (y) dy

� 2n(1−p)|ξ|2[(ω1)β ]1−p(x)
1

|Iα
0,k|

∫
Iα
0,k

ω0(y) dy. (4.7)

There are two possible cases.

(1) If x ∈ Qα
0,l ⊂ Iα

0,k. In this case, using the same argument in (4.5), we obtain

1
|Iα

0,k|

∫
Iα
0,k

ω0(y) dy � 1
2nC0

1
|Qα

0,l|

∫
Qα

0,l

ω0(y) dy =
1

2nC0
(ω0)α(x),
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where C0 is the A1-constant for the pair (v0, ω0). Hence, in (4.7) we obtain

aαβ
ij (x)ξiξj � 2n(1−p)

2nC0
|ξ|2[(ω1)β ]1−p(x)(ω0)α(x)

=
1

2npC0
|ξ|2ωαβ(x). (4.8)

(2) If x ∈ Iα
0,k − Q0,k, where Q0,k = ∪Qα

0,l, with Qα
0,l ⊂ Iα

0,k, that is, x ∈ F+
0,α.

In this case (ω0)α = ω0 and using the properties of the Calderon–Zygmund
decomposition, we obtain

1
|Iα

0,k|

∫
Iα
0,k

ω0(y) dy � α

C0
� 1

C0
ω0(x) =

1
C0

(ω0)α(x). (4.9)

Therefore,

1
2npC0

|ξ|2ωαβ(x) �
n∑

i,j=1

aαβ
ij (x)ξiξj � |ξ|2vαβ(x).

� If x �∈ F+
1,β and x ∈ G+

0,α ⊂ F+
o,α. In this case, we have x ∈ Iβ

1,k ⊂ Qβ
1,l (for

only one k and l = l(k), by (a1)). Thus

aαβ
ij (x)ξ1ξj = (v1)

1−p
β (x)aij(x)ξiξjv

p−1
1 (x)

� (v1)
1−p
β (x)v(x)vp−1

1 (x)|ξ|2

= (v1)
1−p
β (x)v0(x)|ξ|2

= (v1)
1−p
β (x)(v0)α(x)|ξ|2

= vαβ(x)|ξ|2.

On the other hand, since ω1(x) � C1v1(x) (Remark 4.12) and (v1)β(x) �
2n(ω1)β(x), we obtain

aαβ
ij (x)ξiξj = (v1)

1−p
β (x)aij(x)ξiξjv

p−1
1 (x)

� (v1)
1−p
β (x)ω(x)vp−1

1 (x)|ξ|2

� 2n(1−p)(ω1)
1−p
β (x)ω(x)vp−1

1 (x)|ξ|2

� 2n(1−p)ω1−p
β (x)ω(x)C1−p

1 ωp−1
1 (x)|ξ|2

= 2n(1−p)C1−p
1 (ω1)

1−p
β (x)ω0(x)|ξ|2

= (2nC1)1−p(ω1)
1−p
β (x)(ω0)α(x)

= (2nC1)1−pωαβ(x)|ξ|2. (4.10)

Therefore, by (4.6) and (4.8)–(4.10) we conclude that

λ̃|ξ|2ωαβ(x) �
n∑

i,j=1

aαβ
ij (x)ξiξj � |ξ|2vαβ(x),

where λ̃ = min{1, 1/2npC0, 1/(2nC1)p−1}.
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We need to show the second condition of (vi). Again, there are two possible cases.

(1) If x ∈ Gαβ , then aαβ
ij (x) = aij(x) and vαβ(x) = v(x). Hence the condition is

valid.

(2) If x �∈ Gαβ , then x ∈ Iα
0,k. In this case, since v = v0v

1−p
1 , we have

|aαβ
ij (x)| � [(v1)β ]1−p(x)

1
|Iα

0,k|

∫
Iα
0,k

|aij(y)|vp−1
1 (y) dy

� [(v1)β ]1−p(x)
1

|Iα
0,k|

∫
Iα
0,k

Cv(y)vp−1
1 (y) dy

= C[(v1)β ]1−p(x)
1

|Iα
0,k|

∫
Iα
0,k

v0(y)v1−p
1 (y)vp−1

1 (y) dy

= C[(v1)β ]1−p(x)
1

|Iα
0,k|

∫
Iα
0,k

v0(y) dy

= C[(v1)β ]1−p(x)(v0)α(x)

= Cvαβ(x).

Therefore, in both cases we obtain

n∑
i,j=1

|aαβ
ij (x)| � Cvαβ(x)

with constant C independent of α and β.

�

Let us now state the main result of this section. Using Lemma 4.13 we can prove that
the solution u ∈ H1,2(Ω, ω, v) for the Dirichlet problem

Lu = g −
n∑

j=1

Djfj , in Ω,

u − ψ ∈ H1,2
0 (Ω, ω, v),

with the conditions (4.1) and (4.2), can be approximated by a sequence of solutions of
non-degenerate elliptic equations.

Theorem 4.14. Suppose that the WSI holds and let (v, ω) ∈ S2. If g/v ∈ L(2σ)′
(Ω, v),

fj/ω ∈ L2(Ω, ω) and ψ ∈ H1,2(Ω, ω, v), then the solution u ∈ H1,2(Ω, ω, v) of the prob-
lem

Lu = g −
n∑

j=1

Djfj , in Ω,

u − ψ ∈ H1,2
0 (Ω, ω, v),


 (P)
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is the weak limit in H1,2(Ω, ω̃1, ṽ1) of a sequence of solutions um ∈ H1,2(Ω, ωm, vm) of
the problems

Lmum = gm −
n∑

j=1

Djfjm,

um − ψ ∈ H1,2
0 (Ω, ωm, vm),


 (Pm)

with ωm = ωmm and vm = vmm, Lmum = −
∑

Dj(amm
ij Dium), fjm = fj(ω/ωm)−1/2 and

gm = g(v/vm)−1/q (where ωmm, vmm, ω̃1, ṽ1 and amm
ij are as in Lemma 4.13).

Proof. By Remark 4.6 we have that (v, ω) ∈ A2, and by Theorem 4.7 we have
H1,2(Ω, ω, v) = W 1,2(Ω, ω, v). We denote by Am = (amm

ij )i,j=1,...,n the coefficient matrix
of the operator Lm.

First, we note that∥∥∥∥gm

vm

∥∥∥∥
L(2σ)′ (Ω,vm)

=
∥∥∥∥g

v

∥∥∥∥
L(2σ)′ (Ω,v)

and
∥∥∥∥fjm

ωm

∥∥∥∥
L2(Ω,ωm)

=
∥∥∥∥fj

ω

∥∥∥∥
L2(Ω,ω)

.

Since um is a solution of (Pm), by Theorem 4.9 we obtain

‖um‖H1,2(Ω,ωm,vm) � CΩ,ωm,vm

(∥∥∥∥gm

vm

∥∥∥∥
L(2σ)′ (Ω,vm)

+
∥∥∥∥fjm

ωm

∥∥∥∥
L2(Ω,ωm)

+ ‖ψ‖H1,2(Ω,ω,v)

)

� C

(∥∥∥∥g

v

∥∥∥∥
L(2σ)′ (Ω,v)

+
∥∥∥∥fj

ω

∥∥∥∥
L2(Ω,ω)

+ ‖ψ‖H1,2(Ω,ω,v)

)

= C1,

where the constant C is independent of m, since ω̃1 � ωm � ω̃2 and ṽ1 � vm � ṽ2, and
we have

CΩ,ωm,vm
=

[vm(Ω)]1/q

[ωm(Ω)]1/2 CΩ

� [ṽ2(Ω)]1/q

[ω̃1(Ω)]1/2 CΩ .

Consequently,
‖um‖H1,2(Ω,ω̃1,ṽ1) � ‖um‖H1,2(Ω,ωm,vm) � C1,

that is, um is a bounded sequence in H1,2(Ω, ω̃1, ṽ1). Hence, there exists a subsequence,
again denoted by {um}, which converges weakly to an element ũ ∈ H1,2(Ω, ω̃1, ṽ1),

um ⇀ ũ in H1,2(Ω, ω̃1, ṽ1).

We need to show that ũ ∈ H1,2(Ω, ω, v) and that ũ is a solution of the equation

Lũ = g −
∑

Djfj .
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The proof that ũ ∈ H1,2(Ω, ω, v) is similar to the proof in Theorem 3.2 (I) (by Theo-
rem 4.7 we have H1,2(Ω, ω, v) = W 1,2(Ω, ω, v)). To prove that Lũ = g −

∑
Djfj , we

need to show that∫
Ω

aijDiũDjϕ dx =
∫

Ω

gϕ dx +
∫

Ω

fjDjϕ dx, ∀ϕ ∈ H1,2
0 (Ω, ω, v).

Fix Gk = Gkk (as in Lemma 4.13). Using the fact that um is a solution of (Pm), and in
Gk we have ωm = ω, vm = v, gm = g, fjm = fj and amm

ij = aij (with m � k), we obtain∫
Gk

aijDiũDjϕ dx = lim
m→∞

∫
Gk

amm
ij DiumDjϕ dx

= lim
m→∞

(∫
Ω

amm
ij DiumDjϕ dx −

∫
Ω∩Gc

k

amm
ij DiumDjϕ dx

)

= lim
m→∞

(∫
Ω

gmϕ dx +
∫

Ω

fjmDjϕ dx −
∫

Ω∩Gc
k

amm
ij DiumDjϕ dx

)
.

As demonstrated in Theorem 3.2 (I), we have

(a) lim
m→∞

∫
Ω

gmϕ =
∫

Ω

gϕ dx;

(b) lim
m→∞

∫
Ω

fjmDjϕ dx =
∫

Ω

fjDjϕ dx; and

(c) since ‖ũ‖H1,2(Ω,ωm,vm) � C1 (C1 independent of m), and the matrix Am is sym-
metric and vm � ṽ2, we have∣∣∣∣

∫
Ω∩Gc

k

amm
ij DiumDjϕ dx| �

∫
Ω∩Gc

k

|〈Am∇um,∇ϕ〉| dx

�
∫

Ω∩Gc
k

〈Am∇um,∇um〉1/2〈Am∇ϕ, ∇ϕ〉1/2 dx

�
(∫

Ω∩Gc
k

〈Am∇um,∇um〉 dx

)1/2

×
(∫

Ω∩Gc
k

〈Am∇ϕ, ∇ϕ〉 dx

)1/2

� ‖um‖H1,2(Ω,ωm,vm)

(∫
Ω∩Gc

k

|∇ϕ|2vm dx

)1/2

� C1

(∫
Ω∩Gc

k

|∇ϕ|2vm dx

)1/2

� C1Cϕ[vm(Ω ∩ Gc
k)]1/2.

Applying [7, Theorem 2.9, Chapter IV], there exist constants δ > 0 and C > 0
such that, if Ω̄ ⊂ Q0 (Q0 is a fixed cube), then

vm(Ω ∩ Gc
k) � ṽ2(Ω ∩ Gc

k) � C ṽ2(Q0)
(

|Ω ∩ Gc
k|

|Q0|

)δ

.

https://doi.org/10.1017/S0013091500000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500000079


388 A. Carlos Cavalheiro

Hence, since |Ω ∩ Gc
k| → 0 when k → ∞ (by construction of Gk), we obtain

vm(Ω ∩ Gc
k) → 0 when k → ∞.

Therefore, by (a), (b) and (c), we can conclude that∫
Ω

aij(x)Diũ(x)Djϕ(x) dx =
∫

Ω

g(x)ϕ(x) dx +
∫

Ω

fj(x)Djϕ(x) dx,

that is, ũ is a solution of the equation

Lũ = g −
n∑

j=1

Djfj .

Therefore, we conclude that ũ = u (by the uniqueness of the Theorem 4.9). �

Remark 4.15. The uniform convergence on compacts does not immediately generalize
to the unequal weights cases.

In cases where ω = v, it is necessary to prove the Hölder continuity (3.7) that: if u is
a solution of Lu = 0, then

osc
B(x,ρ)

u � M − 1
M + 1

osc
B(x,8ρ)

u,

where M is independent of ρ, u and x (see Lemma 2.3.11 in [5]).
But in cases where ω �= v, if u is a solution of Lu = 0, then

osc
B(x,ρ)

u � eCµ(x,ρ) − 1
eCµ(x,ρ) + 1

osc
B(x,2ρ)

u,

where

µ(x, ρ) =
(

v(B(x, ρ))
ω(B(x, ρ))

)

(see § 5 in [2]).
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