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A FAMILY OF COMBINATORIAL IDENTITIES 
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In memory of Leo Moser 

1. Introduction. In a recent paper, Murray Eden [5] generalized the simple 
identity for the Eulerian product, 

(1.1) 1 + f **n+1 f l (1 +**0 = f l (1 +**), 
n = 0 i = l < = 1 

and obtained the following infinite family of identities : 
For A= 1,2, 3 , . . . , let 

(1.2) Fh(b; x) = f #^ ( n + 1 ) fl 0 +bx% 
n = 0 i = l 

where we assume throughout that \x\ < 1, empty products equal unity and empty 
sums equal zero; then 

(i.3) Fh(b-,x) = n (x-'-i) ft(i+bx*)-1- ' i1 ** n (*-y-1>. 
As Eden noted, Fh(b;x) is the generating function of ph(m9 n) which denotes 

the number of partitions of « into m parts, in which the largest part appears exactly 
h times and all other parts are distinct: 

(1.4) Fh(b;x)= f fph(m,n)bmx\ 
ro=1n=1 

One of our objectives in this paper is to establish an infinite family of identities 
(see Theorem 1 below) for the reciprocal of the Euler product, 

flii-bxT1, 
n = l 

analogous to Eden's (1.3) for the Euler product. This we do by generalizing the 
simple identity 

<>-5> 1+,?,(i-toxi-^...(i-fa-)-.U,('-fa'-)-'-
Later in the paper, we use Eden's identities (1.3) to obtain (in Theorem 2) an 

infinite class of identities for Il"=i (l—xn)~x. These identities are apparently new 
and are not covered by the result of Theorem 1. In §3 we comment on some other 
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known classes of expansions for this product. Towards the end of the paper, we 
consider an identity for 

fl(l-axn)(l-bxny\ 
n = l 

of which (1.1) and (1.5) are special cases. We show that this identity can be derived 
from Heine's fundamental transformation for 2</>i, and also we give a purely com
binatorial proof. We give an application of our identities proved in Theorem 2 as 
a conclusion to the paper. 

2. THEOREM 1. Let 

(2.1) Gh(b;x) = f bhxhn fl (l-bxm)~\ 
n = 1 m= 1 

Then for h = 1,2, 3 , . . . , 

Gh{b; x) = f l (1 -*0 ft (1 -bx')-1- f l (1 ~*0 
(2.2) 

- 2 ***• n (i-*o-
Proof. We first note that Gh(b;x) is the generating function for the number 

p{h\n) of partitions of n in which the largest part appears at least h times : 

(2.3) Gh(b;x)= | ^p™{m,n)bmx\ 
m = 1 n = 1 

where p{h)(rn, n) denotes the number of partitions of n into exactly m parts (repeti
tions allowed) in which the largest part appears at least h times. This gives, in
cidentally, the obvious relation 

(2.4) pP\n) = f p(h)(m, n). 
m = l 

Since both Gx(b, x) and n ^ = i ( l - ^ n ) _ 1 generate the function pa)(m,n) for 
«>0, [in addition to Gx{b\ x)], we have 

(2.5) 1 + Gx(b; x) = fl (1 - &tn)"x. 
n = l 

This is the same as the expansion in (1.5). 
We next prove the relation 

(2.6) Gh(b; x) = xhGh(b; x) + Gh+1(b; x) + bhx\ 

This can be proved by using combinatorial arguments analogous to Eden's for 
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his formula (3). But probably the simplest proof is the following one using ele
mentary manipulation of series. 

Gh(b;x)-Gh+1(b;x) = f (bhxhn-bh+1x<h+»n) f[ ( l - * ^ ) " 1 

n = l m = l 

= 2 (l-bxn)bhxhn flil-bx™)-1 

n = l m = l 

n = l m = l 

= xft f ***** rKi-fa")-1 

n = 0 m = l 

from which (2.6) follows at once. 
Finally, we prove (2.2) using mathematical induction on h. In view of (2.5), 

(2.2) holds for h=1. 
Suppose now that the formula holds for h=n. Then 

Gn+1(b; x) = (1 -xn)Gn(b; x)-xnbn 

= -no-^+fia-xono-^)-1 
i = l i = l fc=l 

-"i1*1*1 n a-**)-av. 
i = l fc=i+l 

Since the last two terms on the right side of the above equation can be together 
replaced by 

we see that (the formula) (2.2) holds for Gn+1(b; x) also, thus completing the proof 
of the theorem. 

3. A new family of identities for ri£= 1 (1 - *n) ~ *. From (1.3) and (2.2) we get the 
following expansions. For h= 1, 2, 3 , . . . , 

fl(1+6x0 = hfl(x-j-l)-1{l+ 2 bhxh(n+1)f{(l + bx1)} 
. - ^ i = l ^ = 1 n = 0 i = l 

+ 2 ATH*-'-!)-1; 

n(i-6*o_i = i+Y6'^ ri (i-*o-1 

+n o -*o 2****" n o -A**)-1. 
1=1 n = l m = l 
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In particular, when 6 = 1, (3.2) gives 

fc-i 

+n('-x0.^a-^..(i-^ 
This class of expansions for rit* i (1 -^O" 1 does not seem to have been noted 

before. We now obtain still another class of expansions for the same product. 

THEOREM 2. For /* = 1, 2, 3 , . . . , we have 
h-l 

(3.4) 
na-x")-1 = D2\i+hfx-( fi (x->-i)2 

+ 2 ( S *Wn + 1'2)Cfc_h,n(x))2}> 

(3.5) D = £»(x)= n ^ - l ) - 1 

and 

(3.6) Cm. nW = the coefficient ofbm in f\ (1 + bxi-112). 

Proof. The familiar Jacobi triple product identity gives 

(3.7) ft (1 - J C T 1 f i V 2 / 2 = f i (1 +Jcn~1/26) ft 0 +xn-1/26~1). 
n = l n= - oo n = l n = l 

Substituting for the products on the right side by applying the formula (3.1) and 
then equating the coefficients of bk (k=0,1, 2, . . .) on both sides, one obtains a 
whole class of expansions for n*=i (1—*n)_1 involving the two parameters k 
and h. In particular, taking fc=0 and carrying out some routine calculations, we 
get (3.4). 

REMARKS. The above technique for obtaining expansions for n^°=i(l— *n)~1 

corresponding to known expansions for n*=i (1 + bxn) is, of course, not new. For 
example, if instead of (3.1) we use Euler's formula ([3, p. 49]) 

oo co / , r v r 2 /2 

(3.8) fld+h--) -&Q-1 •(•-«) 
to substitute for the products on the right side of (3.7), and then compare the 
cofficients of bk on the two sides, we obtain the following sequence of identities of 
Rademacher ([10, pp. 61-62]). For &=0,1, 2 , . . . , 

CO 1 yk + 1 

n (i -*n)_i = (i_^)...(i_^)+(i-x)2(i-^)...(i-^+i) 
' 3 , 9 J xKk+r> 

+ '" + (l-x)2...(l-xi)2(l-x1 + 1) . . . ( l-x f c + ' ) + 
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In particular, for k=0, we get the identity—due to Euler ([7, pp. 280-281])— 

p.10» .qo-*"-£(i-,Hi-£.„(i-*y 
In their celebrated paper ([6, p. 279]), Hardy and Ramanujan referred to the 

identity (3.10) and made the cryptic remark that it is "capable of wide generaliza
tion—and on elementary algebraic reasoning." Commenting on this, Rademacher 
([10, pp. 61-62]) says: "this remark was at first not very obvious to me; but it 
can now be interpreted in the following way...". He then proves (3.9) and says 
" . . . and we get the 'wide generalization' of which Hardy and Ramanujan spoke". 
(Further extensions of this identity may be found in [1].) We wish to point out that 
(3.9) itself is the special case a=0, b = x of the (probably not too well known) 
Cauchy identity ([4, p. 48]): 

(3 m fr I1-**] = y (-îy^-axa-faO-..(«-fa»-1) -,«.„„ 
1 } nU\ l -6*7 nèo(l-x)...(l-xn)-(l-b)...(l-bx"-1)X 

(Professor L. Carlitz kindly drew our attention to this identity.) 
A combinatorial proof of (3.10) is known ([7, p. 281]) and such a proof can be 

given for (3.9) also. It would be interesting to know if a combinatorial proof can 
be given for (3.11) also. 

4. A generalization of (1.1) and (1.5). In this section we give two brief proofs of 
the following identity: 

(AU V ( l - f t ( l - f o ) . . . ( l - f o n - 1 ) * n _ la y\'xU y £r(l-Px?y\ 
{ } A ( l - y ) d - y x ) . . . ( l - y ^ - 1 ) \P x) V x M o - y * » ) / " 

We note that if y=0 we have a slightly altered form of (1.1), and if £=0 we have a 
result equivalent to (1.5). 

First proof. If we set a = r = x in [2, p. 576, eq. (II)], we have 

nèo X M (1 - y * 0 " iJo (1 -y*™) nt<0 1 ~ ^ + 1 M (1 - * > + l ) 

\p x) BU(i-y*")liAp M (i-*0 7 

~\p x) mU(l-y^m)lnU (I-JÈC») 7 

V x] \ x mV0(l -yxm)f 

where the penultimate equation follows from the summation of the x̂ o [9, p. 92, 
eq. (3.2,2.12)]. 
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Second proof. In (4.1), we replace x by x2, then jS by —j8x and y by yx2. Thus 
we have 

5. (1 +j3x)(l +j8x3).. .(1 +jSjc2"-1)x2n 

(4 2) " ° ( 1 -y* a X 1 - r* 4 ) - - -< 1 - r* a , , > 

Now clearly the coefficient of xNfiMyR in 

(4 3) ft a+/**-") 
m = o U ~ Yx ) 

is the number of partitions of N in which there are M odd parts and R even parts 
with the proviso that no odd parts are repeated. In the same manner 

} (l+ j8x)(l+ i8x3)...(l+)3x2 ' '-1)yx2 ' t 

( l - y j c 2 ) ( l - yx 4 ) . . . ( l - yx 2 n ) 

is the generating function for partitions of the above type when the largest part is 
In, and 

(1 +J3JCX1 +j8x3)...(l+j3x2"-1) i8x2"+1 

(4.5) 
(1 -yx2)( l - y x 4 ) . . .(1 -yx 2 n ) 

when the largest part is 2n+1. Summing (4.4) and (4.5) over all possible values of 
n we obtain a new expression for (4.3). Thus 

, 5. (1 +jSx)(l +j8x3).. .(1 +j8x2"-1)yx2" 
„t<i ( l - y x 2 ) ( l - y x * ) . . . ( l - y x 2 " ) 

g (l+fa)(l+ i8x3).. .(l+j3x2n-1)i8x2" + 1 ™(l+px2m + 1) 
»t-o (i -y*2)( i - y* 4 ) - • .(l -y* 2 n ) « U (l -yx 2 m + 2 ) ' 

Combining the two sums in (4.6), we obtain 

£ (l+jSx)(l+/3x3)...(l+jSx2"-1)x2 ' ' 
»-i ( l - y ^ X l - ^ 4 ) - . . ( l - y x 2 " ) 

(4.7) 

m U ( l - y x 2 m + 2 ) p x < 

Hence dividing both sides of (4.7) by y+;Sx and then adding 1 to each side, we have 
(4.2). 

5. An application of the identity (3.4). Let p{ri) denote, as usual, the number of 
unrestricted partitions of n, and q(n) the number of partitions of n into distinct 
odd parts. We generalize these functions as follows. Let 

(i) ph(n) = the number of partitions of n (repeated parts allowed) such that all 
the even parts are >2h; 

(ii) ^(71) = the number of partitions of n into odd parts which are distinct except 
the largest part which is repeated exactly h times. 
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It is clear that p^ri)=p(n) and qi(ri)=q(ri). We now prove the following curious 
result. 

THEOREM 3. For n>h2-h, 

(5.1) ph(n) = qh(n-h2 + h) (mod 2); 

in particular, 

(5.2) p(n) = q{n) (mod 2). 

Proof. We utilize the identity (3.4) of Theorem 2 and the fact that for any poly
nomial g(x) with integer coefficients we have for any (positive or negative) integer a, 

(5.3) (g(x)2a ^ (g(x2)Y (mod 2). 

Thus applying (5.3) to D(x) defined in (3.5), we get 

D2 = (D(x))2 s ^ - " / { ( l - * 2 ) . . .{l-x2h~2)} (mod 2). 

We similarly apply (5.3) to 

r i (*-'-1)2 

and 

\n=0 / 

and obtain from (3.4) after some simplification, 

(5-4) *** » » 
+ n *21 n ^-2~> 2 2 *2,mCfc_h>n(*

2) (mod 2). 

We now change the order of summation of the double sum on the right side of the 
above equation and note that 

i ck-u*2) = i ckM
2) = fio+x2*-1), 

k = h fc = 0 i = l 

where in deriving the last equation we use (3.6). Hence (5.4) gives 
oo xh(h-l) h-1 j 

Et ( I - * " ) - 1 = (l_JC2)...(l_;C2'>-2)+
(!L ( l-JC2) . . . ( l-X2 i) 

+ ( 1 -* 2 ) . . (1-x2*-2) n ? 0 ^ftn(1 + X ) ( 1 +*3)- • -(1 +x2n_1)' 

where the congruences throughout are taken modulo 2. 
This gives, in turn, 

(5.5) n * 0 - ^ n ) " " 1 s J C ^ - ^ + ^ O - ^ 2 ^ 2 ) - . - ^ - ^ " 2 ) 

+;c*a-V*(jc) 
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where 

Jk(*)= 2 ^ ( 2 n + 1 )(l+;c)(l+x3). . .(l+x2 n-1), 
n = 0 

and rin^i indicates that the product is taken for all natural numbers n except 
w=2, 4 , . . . , 2A-2. It is clear that 

n = l n = l 

and 

n = l 

Hence on comparing the coefficients of xn for n>h2 — h on both sides of (5.5), we 
obtain the result of Theorem 3. 

The fact that/?(«)=q(n) (mod 2) is, of course, directly derivable from the observa
tions that p(ri)—q(ri) enumerates the nonself-conjugate partitions of « [7, p. 279, 
Theorem 347]. 

REMARKS. A famous unsolved problem in partitions is to characterize all in
tegers n for which p(ri) is even. Our result (5.2) shows that this is equivalent to the 
analogous problem for q(n). It is known thatp(ri) takes even values and odd values, 
each for infinitely many n. From (5.2) we see that the same property holds for q(ri). 
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