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Gene–environment interaction (G × E) is likely to be a
common and important source of variation for complex

behavioral traits. Gene–environment interaction, or genetic
control of sensitivity to the environment, can be incorporated
into variance components twin and sib-pair analyses by parti-
tioning genetic effects into a mean part, which is independent
of the environment, and a part that is a linear function of the
environment. An approach described in a companion paper
(Purcell, 2002) is applied to sib-pair variance components
linkage analysis in two ways: allowing for quantitative trait
locus by environment interaction and utilizing information on
any residual interactions detected prior to analysis. As well as
elucidating environmental pathways, consideration of G × E in
quantitative and molecular studies will potentially direct and
enhance gene-mapping efforts.

Gene–environment interaction (G × E) is most tractable
when dealing with measured (as opposed to latent) genetic
and environmental effects. In a companion paper dealing
with latent G × measured E interaction (Purcell, 2002), an
approach is outlined with reference to the classical twin
study. In this paper the same approach is extended to quan-
titative trait locus (QTL) sib-pair linkage analysis, within a
variance components framework. Although analysis of G ×
E should eventually lead to a better understanding of the
etiology of complex traits and diseases, in the context of
linkage analysis (which only identifies fairly large genomic
regions likely to harbor disease-causing genes) the current
goal is simply to increase power to detect genes of small
effect, rather than dissecting genetic-environmental archi-
tectures per se.

The variance components approach to sib-pair QTL
linkage analysis is, in essence, only a trivial extension of the
twin model (Amos, 1994; Fulker et al., 1999; Kruglyak &
Lander, 1995). Assuming we have only full sibling pairs,
the likelihood is parameterized in terms of three variance
components: variance due to the QTL, Q, variance due to
shared sibling effects, S, and variance due to nonshared
sibling effects, N. Polygenic additive effects load onto both
S and N. The basic allele-sharing test of linkage is of the
relationship between phenotypic sib-pair similarity and
IBD sharing at the test locus. A “weighted-likelihood con-
ditioning-on-trait-values” approach (Sham et al., 2000) is
adopted in the following analyses, in order to provide a
robust test of linkage in selected samples.

Two ways in which G × E can feature in QTL linkage
analysis are considered: (1) when the actual QTL effect is
moderated by a measured covariate (Q × M), and (2) when
a residual variance component is moderated by a measured
covariate (i.e., S × M and N × M).

Q × M in Linkage Analysis
Analogous to the modelling of a moderating effect on the
additive genetic path, a, in the twin model (Purcell, 2002),
the QTL path q is simply modified to (q+βQM) or even
(q+βQM+δQM 2) to incorporate Q × M interaction, repre-
senting linear and nonlinear interactions, respectively,
between the additive genetic value at the QTL, aQ, and the
moderator. We assume that the presence or absence of a
particular allele is unrelated to the moderator (i.e., no
gene–environment correlation).

The simulations reported in Table 1 show four condi-
tions varying in (1) QTL effect (aQ > 0) (2) Q × M
interaction (βQ  > 0) and (3) residual G x E interaction (A ×
M in fact, i.e., βX > 0). For each condition 200 replicate
datasets were simulated, and a number of likelihood ratio
test statistics were constructed. The base model SN has no
QTL effects; model Q – SN allows for a simple QTL effect;
model Q – SN – XQ allows for a moderator-linked QTL
effect as well as a main effect. Two additional models also
allow for the possibility of interaction effects between the
residual variance components (S and N) and the measured
moderator variable M. From left to right, the three likeli-
hood ratio tests shown in Table 1 therefore represent (1) a
simple 1 degree of freedom test for an additive QTL effect
(2) a 2 degree of freedom test for a QTL effect that might
be moderated by the variable M and (3) as for the previous
test, but allowing for S × M and N × M effects under both
the super- and submodel. In all cases, 1000 DZ twin pairs
were simulated, with residual variance components a = c = e
= 1 and an additive biallelic QTL with equal allele frequen-
cies. The expected variance components associated with the
Q × M corresponding to the fourth row of Table 1 are illus-
trated in Figure 1.
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The first two rows of Table 1 represent the case of no
QTL effect. In the first row (no QTL effect, no interac-
tions) the test statistics are all close to their expected values
under the null. The second row (no QTL effect, residual
interaction) shows that the combined test of a moderated
QTL effect (second column) is highly anti-conservative in
the presence of residual A × M, with a highly significant χ2

2

= 13.74 (expected χ2 is 1.5, as the test of Q only involves
0.5 degree of freedom). This bias is due to the greater vari-
ance at higher levels of the moderator (due to the residual
interaction) which the βQ parameter attempts to account
for. Properly modelling this residual non-additivity (i.e., by
the inclusion of S × M and N × M terms, as in the third
column) reduces this bias. Therefore, it is unwise to
perform a simple Q × M type of analysis when conducting
a linkage test when there is non-additivity in the data.

The next two rows of Table 1 represent the case of a
large QTL effect (aQ = 2). In the third row (QTL effect, no
interactions) the likelihood ratio tests are all similar
(although the first has one less degree of freedom). In the
fourth row (QTL effect, QTL interacts with moderator),
the “robust” linkage test (third column) gives very little
extra information compared to a simple QTL test (first
column). This is because the S × M and N × M compo-
nents will soak up the Q × M effect (i.e., the opposite of
the above effect). If one were able to be sure that there were

no significant residual interaction effects, however, then the
basic test of a moderated QTL effect (second column)
would in fact provide more power under the alternate.

N × M and QTL Linkage in Selected Samples
The use of selective sampling schemes for linkage is highly
desirable, especially when working with sibling pairs, as
most pairs will yield very little information for linkage. To
facilitate this, an index of potential informativeness for each
pair can be calculated, conditional on their observed trait
scores, the QTL allele frequency and effect size, and the
residual sibling (Purcell et al., 2001; Sham & Purcell, 2001).
Irrespective of QTL effect size, a higher residual correlation
increases power to detect a QTL (Sham et al., 2000).

Typically, a single value for the sample residual correla-
tion is specified when selecting or analyzing a sample for
linkage. However, in the presence of G × E there will, by
definition, be heterogeneity in the residual correlation
across the sample. This section explores the possibility of
using prior knowledge of such heterogeneity (when the rel-
evant moderating variables have also been measured in the
linkage sample) to better specify pair-specific residual corre-
lations in order to increase power.

A correlation is a property of a number of paired obser-
vations: specifying a pair-specific correlation implies that
the pair belongs to a particular subset which has that corre-
lation. If a moderator variable M interacts with either A, C
or E components, then M can predict which pairs will have
higher residual sibling correlations. Consider, for example,
an E × M interaction such that individuals scoring higher
on M will tend to have lower effects of E. In this case, pairs
in which both members score high on M will have a higher
residual correlation. All other things being equal, it would
therefore be preferable to select this pair over a pair with a
lower residual correlation.

Figure 2 illustrates the relationship between sample
selection and G × E in three graphs. Panel a) illustrates the
relationship between trait score and expected informative-
ness: concordant high and low pairs and discordant pairs in
particular are most informative. Panel a) assumes a constant
sibling correlation across the sample however, which might
not be the case. Panel b) illustrates how the residual sibling
correlation might change as a function of a moderator vari-
able, in the presence of an E × M interaction similar to that
described above. It would therefore be desirable to take this
information into account when selecting and analyzing
pairs for linkage: panel c) shows the marked impact on the
expected non-centrality parameter (via the expected resid-
ual correlation) for the linkage test in the presence of G ×
E. The graph shows the expected non-centrality parameter
(NCP) per randomly-selected sibpair as a function of sib
pair moderator (assuming, in this case, that the moderator
is identical between sibs and that the main effect of the
moderator has been partialled out of the trait). In particu-
lar, modelling E × M interaction can greatly increase power
— it seems that residual A × M and C × M do not influence
the test so much (as they operate on both sibling variance
and covariance, and so have less impact on the correlation).

It is interesting to note that these results are related to
an observation regarding bivariate linkage analysis and the

Table 1

QTL Linkage Incorporating Q x M Interaction in DZ Twin Pairs, 
with and Without A × M Interaction Also

Likelihood ratio tests
Q – SN Q – SN – XQ Q – SN – XQ

Simulated –XS XN

aQ βQ βX SN SN SN – XS XN

0 . . 0.62 1.93 1.77
0 . 0.2 0.58 13.74 1.81
2 . . 48.10 48.27 48.67
2 0.3 . 45.13 106.87 49.66

Figure 1
Example of a simulated Q × E interaction βQ = 0.3 with additive
genetic value aQ = 2 and dominance deviation dQ = 0.
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Figure 2 
G × E and sample selection for linkage. See text for explanation.

source of residual cross-trait phenotypic covariance: that
power increases dramatically with decreasing nonshared
sources of covariance (Evans, 2002). In this sense, bivariate
analysis and including a moderator variable can have a
similar effect: the impact on the NCP of modelling E × M,
as shown above in panel c), seems to reflect a similar trend
to that shown in Figure 2 of Evans (2002).

Focusing on E × M, we assume that prior twin analyses
have estimated a significantly nonzero value for βZ . For a
phenotyped sample of pairs also measured on M, this prior
knowledge can be used (1) to select sibling pairs which are
most informative for linkage, by calculating the residual
correlation applicable to that pair conditional on measured
M and (2) in analysis, to use the pair-specific residual corre-
lations. Ideally, the sample in which βZ was estimated will
be as close as possible to the linkage sample (for example,
the linkage sample could be all the DZ pairs from the twin
sample). Effects of misspecifying βZ are explored below in
the simulations.

Using a method based on the Haseman-Elston linkage
test (Haseman & Elston, 1972; Sham & Purcell, 2001), the
expected noncentrality parameter (NCP) for pair i is

[ – + ]
24r

—
1 – r 2

(Ti1– Ti2)
2

——
(1 – r)2

(Ti1 + Ti2)
2

——
(1 + r)2

q4

—
16

assuming complete marker informativeness, where Ti1 and
Ti2 are the standardized trait scores for the pair, r is the
sibling correlation, and q 2 is the proportion of variance due
to the QTL. This index can be used to rank order sibling
pairs by potential informativeness. In the presence of hetero-
geneity, it is possible to calculate pair-specific correlations,
which will more accurately model the residual variance in
the sample. For pair i, conditional on estimated values of
a2, c 2, e 2 and βZ and measured Mi1 and Mi2, then ri can be
calculated as

ri = 

which can be substituted in the above expression. The trait
score for sib j of pair i, Tij , also has to be standardized to
unit variance conditional on the moderator. In the case of
a2, c 2, e 2 and βZ having been previously estimated

T /
ij = Tij /�a2� +� c�2�+� (�e�+� β�ZM�ij )�2�

although the expressions for the moderator-conditional
standardized scores and correlations will change depending
on which models are being used to give the prior parameter
estimates. Sibships, not twins, may only have been avail-
able, for example.

0.5 × a2 + c 2

—————
�a2� +� c�2�+� (�e�+� β�Z M�i1)�2� �a2� +� c�2�+� (�e�+� β�ZM�i2)�2�
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Table 2

Results of QTL Linkage Simulations Incorporating E x M Interaction

10% most informative Unselected
% significant at p = % significant at p = 

aQ q̂ LRT 0.025 0.005 0.0005 q̂ LRT 0.025 0.005 0.0005 
w/ E × M

0 0.012 0.53 2 1 0 0.010 0.56 2.5 1 0.5 
0.5 0.047 2.73 27 9.5 2.5 0.042 3.21 30 14 4.5 
1 0.180 20.18 100 98 88 0.184 31.82 100 100 99 

w/out E × M
0 0.011 0.43 1.5 0 0 0.010 0.53 2.5 1 0 
0.5 0.028 1.58 14 3.5 1 0.033 2.35 24 9 1.5 
1 0.101 11.40 90.5 75.5 45 0.121 21.30 99.5 95.5 91.5 

w/ incorrect E × M
0 0.006 0.57 3 0.5 0 0.005 0.43 2 0 0 
0.5 0.015 1.29 9.5 2.5 0 0.016 1.70 15.5 5 1 
1 0.079 9.41 80.5 62 34 0.100 17.53 97 91 78.5

The formulation of the linkage model used here (Sham
et al., 2000) has only a single free parameter, the QTL vari-
ance, q2. The total variance and residual correlation are
fixed, either to their sample values or other values estimated
in previous studies (e.g., in the case of a selected sample).
In the present case, the variance is fixed to unity and the
residual correlation fixed to the pair-specific values, condi-
tional on the moderator. The covariance matrices
conditional on IBD sharing at the test locus are therefore

[ 1 ri – q2/2], [1   ri ] and [  1 ri + q2/2]ri – q 2/2 1 ri 1 ri + q 2/2 1

for pairs sharing 0, 1 and 2 alleles IBD, respectively.

Simulations

Simulations based on sib-pair datasets featuring a residual E
× M interaction in all cases were conducted under a
number of conditions: varying QTL effect, sample selec-
tion scheme and whether or not the residual interaction
was included or misspecified in the analysis model (Table
2). Under each condition a dataset of 5000 DZ pairs was
simulated 200 times. Selected sample analyses were based
on the most informative 10% (i.e., 500 pairs). The QTL
effect was specified in terms of the additive genetic value,
aQ, which was 0, 0.5 or 1, for a fully informative biallelic
test locus with equifrequent alleles. Three final conditions
concerned the residual interaction, which was simulated as
βZ = 0.5 in all cases (illustrated in Figure 3). In the first
case, “w/ E × M ”, the correct moderator variable was incor-
porated into the analysis with the correct estimate of βZ to
form the pair-specific residual correlations used in selection
and analysis. In the second condition, “w/ out E × M ”,
both selection and analysis were performed as usual, ignor-
ing the moderator M. In the third condition, the true
moderator was replaced with an unrelated random variable
(i.e., which would have no moderating properties with
respect to the trait) but βZ was still assumed to be 0.5, 

representing a misspecification of the moderating effect in
selection and analysis.

Under the null of no QTL effect (aQ = 0), all models
show average test statistics close the expected value (0.5),
whether or not the moderator was included or misspecified
and whether or not the analysis was performed on the
whole or a selected sample. The q̂ column gives a standard-
ized estimate of the QTL variance, which are all close to
zero under the null. For the selected and unselected
samples, Table 2 also gives the % of replicates (out of 200)
significant at various significance levels, which are all close
to expected values.

Under the alternate hypothesis (i.e., aQ > 0) it is clear
that selected samples are more efficient than unselected
samples (e.g., for aQ = 1, in the condition not incorporat-
ing the moderator, on average 54% (11.40/21.30 = 0.535)
of the signal was recovered by 10% of the sample).
Incorporating the moderator results in a considerable gain
in information. In terms of the average test statistic, for 
aQ = 1 in unselected samples, there is a gain of 50% 

Figure 3
E × M interaction with residual components a = c = e = 1 and βZ = 0.5,
as used in all simulations.
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(i.e., comparing “w/ E × M” and “w/ out E × M” condi-
tions, (31.82-21.30)/21.30). For aQ = 1 in selected samples,
there is a gain of 77% (20.18-11.40)/11.40. In terms of the
percentage significant with this sample size at a particular
significance level, the gains can be great; for example, 88%
are significant for aQ = 1 at p = 0.0005 when the moderator
is included compared to only 45% when it is not.

The “w/ incorrect E × M ” rows represent the scenario
where the moderator is actually completely unrelated to the
trait (i.e., the estimate of βZ obtained from another dataset
is completely unwarranted in this one). As can be seen, this
does reduce power to some extent, although the test still
appears to have the correct performance under the null. 
In the case of aQ = 1 the average test statistic drops by
approximately 18% for both selected and unselected
samples, the majority of the signal remains intact despite
the complete misspecification.

If there is strong reason to believe that the moderating
effect does exist in the linkage sample, then both selecting
and analyzing incorporating the moderator seems desirable.
If the effect is less certain, then it might not be advisable to
select on the basis of the moderator, although it would be
of interest to conduct the analyses both with and without
incorporation of the putative moderator.

Discussion
This paper has shown some of the potential gains and loses
involved with modelling G × E in the QTL linkage analyses.
In particular, it was shown (1) that a simple approach to Q
× M interaction can lead to false positives and (2) that the
benefits of bivariate linkage can potentially be harnessed in a
G × E framework with a moderator that interacts with the
residual nonshared component, whether or not the second
trait is influenced by the QTL. Further work on gene-envi-
ronment interaction will hopefully increase the chance of
detecting QTL using linkage in small sibships.

Software

Scripts to perform the above analyses using Mx (Neale,
1997) can be found at http://statgen.iop.kcl.ac.uk/gxe/.
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