VOL. 4 (1971), 259-262.

Convergence criteria for Fourier series

V. Yenu Gopal Rao

The following convergence criterion of Fourier series is due to M. Izumi, S. Izumi and the author:

THEOREM. Let $\Delta \geq 1$. If

(i)
$$\int_0^t \phi(u)du = o(t)$$
, and

$$(ii) \int_{t^{1/\Delta}}^{\delta} |d(u^{-\alpha}\phi(u))| \leq At^{-\alpha} \quad as \quad t \to 0$$

for an a, 0 < a < 1 and for $a \delta$, $0 < \delta < \pi$, then the Fourier series of $\phi(t)$ is convergent at the origin.

The object of this paper is to generalize the above theorem in the Hardy-Littlewood direction.

1.

Let $\, \phi(t) \,$ be an even periodic function which is integrable $\, L \,$ and let

$$\phi(t) \sim \sum_{n=1}^{\infty} a_n \cos nt .$$

Sunouchi [4] generalized the Young-Pollard [3]-convergence criterion as follows:

THEOREM A. The Fourier series of $\phi(t)$ converges at the point t=0 to the value zero, provided that there is a $\Delta \geq 1$ such that

Received 13 November 1970. The author wishes to express his thanks to Mrs Masako Izumi and Dr Shin-ichi Izumi for their interest during the preparation of this paper.

$$(1.1) \qquad \int_0^t \phi(u) du = o(t^{\Delta})$$

and

(1.2)
$$\int_0^t |d(u^{\Delta}\phi(u))| = O(t), 0 \le t \le \eta.$$

Recently we [2] proved the following theorem:

THEOREM B. Let $\Delta \geq 1$. If the condition (1.1) holds and

(1.3)
$$\int_{t}^{\delta} |d(u^{-a}\phi(u))| = O(t^{-a}) \quad as \quad t \to 0$$

for an a, 0 < a < 1 and for a δ , $0 < \delta < \pi$, then the Fourier series of φ is convergent at the origin.

Hardy and Littlewood [1] generalized the condition (1.1) for the case Δ = 1 in the form

$$\phi_{R}(t) = o(t^{Y})$$
, as $t \to 0$

for any $\beta > 0$, where $\phi_{\beta}(t)$ is the β -th integral of $\phi(t)$.

Corresponding to this result we prove the following theorem, which generalizes Theorem B in the Hardy-Littlewood direction.

THEOREM. Let $\Delta = \gamma/\beta \ge 1$ and $1 > \beta > 0$. If

$$\phi_{g}(t) = o(t^{\gamma})$$

where $\phi_{g}(t)$ is the B-th integral of $\phi(t)$, and further if

and $\Delta > 1$, then the Fourier series of $\phi(t)$ converges at t = 0.

2.

Proof of the theorem. To prove our theorem we need to show that

$$\int_0^\delta \phi(t) \frac{\sin nt}{t} dt = o(1) \text{ as } n \to \infty.$$

Putting $n^{-1/\Delta} = \alpha$, we have

$$\int_{0}^{\delta} \phi(t) \frac{\sin nt}{t} dt = \int_{0}^{\alpha} \phi(t) \frac{\sin nt}{t} dt + \int_{\alpha}^{\delta} \phi(t) \frac{\sin nt}{t} dt$$
$$= I + J,$$

say.

Putting
$$\theta(t)=t^{-\eta}\phi(t)$$
, then $\theta(t)=\mathcal{O}\left(t^{-\eta\Delta}\right)$ by (1.5). Since
$$\Theta(t)=\int_{t}^{\delta}\frac{\sin nu}{u^{1-\eta}}\;du=\mathcal{O}\left(\frac{1}{nt^{1-\eta}}\right)\;\;\mathrm{as}\;\;t\to0\;\;,$$

we get

$$J = \left[\theta(t)\theta(t)\right]_{\alpha}^{\delta} - \int_{\alpha}^{\delta} \theta(t)d\theta(t)$$

$$= O\left(\frac{1}{n^{(1-\eta)(1-1/\Delta)}}\right) + O\left(\frac{1}{n}\int_{\alpha}^{\delta} \frac{|d\theta(t)|}{t^{1-\eta}}\right)$$

$$= O\left(\frac{1}{n^{(1-\eta)(1-1/\Delta)}}\right) = O(1) \quad \text{as} \quad n \to \infty.$$

We shall now estimate $\ I$.

Putting
$$\Phi(t) = \int_0^t \Phi(u) du$$
 and integrating by parts we have
$$I = \left[\Phi(t) \frac{\sin nt}{t}\right]_0^\alpha - \int_0^\alpha \Phi(t) \frac{nt \cos nt - \sin nt}{t^2} dt$$

$$= I_1 + I_2$$

say. Since

$$\Phi(t) = o(t^{1+\gamma-\beta}) = o(t)$$

by (1.4), we get

$$I_1 = o(1) .$$

Finally

$$I_{2} = \int_{0}^{\alpha} \frac{nt cosnt - sinnt}{t^{2}} dt \int_{0}^{t} \phi_{\beta}(t) (t - u)^{-\beta} du$$
$$= \int_{0}^{\alpha} \phi_{\beta}(u) du \int_{u}^{\alpha} \frac{nt cosnt - sinnt}{t^{2}} (t - u)^{-\beta} dt$$

where the inner integral becomes

$$n^{1+\beta} \int_{nu}^{n\alpha} \frac{\tau \cos \tau - \sin \tau}{\tau^2} (\tau - nu)^{-\beta} d\tau = O\left[\frac{n^{\beta}}{u}\right].$$

Thus we get

$$I_2 = O\left(n^{\beta} \int_0^{\alpha} \frac{\phi_{\beta}(u)}{u} du\right)$$
$$= o\left(n^{\beta} \int_0^{\alpha} \frac{u^{\gamma}}{u} du\right)$$
$$= o(1) .$$

This completes the proof of the theorem.

References

- [1] G.H. Hardy and J.E. Littlewood, "Notes on the theory of series (VII): On Young's convergence criterion for Fourier series", Proc. London Math. Soc. (2) 28 (1928), 301-311.
- [2] Masako Izumi, Shin-ichi Izumi and V.V. Gopal Rao, "On the convergence criteria of Fourier series", *Proc. Japan Acad.* (to appear).
- [3] S. Pollard, "On the criteria for the convergence of a Fourier series", J. London Math. Soc. 2 (1927), 255-262.
- [4] Gen-ichirô Sunouchi, "Notes on Fourier analysis. XLVI. A convergence criterion for Fourier series", *Tôhoku Math. J.* (2) 3 (1951), 216-219.

Institute of Advanced Studies, Australian National University, Canberra, ACT.