Influence of SNPs in nutrient-sensitive candidate genes and gene–diet interactions on blood lipids: the DiOGenes study

Lena K. Brahe1*, Lars Ångquist2, Lesli H. Larsen1, Karani S. Vimaleswaran3,4, Jörg Hager5, Nathalie Viguerie6, Ruth J. F. Loos5,7, Teodora Handjieva-Darlen ska8, Susan A. Jebb9, Petr Hlavaty10, Thomas M. Larsen1, J. Alfredo Martinez11, Angeliki Papadaki8, Andreas F. H. Pfeiffer13,14, Marleen A. van Baak15, Thorkild I. A. Sørensen16, Claus Holst2, Dominique Langin6, Arne Astrup1 and Wim H. M. Saris15

1Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Rolighedsvej 30, 1958 Frederiksberg C, Denmark
2Institute of Preventive Medicine, Copenhagen University Hospitals, Copenhagen, Denmark
3MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
4MRC Centre of Epidemiology for Child Health, UCL Institute of Child Health, London, UK
5CEA Genomics Institute – Centre National de Génotypage, Evry, France
6Inserm U1048, Obesity Research Laboratory, Metabolic and Cardiovascular Medicine Institute, University of Toulouse, Toulouse, France
7Mount Sinai School of Medicine, New York, NY 10029, USA
8National Transport Hospital, Department of Nutrition, Dietetics and Metabolic Diseases, Sofia, Bulgaria
9MRC Human Nutrition Research, Elsie Widdowson Laboratory, Cambridge, UK
10The Obesity Management Center, Institute of Endocrinology, Prague, Czech Republic
11Department of Physiology and Nutrition, University of Navarra, Pamplona, Spain
12Department of Social Medicine, University of Crete, Heraklion, Greece
13Department of Clinical Nutrition, German Institute of Human Nutrition, Nuthe tal, Germany
14Department of Endocrinology, Diabetes and Nutrition, Charité Medical University, Berlin, Germany
15Department of Human Biology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
16Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark

(Submitted 6 July 2012 – Final revision received 12 December 2012 – Accepted 12 December 2012 – First published online 29 January 2013)

Abstract
Blood lipid response to a given dietary intervention could be determined by the effect of diet, gene variants or gene–diet interactions. The objective of the present study was to investigate whether variants in presumed nutrient-sensitive genes involved in lipid metabolism modified lipid profile after weight loss and in response to a given diet, among overweight European adults participating in the Diet Obesity and Genes study. By multiple linear regressions, 240 SNPs in twenty-four candidate genes were investigated for SNP main and SNP–diet interaction effects on total cholesterol, LDL-cholesterol, HDL-cholesterol and TAG after an 8-week low-energy diet (only main effect), and a 6-month ad libitum weight maintenance diet, with different contents of dietary protein or glycaemic index. After adjusting for multiple testing, a SNP–dietary protein interaction effect on TAG was identified for lipin 1 (LPIN1) rs4315495, with a decrease in TAG of 20·26 mmol/l per A-allele/protein unit (95 % CI 20·38, 20·14, P = 0·000043). In conclusion, we investigated SNP–diet interactions for blood lipid profiles for 240 SNPs in twenty-four candidate genes, selected for their involvement in lipid metabolism pathways, and identified one significant interaction between LPIN1 rs4315495 and dietary protein for TAG concentration.

Key words: Blood lipids: Gene–diet interactions: Protein: Glycaemic index: SNPs

Abbreviations: DiOGenes, Diet Obesity and Genes; GI, glycaemic index; GWAS, genome-wide association studies; HDL-C, HDL-cholesterol; HGI, high glycaemic index; HP, high dietary protein; LD, linkage disequilibrium; LDL-C, LDL-cholesterol; LED, low-energy diet; LGI, low glycaemic index; LP, low dietary protein; LPIN1, lipin 1; LPL, lipoprotein lipase; MAF, minor allele frequency; MLXIPL, MLX interacting protein-like; PPARGC1A, PPARy co-activator 1-α; TC, total cholesterol.

* Corresponding author: L. K. Brahe, fax +45 553 32 483, email lekila@life.ku.dk
Dyslipidaemia is an important risk factor for CVD\(^{(1)}\). Overweight and obesity, in particular intra-abdominal fat deposition, is associated with decreased HDL-cholesterol (HDL-C) and hypertriglycerolaemia\(^{(1)}\). Plasma concentrations of total cholesterol (TC), LDL-cholesterol (LDL-C), HDL-C and TAG are modified by diet, physical activity and smoking status\(^{(1)}\). However, there are considerable inter-individual differences in metabolic susceptibility to these lifestyle factors\(^{(2,3)}\). These differences may partly be determined by genetic factors, and several genome-wide association studies (GWAS) have identified loci that are associated with blood lipid concentrations\(^{(4–15)}\). Still, these loci only explain a part of the variance in lipid profiles, and this could be partly due to gene–gene and gene–environment interaction effects\(^{(16)}\), as previous candidate gene studies have suggested interaction effects were examined after a 6-month ad libitum LDLC, HDL-C and TAG were examined after an 8-week low-energy diet (LED), and both SNP main and SNP–diet interaction effects were examined after a 6-month ad libitum weight maintenance diet, with different contents of dietary protein or glycaemic index (GI).

Materials and methods

The DiOGenes study (www.DiOGenes-eu.org) is a Pan-European randomised dietary intervention study exploring the effect of diets with different contents of protein and GI on weight regain and metabolic health after weight loss. The study was conducted according to the guidelines laid down in the Declaration of Helsinki, and all procedures involving human subjects were approved by the local ethical committee in the respective country. Written informed consent was obtained from all subjects. The participants were overweight or obese (BMI 27−45 kg/m\(^2\)) but otherwise healthy, with no heart disease, diabetes, severe dyslipidaemia or hypertension. The present trial has been registered at ClinicalTrials.gov (identification no. NCT00390537).

Design and methods have been described in detail previously\(^{(19)}\). In brief, participants who had lost ≥8% of their initial body weight after an 8-week LED (3400−4200 kJ/d) were randomised to one of five different 6-month ad libitum weight maintenance diets based on either combinations of low/high dietary protein (LP/HP) and low/high GI (LGI/HGI), or a control diet according to national dietary guidelines: (1) LP/LGI; (2) LP/HGI; (3) HP/LGI; (4) HP/HGI; (5) control diet. The target for the dietary intervention was a difference of 12% of total energy consumed from protein between the HP and LP diets and a difference of 15 GI units between the HGI and LGI diets. The actual differences between the respective diets calculated from diet registrations were 5−4% of energy consumed from protein and 5 GI units\(^{(20)}\). TC, HDL-C and TAG were analysed at the Department of Clinical Biochemistry, Gentofte University Hospital, Denmark, and LDL-C was calculated using Friedewald’s equation\(^{(21)}\).

Initially, sixty-nine candidate nutrient-sensitive genes were selected based on prior knowledge of whether the pathway, gene, gene transcript or SNP was implicated in obesity, weight loss, weight regain or associated diseases with emphasis on the interaction with dietary protein or GI, from literature search and the TUB database at IntegraGen (Evry, France) for the purpose of investigating their role in body weight regulation during dietary treatment. For the presumed nutrient-sensitive candidate genes, a comprehensive approach was used to ensure genetic coverage of the locus (±5 kb) by selecting tagSNPs for each of the selected genes. TagSNPs were identified from the International HapMap data for European ancestry (release 20, NCBI build 35), and linkage disequilibrium (LD) structure was evaluated using Haplovew software, version 3.32 (Broad Institute of MIT and Harvard, MA, USA)\(^{(22)}\). TagSNPs were selected using Tagger\(^{(23)}\) with a single marker option with an LD threshold of \(r^2 \geq 0.8\). SNPs located in exonic regions, frequently studied, or included in the Illumina HumanHap 300 were preferentially included as tagSNPs, while SNPs with an expected low genotyping success rate (in close proximity to another SNP (60 bp) or in a repeat region) were deselected. In total, 708 tagSNPs were selected for genotyping (Table S1, available online).

Among the selected nutrient-sensitive genes, the genes that were known from the literature to be involved in lipid metabolism were included in the analyses; these twenty-four genes included: adiponectin (ADIPOQ)\(^{(24)}\); \(\beta_2/\beta_3\)-adrenergic receptor (ADRB2,3)\(^{(25)}\); activating transcription factor 6 (ATF6)\(^{(26)}\); basic helix-loop-helix family, member e40 (BHLHE40)\(^{(27)}\); cavinolin 1 (CAV1)\(^{(28)}\); CCAAT/enhancer binding protein (CEBPB)\(^{(29)}\); cathespin S (CTSS)\(^{(30)}\); fatty acid-binding protein 1 (FABP1)\(^{(31,32)}\); fatty acid-binding protein 4 (FABP4)\(^{(33)}\); farnesyltransferase (FNTA)\(^{(34)}\); leptin (LEP)\(^{(35)}\); lipin 1, 2, 3 (LPIN1, 2, 3)\(^{(36,37)}\); lipoprotein lipase (LPL)\(^{(38)}\); matrix metalloproteinase 9 (MMP9)\(^{(39)}\); mesocolamin (MRPS)\(^{(40)}\); nuclear receptor subfamily 1, co-activator 1-\(\alpha\) (PPARc-\(\alpha\))\(^{(41)}\); phosphoenolpyruvate carboxy-kinase 2 (PKC2)\(^{(42)}\); PPAR\(\gamma\) co-activator 1-\(\alpha\) (PPARGC1A)\(^{(43)}\); PPAR\(\beta\) (PPARD)\(^{(44)}\); PPAR\(\gamma\) (PPARG)\(^{(45)}\). Genotyping of all samples was performed using the Illumina\(^{\circledR}\) Bead Station System (Illumina, Inc.) by IntegraGen with CEPH (Human Polymorphism Study Center) controls (reproducibility: 100%; concordance rate: 99.6%). A total of 240 tagSNPs with a call rate ≥95%, a minor allele frequency greater than 1% and without significant (\(P>0.001\)) deviations from Hardy–Weinberg equilibrium were included in the main analyses. Genotype analyses were performed and reported with respect to the minor allele, here defined as the risk allele.

Statistical analyses

By multiple linear regression analyses, we examined the following: (1) SNP main effects on changes in blood lipids after an 8-week LED; (2) SNP main effects on changes in
blood lipids after the 6-month *ad libitum* weight maintenance diet; (3) SNP–diet interaction effects on changes in blood lipids for HP *v.* LP and HGI *v.* LGI after the 6-month *ad libitum* weight maintenance diet. SNP main effects on TC, HDL-C, LDL-C and TAG at baseline were also examined but merely at an explorative level, as the present study was not initially designed to investigate baseline associations.

Before the multiple linear regression analyses, the five-level diet variables were recoded into indicator variables for levels of protein intake and GI (and for the control diet); additive genetic models were assumed and corresponding SNP main-effect, diet main-effect and SNP–diet (product-based) interaction variables were created and used for the analyses. Models were adjusted for baseline age, BMI and waist circumference, sex, smoking status, partner, weight loss (after the LED) and weight regain (after the *ad libitum* diet). Furthermore, we adjusted for period length of the LED and the *ad libitum* diet, where some variation from the intended duration occurred. The LGI or LP served as reference groups of main interest and control diet status was included in models but not of main focus, due to the variation in diets between countries.

Based on the available sample sizes (Table 1), we performed power calculations in the form of least detectable effects based on the assumption of significance levels and powers of 5 and 80 %, respectively. The analysis of SNP main effects associated with gains during the LED phase led to least detectable effects of 0·34 (MAF = 0·05) and 0·15 (MAF = 0·45) in units of standard deviations of the outcome. Similarly, the case of SNP main-effects analysis related to gains during the *ad libitum* diet gave least detectable effects of 0·40 (MAF = 0·05) and 0·18 (MAF = 0·45). Finally, considering the SNP–diet interaction analyses, the least detectable effects were 0·83 (MAF = 0·05) and 0·33 (MAF = 0·45), respectively. All power calculations were performed using QUANTO, version 1·2.4 (May 2009 (http://hydra.usc.edu/gxe/)).

Bonferroni correction was used to adjust for multiple testing, concerning the 240 SNPs in genes presumed to be involved in lipid metabolism, in practice corresponding to an uncorrected significance level of \(\alpha = 2·1 \times 10^{-4} \) (= 0·05/240) at baseline/after the LED, and \(\alpha = 6·9 \times 10^{-3} \) (= 0·05/(3×240)) for main and interaction effects during the *ad libitum* diet period, accounting for SNP main effects, SNP–protein and SNP–GI interaction effects, when testing against a corrected \(\alpha \)-level of 0·05. Analyses were performed using Stata 9·2/11·2 (StataCorp LP, 2007/2011).

Results

The characteristics of all participants at inclusion, after the 8-week LED period and after the 6-month *ad libitum* weight maintenance diet are summarised in Table 1. SNPs in lipid metabolism-related genes, with the strongest associations with blood lipids (corresponding to \(P \) values < 0·001) after the interaction with dietary protein and GI, are presented in Table 2.

None of the SNPs in the lipid metabolism-related genes was found to modify TC, LDL-C, HDL-C or TAG after the 8-week LED, independent of weight loss (Table S3(A)–(D), available online).

Table 1. Characteristics of the participants included in the analyses for baseline, 8 weeks on the low-energy diet and 6-month *ad libitum* weight maintenance diet

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Weight loss LP/LGI</th>
<th>Weight loss LGI</th>
<th>Weight loss HP/LGI</th>
<th>Weight loss HP/GI</th>
<th>Weight maintenance HP/LGI</th>
<th>Weight maintenance HP/GI</th>
<th>Weight maintenance Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>841</td>
<td>729</td>
<td>841</td>
<td>729</td>
<td>841</td>
<td>729</td>
<td>841</td>
<td>729</td>
</tr>
<tr>
<td>Sex (women)</td>
<td>563</td>
<td>471</td>
<td>563</td>
<td>471</td>
<td>563</td>
<td>471</td>
<td>563</td>
<td>471</td>
</tr>
<tr>
<td>Age (years)</td>
<td>841</td>
<td>647</td>
<td>841</td>
<td>647</td>
<td>841</td>
<td>647</td>
<td>841</td>
<td>647</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>841</td>
<td>34.5</td>
<td>841</td>
<td>34.5</td>
<td>841</td>
<td>34.5</td>
<td>841</td>
<td>34.5</td>
</tr>
<tr>
<td>Waist (cm)</td>
<td>841</td>
<td>107.4</td>
<td>841</td>
<td>107.4</td>
<td>841</td>
<td>107.4</td>
<td>841</td>
<td>107.4</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>841</td>
<td>175.5</td>
<td>841</td>
<td>175.5</td>
<td>841</td>
<td>175.5</td>
<td>841</td>
<td>175.5</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>841</td>
<td>74.7</td>
<td>841</td>
<td>74.7</td>
<td>841</td>
<td>74.7</td>
<td>841</td>
<td>74.7</td>
</tr>
<tr>
<td>Weight change</td>
<td>841</td>
<td>6.3</td>
<td>841</td>
<td>6.3</td>
<td>841</td>
<td>6.3</td>
<td>841</td>
<td>6.3</td>
</tr>
<tr>
<td>Weight maintenance</td>
<td>841</td>
<td>64.7</td>
<td>841</td>
<td>64.7</td>
<td>841</td>
<td>64.7</td>
<td>841</td>
<td>64.7</td>
</tr>
<tr>
<td>Weight maintenance</td>
<td>841</td>
<td>0.7</td>
<td>841</td>
<td>0.7</td>
<td>841</td>
<td>0.7</td>
<td>841</td>
<td>0.7</td>
</tr>
<tr>
<td>Total cholesterol (mmol/l)</td>
<td>840</td>
<td>4.9</td>
<td>840</td>
<td>4.9</td>
<td>840</td>
<td>4.9</td>
<td>840</td>
<td>4.9</td>
</tr>
<tr>
<td>HDL-cholesterol (mmol/l)</td>
<td>841</td>
<td>1.2</td>
<td>841</td>
<td>1.2</td>
<td>841</td>
<td>1.2</td>
<td>841</td>
<td>1.2</td>
</tr>
<tr>
<td>LDL-cholesterol (mmol/l)</td>
<td>841</td>
<td>3.1</td>
<td>841</td>
<td>3.1</td>
<td>841</td>
<td>3.1</td>
<td>841</td>
<td>3.1</td>
</tr>
<tr>
<td>TAG (mmol/l)</td>
<td>841</td>
<td>1.4</td>
<td>841</td>
<td>1.4</td>
<td>841</td>
<td>1.4</td>
<td>841</td>
<td>1.4</td>
</tr>
<tr>
<td>Hypertension</td>
<td>841</td>
<td>720</td>
<td>841</td>
<td>720</td>
<td>841</td>
<td>720</td>
<td>841</td>
<td>720</td>
</tr>
<tr>
<td>Type 2 diabetes</td>
<td>841</td>
<td>720</td>
<td>841</td>
<td>720</td>
<td>841</td>
<td>720</td>
<td>841</td>
<td>720</td>
</tr>
<tr>
<td>Smoking status</td>
<td>841</td>
<td>720</td>
<td>841</td>
<td>720</td>
<td>841</td>
<td>720</td>
<td>841</td>
<td>720</td>
</tr>
<tr>
<td>Partner</td>
<td>841</td>
<td>720</td>
<td>841</td>
<td>720</td>
<td>841</td>
<td>720</td>
<td>841</td>
<td>720</td>
</tr>
<tr>
<td>Baseline Weight loss</td>
<td>841</td>
<td>6.3</td>
<td>841</td>
<td>6.3</td>
<td>841</td>
<td>6.3</td>
<td>841</td>
<td>6.3</td>
</tr>
<tr>
<td>Baseline Weight maintenance</td>
<td>841</td>
<td>64.7</td>
<td>841</td>
<td>64.7</td>
<td>841</td>
<td>64.7</td>
<td>841</td>
<td>64.7</td>
</tr>
<tr>
<td>Baseline Weight maintenance</td>
<td>841</td>
<td>0.7</td>
<td>841</td>
<td>0.7</td>
<td>841</td>
<td>0.7</td>
<td>841</td>
<td>0.7</td>
</tr>
<tr>
<td>Baseline Total cholesterol (mmol/l)</td>
<td>840</td>
<td>4.9</td>
<td>840</td>
<td>4.9</td>
<td>840</td>
<td>4.9</td>
<td>840</td>
<td>4.9</td>
</tr>
<tr>
<td>Baseline HDL-cholesterol (mmol/l)</td>
<td>841</td>
<td>1.2</td>
<td>841</td>
<td>1.2</td>
<td>841</td>
<td>1.2</td>
<td>841</td>
<td>1.2</td>
</tr>
<tr>
<td>Baseline LDL-cholesterol (mmol/l)</td>
<td>841</td>
<td>3.1</td>
<td>841</td>
<td>3.1</td>
<td>841</td>
<td>3.1</td>
<td>841</td>
<td>3.1</td>
</tr>
<tr>
<td>Baseline TAG (mmol/l)</td>
<td>841</td>
<td>1.4</td>
<td>841</td>
<td>1.4</td>
<td>841</td>
<td>1.4</td>
<td>841</td>
<td>1.4</td>
</tr>
</tbody>
</table>
After the 6-month *ad libitum* weight maintenance diet, a gene–dietary protein interaction effect on TAG was identified for *LPIN1* rs4315495 with a decrease in TAG of −0.26 mmol/l per A-allele/protein unit (95% CI −0.38, −0.14, *P* = 0.000043; Fig. 1 and Table 2). We did not identify any other significant associations when correcting for multiple testing for SNP main effects (Table S4(A)–(D), available online) or diet interaction effects with dietary protein or GI after the 6-month *ad libitum* weight maintenance diet (Table 2; Tables S5(A)–(D) and S6(A)–(D), available online).

We also examined the associations between SNPs in the lipid metabolism-related genes and baseline blood lipid profile. We identified the associations between *LPL* rs328 and HDL-C with an increase of 0.09 mmol/l per G-allele (95% CI 0.05, 0.13, *P* = 0.000044; Table S2(C), available online), *PPARGC1A* rs10002521 and TC with an increase of 0.19 mmol/l per G-allele (95% CI 0.09, 0.29, *P* = 0.00013; Table S2(A), available online), and *FABP1* rs894194 and TAG with an increase of 0.13 mmol/l per G-allele (95% CI 0.06, 0.20, *P* = 0.00018; Table S2(D), available online). No other SNPs in the lipid metabolism pathways were associated with baseline lipid profile after adjusting for multiple testing (Table S2(A)–(D), available online).

Discussion

In the present randomised dietary intervention study with statistically significant separation of the LP and HP intake groups and the LGI and HGI groups, and repeated sampling providing detailed phenotypic characterisation of
all participants, we identified an association with plasma TAG for an interaction between LPIN1 rs4315495 and dietary protein after the ad libitum weight maintenance diet. LPIN1 acts as a phosphatidate phosphatase in TAG synthesis\(^{36}\), and LPIN1 SNPs have previously been associated with obesity-related phenotypes, insulin sensitivity and the metabolic syndrome\(^{47,48}\). Enhanced LPIN1 expression in transgenic mice promotes increased lipid storage in the adipose tissue and decreased TAG secretion from the liver, whereas LPIN1-deficient mice exhibit lipodystrophy and increased hepatic TAG secretion\(^{47}\). The present finding indicates that minor allele carriers are more likely to decrease their concentrations of circulating TAG on a high-protein diet than on a low-protein diet. A reduction in the dietary intake of carbohydrates have previously been shown to reduce circulating levels of TAG\(^{49}\), and participants on the HP diets, in the present study, consumed a lower amount of carbohydrate than participants on the LP diets, which supports this finding.

LPIN1 is located on chromosome 2p25.1, and rs4315495 is located in intron 1. In these analyses, the SNP was not in high LD with any of the other LPIN1 SNPs ($r^2 < 0.5$), nor were the other fifteen LPIN1 SNPs associated with changes in TAG by the interaction with dietary protein. The function of rs4315495 is not known, but it is in high LD ($r^2 > 0.87$) with rs13412852. The rs13412852 is an intronic SNP, which acts as a phosphatidate phosphatase in TAG synthesis\(^{36}\), and SNPs associated with changes in circulating TAG and LDL-C in human subjects\(^{32}\). Variation in this gene has previously been associated with circulating TAG and LDL-C in human subjects\(^{32}\), and the rs13412852 is located on chromosome 2p25.1, and rs4315495 is an intronic SNP, which acts as a phosphatidate phosphatase in TAG synthesis\(^{36}\). The present finding is consistent with previous reports in terms of effect size, risk allele and MAF\(^{6,11}\), and generally in line with GWAS that have found associations between SNPs in LPL and lipoprotein metabolism, including associations between several LPL SNPs and HDL-C\(^{4,5,10,18}\), with the reported SNPs rs17482753\(^{12}\), rs12678919\(^{7,14,15}\) and rs10503669\(^{9,14}\) in complete LD with rs328.

In GWAS, MUXIPL have been associated with LDL-C\(^{55}\), HDL-C\(^{15}\) and TAG\(^{4,6,8,11,15,56}\). MUXIPL encodes the carbohydrate-responsive element-binding protein, which is an essential transcription factor for lipogenesis\(^{39}\). The MUXIPL SNPs included in the present study are different from the ones that were found to be associated with lipid profile in these GWAS, and LD was not strong (pairwise $r^2 < 0.8$ for all SNPs). However, the present analyses do suggest that MUXIPL rs1051921 could be associated with lower baseline levels of TAG (Table S2(D), available online).

Baseline associations were also identified between PPARGC1A rs10002521 and TC and between FABP1 rs894194 and TAG. FABP1 encodes the liver fatty acid-binding protein that plays a key role in fatty acid metabolism, and variation in this gene has previously been associated with circulating TAG and LDL-C in human subjects\(^{53}\). PPARGC1A encodes the protein PPARGC1A with a regulatory role in fatty acid metabolism and mitochondrial function\(^{48}\). The identified association for PPARGC1A has not previously been shown, but variants in PPARGC1A have previously been associated with type 2 diabetes\(^{59}\).

The present study is limited by the relatively low number of participants in the DiOGenes study. While high for an intervention study, it is low in terms of conducting this type of genetic analyses. The candidate gene approach, although with a coverage of the genetic variation of the loci within 5 kb up/downstream and with a tagSNP disequilibrium limit of 0.7–0.8, limits the study particularly in detecting baseline associations, but also in detecting baseline associations, but in identifying SNP–diet interactions, and the selected candidate genes in the study do not represent all known lipid-associated genes, nor do the SNPs include all of the recently identified lipid-associated SNPs\(^{15}\). In conclusion, in the present analyses of 240 SNPs in presumed nutrient-sensitive lipid metabolism genes among overweight and obese European adults, we identified an interaction between LPIN1 rs4315495 and dietary protein that resulted in a decrease in TAG concentration for minor allele carriers on the high-protein weight maintenance diet. Adjusting for multiple testing, no other effects of SNPs or SNP–diet (protein content or GI) interactions on blood lipid profile were detected after weight loss or after the 6-month ad libitum weight maintenance diet.

Supplementary material

To view supplementary material for this article, please visit http://dx.doi.org/10.1017/S0007114512006058

Acknowledgements

The DiOGenes project is funded by a grant from the European Union Food Quality and Safety Priority of the
Sixth Framework Programme (contract no. FP6-2005-513946). The data analyses have been conducted under the Danish Strategic Research Program of Gene–Diet Interactions in Obesity (GENDINOB, grant no. 09-06711). A. A. is a member of the Scientific Advisory Board for Pathway Genomics, La Jolla, USA. No other potential conflict of interest relevant to this article was reported. J. H., R. J. F. L., T. I. A. S., D. L., N. V., K. S. V., A. A. and W. H. M. S. contributed to the conception and design of the study. T. H.-D., S. A. J., P. H., T. M. L., J. A. M., A. P., A. F. H. P., M. A. v. B., A. A. and W. H. M. S. were involved in the acquisition of the data. L. A. and C. H. performed the statistical analyses. L. K. B. and L. H. L. were responsible for the drafting of the manuscript. All authors contributed to the analysis and interpretation of the data, revised the manuscript critically for important intellectual content and approved the final version of the manuscript.

References

