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1. Introduction. The efforts of most theoretical physicists of this century 
have been directed towards that branch of the physical science which is 
commonly called "Quantum Theory." Physically, Quantum Theory was 
postulated because of a vast amount of physical evidence which led to the 
postulates of states, observables, superposition, and commutation relations. 
From these four postulates, all quantum mechanics follows. 

It is well known that the differential equations which are obtained in Quantum 
Theory can be quantized for a second time. There is a strong physical motive 
for doing this, namely, the necessity for a field description, required both on 
general theoretical grounds and to explain, for example, pair production. 
Mathematically the * 'second" quantization is expressed in exactly the same 
way as the first one. In this fashion a certain mathematical scheme has been 
set up for "quantizing" a differential equation. This scheme consists of several 
stages whereby the original dynamical variables are finally replaced by operators. 
This scheme has been applied to many examples. Because of the fact that it is 
mathematically rather involved, this was not an easy task. 

Once the mathematical scheme of Quantum Theory has been obtained, it is 
of considerable interest to investigate the latter even without any further 
reference to its physical background. It is possible that the mathematical form 
suggests interesting generalizations which, in the end, might even have a physical 
application. This is what we propose to do here. 

A careful investigation of the mathematical formalism of Quantum Theory 
shows that it can be regarded as a process which can be applied to almost any 
differential equation. Thus one might say that quantization is a corrective 
mathematical process which is applicable to unsatisfactory physical differential 
equations. This is an entirely new aspect of quantum mechanics which is quite 
apart from any physical arguments for introducing it. It is suggested by the 
mathematical form of the equations and it remains to be seen whether it has any 
physical applications. 

If we accept the interpretation of quantization as a corrective mathematical 
process, the possibility of repeated or multiple quantization presents itself, as 
it seems to us, quite naturally. There are, of course, no direct physical reasons 
for such a repetition of the quantization process, except for the fact that it 
yields physical results when applied the first two times. From the mathematical 
standpoint, however, a further repetition seems a most natural generalization. 
In addition, it might be of interest to know, even for a physicist, what the 
quantization process does to his equations when repeatedly applied. Perhaps one 
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might speculate that each quantization makes the equations describing a physical 
process more and more accurate. 

Thus, we propose to give first a detailed account of the mathematical induce
ments for the notion of multiple quantization. The idea thus established will 
be discussed in the rest of the paper. 

The results of the present investigations are as follows. 
As a first example the Schroedinger-Gordon field is quantized for the third 

time. To achieve this, it is necessary to obtain a Schroedinger-representation 
for the Schroedinger-Gordon field, since the customary Heisenberg matrix-
representation does not permit a further quantization. Then, the energy eigen
values of the third quantization of the Schroedinger-Gordon field are obtained ; 
they are found to be § 2Z ^k Nk. 

In order to quantize an equation for an infinite number of times, one has to 
know what the quantization of a Schroedinger equation with an arbitrary 
Hamiltonian yields (with every equation after a few steps one seems to arrive 
at a Schroedinger equation). It is found that in this case the (n + l)th quanti
zation describes a Bose ensemble of systems as described by the wth quantization. 

In the case where the quantization is performed using anticommutation, 
instead of commuation rules, one obtains a Fermi, instead of a Bose ensemble. 
In this instance it turns out that the repetition of the quantization procedure is, 
physically, simply an easy way of doing the quantum statistics of fields. 

2. Inducements for multiple quantization: notation. First, we should like 
to show how those ideas which we intend to discuss in this paper suggest them
selves quite naturally. In order to do so, we have to summarize the principles 
of quantization in their mathematical form, emphasizing especially their 
algebraic features. At the same time, this will serve to explain the notation of 
the present paper. The physical reasons which require the mathematical steps 
will not be discussed here, since we are only concerned with the mathematical 
formalism. 

In classical theory one starts with a series of real generalized co-ordinates 
qk (k = 1, . . . , / ) which describe the state of the mechanical system concerned. 
The co-ordinates qk are functions of a parameter t which, in applications, may 
be identified with the physical time. Dots denote derivatives with respect to 
this parameter. The equations of motion follow from a variational principle 

j' (2.1) ÔJLdt = 0, 

where L = L(qk, qk, t) denotes the Lagrangian function of the system. The 
variational principle is equivalent to the Euler-Lagrangian differential equations 

it dqk dqk 

Instead of using this representation one may pass to the canonical formalism 
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in the well-known manner. The algebraic nature of the latter is seen if one 
introduces Poisson brackets between arbitrary functions F, G, . . . of qk and 
pk = dL/dqk. Then, the equations of motion may be written as follows 

(2.3) F = [F, H], 

H denoting the Hamiltonian function of the system. 
The Poisson brackets have some remarkable algebraic properties (see, e.g., 

Dirac's book [1, p. 85-86]), which permit one to reduce any Poisson brackets of 
arbitrary functions of pk, qk to elementary Poisson brackets between pk and qk. 
Thus, if one adds to the algebraic rules of Poisson brackets 

(2.4) \pk,qt] = -5kl 

(<5 = Kronecker symbol), then the problem of motion can be solved by algebra 
alone. 

This fact makes the quantization of a classical theory possible. The dynamical 
variables are re-interpreted as algebraic entities for which only laws of multiplica
tion need to be defined. If the meaning of ''Poisson bracket" is newly fixed in 
terms of the commutator of the two entities concerned, then the motion of the 
quantum mechanical variables is entirely determined by the Poisson bracket 
rules and (2.3). 

One can obtain a representation of the quantum mechanical algebraic entities 
by identifying them with linear Hermitian operators in a Hilbert space. Actually, 
a proper Hilbert space is not quite sufficient because one has to admit vectors 
of infinite length. Nevertheless, we shall refer in this paper to such a general 
space simply by calling it "Hilbert" space. This draws one's attention to the 
elements of such a generalized Hilbert space. Mathematically, they are a kind 
of vectors denoted by #>, to each of which a dual exists (̂ >*) so that a scalar 
product (<p*<p) may be formed. Physically, they are interpreted as representatives 
of the mechanical system such that 

(2.5) A = (V*{AV)) 

is the average value for the dynamical observable A in a statistical ensemble of 
measurements. 

The representation of quantum mechanics in this form corresponds to the 
Heisenberg-representation. By throwing the time-dependence from the opera
tors into the Hilbert vectors <p, one can pass over to the Schroedinger representa
tion. Thus, one arrives at a differential equation for the time-dependence of the 
Hilbert vector <p: 

(2.6) ^ = lH(p' 

In short, we note that starting from a "vector" 

(2.7) q = (qi. .. qk), 
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which satisfies a differential equation (2.2), one finally arrives through the 
process of quantization at a new differential equation of a similar type. The 
vector q originally characterizing the state of the system is replaced by the 
vector <p serving the same purpose. 

Thus, quantization is mathematically a correcting process for ''classical" 
equations. But since the results are equations similar to those from which one 
had started, it must be asked why this correction should be applied only once 
to the classical theory. 

3. General theory. We note that in order to make a quantization procedure 
according to the canonical rules established in the last section, one needs a 
Hilbert vector q(k, t) which depends on a time-like parameter. The Hilbert 
vector must be subject to a differential equation of the type (2.2) regarding its 
time-dependence : 

(3.1) F(q(k t), q{k, t) q(k, /)) = 0, 

so that the canonical formalism can be set up. After this has been done, one can 
proceed to the Heisenberg equations of motion and hence to the Schroedinger 
equations of motion 

(3.2) f *(*) = Ht(x), 

which complete the circle from a Hilbert vector to a Hilbert vector. 
If (3.1) is of the type of a Schroedinger equation like (3.2), which will be 

usually the case if one wants to quantize for the second or third time, there are 
several difficulties to reckon with. First we note that x in (3.2) is a continuous 
variable with an infinite range, whereas kmqk assumes only a finite and discrete 
set of values. This difficulty, however, has been overcome successfully in the 
quantum theory of fields. 

Furthermore, the ^'s in (3.2) are complex, and the differential equation (3.2) 
contains only first-order time-derivatives. The latter fact is insignificant, as 
(3.1) can be replaced by first-order equations; but the reality of the components 
of the ^'s is essential if one wants to maintain the analogy to the ordinary 
(first) quantization. We shall see, first, how this reality can be obtained by 
transforming (3.2), although there exists the possibility of abandoning the 
correspondence between \f/ and a canonical variable, which is indeed sometimes 
done in the quantum theory of fields. 

In order to obtain real equations of the form of (3.1) from (3.2), one has to 
split \f/ into its real and imaginary parts 

(3.3) i£ = fa + ifa 

where both \pi and $2 are real. Then one has to try to set up equations for 
\f/i and \f/2 alone. Splitting (3.2) into its real and imaginary parts yields, if H is 
assumed to be real (which will be ordinarily the case), 
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(3 4) ^ 1 = = ~ H ^ 

From the first of these equations one obtains 

(3.5) *2 = - fiff-Vi, 

and from the second 

(3.6) fa = nH~^2 

which, inserted into either equation (3.4), yields 

(3.7) - h2fa = HHfa 

and an identical equation for ^2. It maybe noted that the Schroedinger-Gordon 
equation is of this form (3.7). 

However, as it was said above, it is not necessary to transform (3.2) into real 
equations. If one keeps equation (3.2), one has to abandon the direct analogy 
between ^ and ordinary dynamical variables. Thus it may be possible to derive 
(3.2) from a Lagrangian principle wherein the Lagrangian function will depend 
on \// and \f/* as well as on their derivatives. Then one can formally define the 
canonical conjugates ir and 7r* and write down the Hamiltonian. Doing this it 
should be kept in mind that ir and \p are no longer canonically conjugate in the 
classical sense; it would be difficult to define Poisson brackets between func
t ional depending on them. One may, however, assume the same commutation 
relations as if ir and \p were conjugate. 

This treatment is very useful if one is only interested in the matrix formulation 
of the quantized theory. Then, ir and >p are simply represented by non-Hermitian 
matrices. This is sometimes so convenient that even in the case where one starts 
with equation (3.7), one transforms the latter into an equation where the 
variables are no longer real ; this is well known from the transition to momentum 
space in the Schroedinger-Gordon case. Using complex variables, one is, however, 
generally at a loss if one wants to set up the Schroedinger formulation of the 
theory in order to proceed with further quantizations. In this case, one has to 
transform back to variables which are canonical. 

In the next section, we shall demonstrate these ideas in a model example. 

4. Example: Third quantization1 of the Schroedinger-Gordon equation. 
Assuming the Hamiltonian 

(4.1) H = c-yj p2 + m2c2 

leads, after the first quantization, to the Schroedinger-Gordon equation (see 
[6]): 

(4.2) ( A - ^ - / ) * = 0 

r r h e name "third quantization" has been used by Nambu [4] in quite a different context. 
Our paper has nothing to do with the work of Nambu. 
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which can be written in the following Hamiltonian form : 

(4.3) H = j$ d3x; § = MTT2 + c2|grad yf\2 + c W 2 | . 

If 7T, ̂  are taken as Hermitian operators, (4.3) represents the second quantiza
tion. A Fourier transform of the variables leads to 

(4.4) H = } £ \pk* pk + u)*2 qt* qk). 
k 

This equation is usually solved by the matrix method. If we want to carry on 
our quantization procedure for the third time, we must establish first a Schroe-
dinger equation for the second quantization, instead of (4.4). The transition 
from a Heisenberg to a Schroedinger formulation is usually done in such a way 
that one of the canonical variables is taken as the argument of the new Schroe
dinger function and the conjugate one represented as a differential operator. 
Unfortunately, this procedure cannot be applied to (4.4) because p and q are 
not canonical since they are not real. They satisfy, however, the following 
relations (see [6]): 

(4.5) pk* = p - . k ; qk* = g_*. 

The ordinary transition from \p, ir to q, p is thus not a canonical transformation. 
Therefore, one has to introduce for each "dimension" k a variable & which is 
canonical. If one finds a representation of pk, qk by differential operators acting 
upon the £k's such that the commutation relations and the conditions (4.5) are 
satisfied, then one has obtained the Schroedinger representation of the second 
quantization. It is easy to verify that this can be done by setting 

(4.6a) ,,= <£)' {fa+ * . -£ + £ 

(4.6b) pk = *(&•>*)* iUk- £_t + - ~ + -J~\ 

A straightforward check shows that the commutation relations for p, q are 
satisfied as well as (4.5). For the latter condition one has to remember that the 
star indicates the Hermitian adjoint of an operator and that the Hermitian 
adjoint of d/d£ is —d/d%. The procedure used here has been investigated by 
Infeld and Hull [2, §6] to which the reader is referred for the details. The total 
Hamiltonian of the field may be represented by 

(4.7) # = Z * ^ * f c 2 - d2/d£k2)-

Since we can split up the eigenfunctions for every ''dimension" k, it is possible 
to make the following "ansatz": 

(4.8) * = r i e x p ( | £ t / ) *>*(&)• 

Then, the Schroedinger equation 
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(4.9) H <f> = - 4 

yields the following condition for the ^ ' s : 

(4.10) ifo) t(6! - d2/d£)<pk = Ek <pk. 

As is well known, equation (4.10) is soluble only for 

(4.11) Ek = \^k (2Nk + 1), 

which is the same result as obtained by the matrix method [2, p. 40]. A general 
state vector is obtained by a linear superposition of the particular ones in (4.8). 

The third quantization of the Schroedinger-Gordon equation is performed if 
we are able to quantize (4.9), or (4.10). If we keep the time dependence in the 
^>'s, (4.10) may be written 

(4.12) èfoo*&2 - d2/d£k
2) <pk = -. À . 

The task is to quantize (4.12). We note that this equation is of the form of a 
non-relativistic Schroedinger equation, if we set 

(4.13) m = fi/œk; U = Uk2 W 

The Hamiltonian formulation of the non-relativistic Schroedinger field has been 
set up long ago [5, p. 338]. Using those earlier results, we can write down the 
Hamiltonian which refers to the "dimension" k: 

(4.14) Hk = \iuk J {grad irk grad <pk + £fc
2 irk <pk) d£k. 

Thus, the total Hamiltonian is simply the sum of the expressions (4.14) taken 
over all the ' 'dimensions' ' k: 

(4.15) H = \ ij^ u* I (grad ir* grad <pk + %k <irk <pk) d£k. 
k t / 

The eigenvalues of the total Hamiltonian are of particular interest. We note 
that the eigenvalues of each Hk have been calculated; they are 

(4.16) (Hk) . . . = E NnWEn«\ 

where the Nn's range from 0 to °°, and En
{k) is eigenvalue of the equation 

(4.17) ( - iSa* ^ 2 + i««* £*2)*»&) = En
(k)*n(ïk). 

Thus we have 

(4.18) £„<*> = \hu>h{2n + 1). 

Therefore, we find the following eigenvalues of Hk: 

(4.19) (Hk) ... = *««*£ Nn
w(2n + 1), 

https://doi.org/10.4153/CJM-1953-003-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1953-003-6


MULTIPLE QUANTIZATION 33 

and of H: 

(4.20) (H) . . . = £ \fmk N™ {In + 1). 
k,n 

We may observe that the Nn
(k)'s are arbitrary integer numbers ranging from 

0 to oo. But then also 

(4.21) % = E (2» + 1W,™ 
n 

are arbitrary integer numbers ranging from 0 to oo, and we might as well 
represent the eigenvalues of H in the following from 

(4.22) ( # ) . . . = £ i««* % . 

These eigenvalues are very similar to those which were obtained after the 
second quantization (cf. (4.11)). Speaking in terms of particles we can say that 
our equations describe an ensemble of % particles of the energy %fiœk, k ranging 
over all the lattice points in momentum space. 

However, it is interesting to observe that the "particles" have only half the 
energy of those of the Schroedinger-Gordon equation. Furthermore, the infinite 
term in the energy has disappeared, since the lowest state is Sft* = 0 for every k. 
Therefore, it seems better to interpret (4.22) physically in a different way so 
that the usual physical interpretation of the second quantization can be retained. 
It is easily seen that the present scheme can be taken as describing a Bose 
ensemble of fields (instead of an ensemble of particles) each of which satisfies the 
Schroedinger-Gordon equation. In this instance the new quantization is equiva
lent to considering Bose statistics of the meson fields. 

It will be seen in the next section that quantizing a Schroedinger equation can 
always be interpreted as taking a Bose ensemble of systems as present before 
the new quantization, and doing statistics with it. Thus our last remark is in 
agreement with more general principles. 

5. Infinite quantization. After having seen that it should always be 
possible to perform a quantization of a first- or second-order differential equation, 
one may wonder how often this process can be repeated. 

We may note that after a very few steps, one always arrives at a Schroedinger 
type of equation; i.e., 

(5.i) * = \%H*. 

The arguments of the ^-function are the parameter t and the canonical variables 
before the quantization. This is due to the fact that one has to set up the Hamil-
tonian formalism for the equation from which one wants to start, and the 
Hamiltonian formalism immediately leads to (5.1). One may check that with the 
Schroedinger-Gordon case where we arrived at a Schroedinger equation after the 
third step, as was seen in the last section. 
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Therefore, if we are able to find a recursion formula which connects the 
eigenvalues of nH in (5.1) with the eigenvalues of the Hamiltonian n+lH of 
the next quantization, then we are able to proceed with the quantizations as 
often as we like. 

In order to obtain that (5.1) is the Euler differential equation of a Lagrangian 
principle, the Lagrangian density must be of the form 

(5.2) 8 = ih<t>*<t> + B(<t>,<l>*) 

so that the canonically conjugate T of 0 is 

( 5 . 3 ) 7T = ^ = in <*>*. 
dp 

It would be rather difficult to find all the terms in the Lagrangian (5.2) explicitly 
so that such a general equation as (5.1) would follow from it. Nevertheless, we 
can find the Hamiltonian n+lH in matrix representation, in terms of the matrix 
elements of wiï, provided that we assume the existence of such a Hamiltonian 
formalism and the corresponding quantization. 

For, if such a Hamiltonian formalism and the corresponding quantization 
exists, then the consistency of (5.1) with the quantum formalism requires 

(5.4) <» = ! [ * , K+1iï] = | "if* 

or 

(5.5) [*, n+1H] = nH <t>. 

Expanding <t> into the complete orthogonal set of eigenfunctions of nH yields 

(5.6) 4> = X am «»Wi 

(5.7) T = ih <{> = iftYl am* um*(x). 

The canonical commutation relations for ir and <j> are satisfied if 

(5.8) [am, am*] = [a»*, am>*] = 0; [am, am>*] = Ômm> 

holds . Inser t ing t h e expansions for w a n d <t> in to (5.5) yields 

(5 .9) E A» Uni*) ^H - W + 1 # Z % **(*) = Z ^m Um(x)am, 

where nEm denotes the mth eigenvalue of nH. We multiply (5.9) by uk* and 
integrate over x ; one then obtains 

(5.10) ak
 n+1H - n+1H ak = nEk akJ 

which is a matrix equation for n+1H. The solution is obviously 

(5.11) n+1# = X % a A * 
i 

because of the following relation which holds in virtue of (5.8): 
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(5.12) [ak,
 n^H] = £ nEj(ak a? a, - a / a, ak) = nEk[ak, ak*]ak = nEk ak. 

i 
A diagonal representation of n+1H is obtained if we choose 

(5.13) 
/0 VI 

ak = I 0 A / 2 I; a** = I v ^ ^/2 i; ^* = a**a* = 

which obviously conforms with (5.8). (The matrices (5.13) refer to the index k 
only, ak is the unit matrix with respect to all other indices.) Thus, the diagonal 
elements of n+1H become 

(5.14) n^Em = £ iV* »Ek; m = (N0 Nx. . .). 

This means that the (n + l)th quantization simply describes a statistical en
semble of systems as described by the nth quantization, wherein the counting prescrip
tions of Einstein and Bose hold. (Each combination of Nks is enumerated just 
once.2) The lowest eigenvalue is always zero, no matter what the nEks are; it 
never diverges. 

If we perform one further quantization, the eigenvalues will be 

(5.15) "+% = 2 Nm£ N', "Ek - £ % nEk 
m 

where Sft* again may assume any integer values from 0 to » . 
Therefore we see that the eigenvalues of the energy do not change any more 

after one has had a Schroedinger equation and quantized it once more. Thus, 
even if one repeats quantization an infinite number of times, the energy eigenval
ues remain final after a few steps. Therefore the eigenvalues of the Schroedinger-
Gordon equation will always be as given in (4.22), notwithstanding how many 
quantizations are performed afterwards. 

6. The anticanonical formalism. It seems desirable to find out what 
becomes of the formalism of the last section in the case of anticanonical quantiza
tion. 

The anticanonical quantization is distinguished from the canonical procedure 
by the fact that for TT, 4> anticommutation (rather than commutation) relations 
are assumed. The equation of motion, however, holds in its canonical form. 

In order to find the anticanonical formulae that correspond to what we have 
done in the last section, one can keep practically all the equations that were 
developed there, except that one has to find a new representation for the matrices 
ak and ak*. These representations have been proposed by Jordan and Wigner 
[3] in connection with the quantization of the Dirac electron field. The same 
matrices may be used in the general formalism as required in the present investi
gations. Thus we choose 

2It has been known before that a Schroedinger equation with an arbitrary potential leads to a 
Bose ensemble of the non-quantized system [5]; but the proof had never been given for an 
arbitrary Hamiltonian, as far as I know. 
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(6-1) ak =4oj) ' 

(6.2) a** = "*(îo)-
The index k labels the state of the system as before. The factors rjk are equal 

to + 1 or — 1 according to whether the number of occupied states with labels 
n < k is even or odd. 

Using this representation it is easy to see that the Hamiltonian is again 
given by 

(6.3) n+1H = £ nEj a? a,. 
i 

This satisfies indeed the matrix equation (5.10). 
This means that the (n + l)th anticanonical quantization of a Schroedinger 

equation describes a statistical ensemble of such systems as are described by 
the nth Schroedinger equation. But now, since we are using the anticanonical 
formalism, we see that this is a Ferrni-Dirac ensemble. 

This result holds under the same premises and assumptions as before, that is, 
the consistency of the formalism has to be presumed in each case. 
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