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ON A RESULT OF DARBOUX
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Abstract

This paper is concerned with a relation of Darboux in enumerative
geometry, which has very useful applications in the study of polyno-
mial vector fields. The original statement of Darboux was not correct.
The present paper gives two different elementary proofs of this rela-
tion. The first one follows the ideas of Darboux, and uses basic facts
about the intersection index of two plane algebraic curves; the second
proof is rather more sophisticated, and gives a stronger result, which
should also be very useful. The power of the relation of Darboux is
then illustrated by the provision of new, simple proofs of two known
results. First, it is shown that an irreducible invariant algebraic curve
of degreen > 1 without multiple points for a polynomial vector
field of degreen satisfies: < m + 1. Second, a proof is given that
guadratic polynomial vector fields have no algebraic limit cycles of
degree 3.

1. Introduction
Darboux was the first to give the following relation in enumerative geom2fnyd. 83—-84]:

On peut rattacher cette recherche a un lemme relatif a six polyndm€'s B,
B, C,C’, de degrés, ', m, m’, n, n’ satisfaisant a I'identité déja considérée
(48) AA 4+ BB +CC' =0;

il est évident que les degrés des produits’, BB’, CC’ sont égaux.

On a donc déja

I+!U'=m+m =n+n =

Cela posé, je dis gua somme du nombre des points communs aux trois courbes

A=0, B =0, C =0,
et du nombre des points communs aux trois courbes

A’ =0, B =0, C'=0,
est égale a

Imn +1U'm'n’
A

We shall refer to this result as tHgarboux lemma; it can be stated more precisely
as follows.
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On a result of Darboux

Darboux lemma. LetK be an algebraically closed field, and l&t B, C, A’, B’ andC’
be six homogeneous polynomials of degiees, n, I’, m" andn’ in three variables with
coefficients irK such that:

(i) A, BandC are relatively prime, and so ard’, B’ andC’;
(i) {+1"=m+m =n-+n =r,and the followingorthogonalityrelation holds:
AA'+ BB +CC' =0, 1)
(iii) the homogeneouside@, B, C, A’, B/, C’) generated by all six polynomials has no
zero in the projective plani; (K).

Then the homogeneous ideals generated by the trigles, C) and(A’, B’, C’) have only
finitely many zeroes in the projective plane.
Denoting byz and#’ the total multiplicitiesI(A, B, C) andI(A’, B’, C’) of these ho-
mogeneous ideals in the projective plane, there is a relation betivggrand the degrees:
Imn +1U'm'n’

hth=— =2 r(+m+n)+ Um+mn+nl). (2)
r

Darboux started the proof of his result as follows.

En effet, soient: le nombre des points communs aux trois courhes, C;
K’ celui des points communs aux trois courl#@sB’, C’.

This original proofis wrong; in particular, Darboux paid little attention to the last hypothesi:
(no common zeroes), and a counterexample is easy to find. Jouanolou noticed that Darbot
result was wrong, and clearly established the formBjar( his book [4, pp. 183—-184], but
his proof is far from being elementary. Jouanolou uses Chern’s classes; for such a seemir
simple result, it is natural to expect a proof that relies on the use of a simpler technology

The purpose of this paper is to give two different elementary proofs of the Darbou
lemma, and to propose some applications of this result to the study of polynomial plan
vector fields.

In the first proof, we use standard facts about the intersection index of plane algebr:
curves. This proof is divided into two steps. The first step deals with a special case of tl
statement under extra assumptions, and it follows the ideas of Darboux. The second s
consists in reducing the general case to the special case, in order to get the complete re:

Our second proof relies on the elementary use of exact sequences to compute the dirr
sion of some finite-dimensional vector spaces; we receive a stronger result which could a
be very useful in various applications: an inequality that holds even if the six polynomial
have common projective zeroes. This proof cannot be considered as an elementary ver:
of Jouanolou’s proof; our decisive remark consists in considering the tdple’, C’) not
only as a relation betweef, B andC, but also as a way to build an interesting idéaif
the polynomial ring from the module of relations betwegnB andC.

The present paper is written in a self-contained way, and can thus be read independe!
of the given references; itis organized as follows. In SeQiam present the results related
to intersection indices that we shall need later on. We give the first proof of Darboux lemn
in Section3, correcting the proof of Darboux. A global projective proof of the Darboux
lemma and an inequality are provided in Sectofinally, two applications of the Darboux
lemma are given in Sectidn

Throughout the papeK will denote an algebraically closed field. It will be convenient
to denote an ideal generated in some polynomial ring &vby the elementsiy, - - -, Ay
simply by (A1, - - -, Ax). Other notations and definitions will be given as they are needed.
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2. Intersection indices

We first recall some standard facts about homogeneous ideals of the polynomial ri
A = K[xp, ..., x;] that have only a finite number of zeroes in the projective sfrade).

Let P be a point in the projective spalge(K). Thelocal ring @ p can be defined in two
ways.

First, it is the subring of the fiel& (xo, - - -, x;)o of homogeneous rational fractions of
degree 0 consisting of all those with a denominator that does not vanish at

On the other hand, one of the projective coordinate® afoes not vanish, and there
is no restriction in supposing thap(P) # 0, to fix matters. Then the polynomial ring
K[x1, - -+, x;] is isomorphic to the quotient ring &[xo, - - -, x;] by its ideal generated by
xo — 1, and@p is the local ringS ~1K[x1, - - -, x;], wheres is the multiplicative set of all
t-variable polynomials that do not vanishat

Let P be a point of?; (K), and letd be a homogeneous ideal &f The ideald p is the
ideal of the local ring9 p generated by. If the quotient ring9p /4 p is a finite-dimensional
vector space ovek, its dimension is called theultiplicity or theintersection indexf 4
at P; here,Ip(4) is a convenient notation for this number. In particufar{) # O means
that P is a zero off. Thus, if £ is @ homogeneous ideal with a finite number of zeroes in
P (K), the sumi({) = Y, Ip(4) over all zeroes of is well defined. It is called thtotal
multiplicity, or the total intersection indear thedegreeof {.

Proposition 1. Let 4 be a homogeneous ideal in the polynomial ring= K[xo, ..., x;],
and suppose thal has a finite number of zeroes I (K). Homogeneous components
(A/ 1), of the quotient ringd/ { are finite-dimensional vector spaces o¥that have the
same dimension farlarge enough. This common dimension is equdl(t.

Proof. There is no restriction in supposing that there is no zero on thexfne 0. All
zeroes off then lie in the affine space in whialy can be chosen equal to 1.

Consider the quotient mag from K[xo, - - -, x;] to K[xg, - - -, x,]/(xo — 1) (evaluation
atxp = 1). Its imagec1 (K[xo, - - -, x;]) is isomorphic taK[xq, - - -, x;], andd1 = €1({) is
an ideal ofK[x1, - - -, x;] under this isomorphism.

The quotient ringK[x1, - - -, x;]/41 is a finite-dimensional vector space o¥erwhose

dimension is exactly the total multiplicity of. A proof of this result can be found in the
book by Fulton [3].

On the other hand[x1, - - -, x;] is isomorphic to the quotient ring &[xo, - - -, x;] by
its ideal (xp). Let Lo denote the image of under this isomorphismig is a homogeneous

ideal of K[x1, - - -, x;], and it has no projective zero i _1 (K).
According to the projective Nullstellensatz, there exists a degreech that all homo-
geneous polynomials of degree at legsif K[x1, - - -, x;] are indo. In other words, every

homogeneous element of degree 1o in A can be written as the sum of an elementl of
and a multiple ofvg, which means that the multiplication by from (A/4); to (A/4);11
is surjective for > o — 1.

Thus, the sequence of dimensions decreases¥om — 1, and must eventually become
constant; that is, there existgauch that the multiplication hyy from (A /1), to (A/4);+1
is bijective fort > 1.

Itis now easy to check that the quotient map fr@iyy ) to K[xq, - - -, x,]/41, restricted
to (A/4);, is a bijection forr > 11. O
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In the case of two or mottéiree-variablehomogeneous polynomials ovér Ay, - - -, Ag,
the intersection indeXp (A1, - - -, Ax) at some pointP of P»(K) can be defined as the
corresponding index for the homogeneous ideal generated by -, Ay, when this index
is finite. We then note thatp (A1, -- -, Ax) = Ip(Aq, -+ -, Ap).

In particular, ifA1, - - -, Ay (with k > 2) are relatively primelp (A1, - - -, Ay) is defined
at every pointP. On the other hand, if they have a non-trivial greatest common divisor
Ip(Aq,---, Ay) is defined at all point® of P»(K) whereD(P) # 0.

Here are some standard properties of the intersection index whose proof can be fol
in Fulton’s book [3]. The first two are general.

(i) Ip(Ag,---, Ag) depends only on the ideéd;, - - -, Ax) of A.

(i) Infact, Ip(Aq,---, Ar) depends only on the ideal generatedday - - -, Ay in Op: if
B(P) # 0,thenBisinvertiblein@p andlp(BA1, A2, ---, Ay) = Ip(A1, Ao, - -+, Ap).

The next two properties are specific to the three-variable case.

(iii) If B has no non-trivial common factor withC’, thenIp(B, CC') = Ip(B,C) +
Ip(B, C’) (addition formula).

(iv) If F andG are two homogeneous polynomials without a non-trivial common factor,
they have afinite number of common projective zeroedaAdG) = deg(F)deg(G)
(Bézout's theorem).

3. Correcting the proof given by Darboux

Using standard properties of the intersection index, we propose now a correct proof
the Darboux lemma. Let us begin with some definitions and notations.

We shall call a familf{A, B, C, A’, B’, C'] of homogeneous polynomials K[x, y, z]
anorthogonal system of polynomiafs

(i) A, B andC are relatively prime, and so ar€, B’ andC’;

(i) deg(A)+deg(4) = deg(B)+deg(B) = deg(C)+deg(() = p(A, B,C, A", B, ("),
in which caseo(A, B, C, A’, B/, C") is called thedegreeof the system,

(ii) the orthogonalitycondition (1), thatAA’ + BB’ + CC’ = 0, holds.

We shall say that an orthogonal system of polynoniidlsB, C, A’, B/, C’] is without
projective zerdf A, B, C, A’, B andC’ have no common zero in the projective plane.
If [A, B,C, A’, B’, C']is an orthogonal system of polynomials, th&nB andC are rel-
atively prime, the total intersection indé&A, B, C) is well-defined, and so i A’, B/, C’).
Now denote the degrees of the polynomidlsB, C, A’, B andC’ by [, m, n, ', m’
andn’, respectively, and the degree of the orthogonal systémn B, C, A’, B’, C') by r,
to simplify the discussion.
The ratio
Imn +U'm'n’ 2
— =rc—r(l+m+n)+ (Im+ mn+ nl)
is a well-defined positive integer, which is 0 whea= 0. We then denote
/ 1.7
AA.B.C.A.B'.C') = I(A. B.C) + I(A", B, "y — ' Tmn

Ch Imn +l’m’n”
r
and we call this difference thgap of the orthogonal system.
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With these definitions, the Darboux lemma can be stated as follows.
The gap is zero for an orthogonal system of polynomials without projective zero.

We first give the result under the additional assumption that all six polynomials ar
pairwise relatively prime, except maybeand A’, B and B’, C andC’; in other words,
we suppose that there is no non-trivial common factot 13, BB’, CC’, and we then say
that the orthogonal systemirseducible. This proof follows the ideas of Darboux. We shall
reduce the general case to this special case later.

In our opinion, it is convenient and non-confusing to identify a homogeneous non-zet
three-variable polynomiat with the projective planar curvE = 0 that it defines. We thus
follow the free intuitive notations of Darboux.

For instance, the notation ‘2 A N B’ means that the poinP of P>(K) is a common
zero of the two homogeneous polynomidlsind B, and belongs to the intersection of the
two curvesA = 0 andB = 0, as well as the alternative notatioh(’?) = 0 andB(P) = 0'.

Proposition 2. Let[A, B, C, A’, B, C'] be an irreducible orthogonal system of polynomi-
als without projective zero. Then(A, B, C, A’, B’, C’) = 0.

Proof. We first notice that/p(A, B, CC’) = Ip(A,B,—AA’ — BB') = Ip(A, B) at
every pointP of P»(K), according to SectioB. We want to prove the following equality at

PeANB: , ,
Ip(A,B) =1p(A,B,CC') = Ip(A, B,C)+ Ip(A, B,C"). ®)

From the orthogonality relatiorl}, P € CC’ and, by replacingi, B andC by A’, B’ and
C’, there is no restriction in supposing th@tP) = 0.
If C'(P) # 0, thenlp(A, B, C’) = 0. According to Sectiog, we know that
Ip(A,B,C)=1p(A, B,CC") = Ip(A, B),
and equality (3) holds in this case.
We now suppose th&t'(P) = 0. SinceANA'NBNB' NCNC’' = ¢, eitherA’(P) # 0
or B'(P) # 0, and there is no restriction in supposing thatP) # 0. Then, according to

tion2
Sectionz, Ip(A,B,C) = Ip(A’/A,B,C) = Ip(B,C),
Ip(A,B.C') = Ip(A'A,B.C") = Ip(B.C)),
Ip(A,B,CC") = Ip(A’A,B,CC") = Ip(B,CC).

As B has no non-trivial common factor witd or C’, equality (3) follows from the
addition formula of the intersection indek (B, CC’) = Ip(B, C) + Ip(B, C’). The use
of the addition formula is the only place where the extra assumption that the orthogon
system is irreducible plays a role.

Summing the intersection indices at all poifts= A N B, relation (3) leads to

Im = I(A, B)
= ) Ir(A.B)
PeANB
= E:INAerd
PeANB
= Y Ip(A,B.O)+ Y Ip(A, B.C)
PeANB PeANB
=h+ (m—h), (4)

which means that the total intersection ind€X, B, C’) islm — h.
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Similar considerations lead to the next two equalities.
The first one,
In' =1(A,C")
= ) Ip(AC)
PeANC’

> Ip(A.BB'.C)
PeANC’

> Ip(A.B.CY+ Y Ip(A.B.C)
PeANC’ PeANC’
= (Im —h) + (In" — (In — h)), )

means that the total intersection ind&x, B’, C') isin’ — Im + h.
The second one,

m'n’ =1(B',C")
= > Ir(B.C)

PeB'NC’
= ) 1p(AALB.C))
PeB'NC’
= ) Ip(AB.Ch+ ) IpA.B.C)
PeB'NC’ PeB'NC’
=ln'—Ilm+h+n, (6)
means that the total intersection ind&x’, B’, C') ism’n’ — In’ +Im — h. From this last
result, we deduce that (A, B, C, A’, B’, C’) = 0. O

In order to prove the Darboux lemma in the general case, we need a way to redu
non-irreducible orthogonal systems to irreducible ones[Ae3, C, A’, B’, C’'] be a non-
irreducible orthogonal system of polynomials. The orthogonality relation easily implies the
two polynomials of the same triple have a non-trivial greatest common divisor (gcd), an
there is no restriction in supposing that= gcd(A, B) ¢ K to describe what a reduction is.

According to the orthogonality relatio also divide<”’ as itis coprime withC, and we
haveA = DA1, B=DB1,C’ = DCi, with gcd(A1, B1) = 1. So[A,, B1,C, A’, B/, Ci]
is another orthogonal system of polynomials[Af, B, C, A’, B’, C'] is without projec-
tive zero, so ifAy, B1, C, A’, B’, C}]. We say tha{Ay, By, C, A, B, C}] is aone-step
reductionof [A, B, C, A, B’, C'].

There are as many possible one-step reductions of an orthogonal system of polynomi
as there are pairs of non-coprime polynomials of the same triple. Thus, after at most <
successive one-step reductions, we get an irreducible orthogonal system that can be ce
the complete reductioof the original one.

The following lemma is then the key to deducing the general case of the Darboux lemn
from the special case of irreducible orthogonal systems.

Lemma 3. Let[A, B, C, A’, B, C’]be anon-irreducible orthogonal system of polynomials

without projective zero and such that= gcd(A, B) ¢ K. If [A1, By, C, A’, B, C1]isthe

corresponding one-step reduction[ef, B, C, A’, B/, C'], then
A(A,B,C,A",B',C')=A(A1,B1,C, A", B/, Ci).
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Proof. Let us denote by the degree oD, so that

deg(4) =i = Il-s,

deg(B) = m = m-—s, %
deg(Q) = ny = n'—s,

0(A1, B1,C, A', B, C:/I.) = r1 = r-—s.

Here,h1 will stand for (A1, By, C) andh’ for I(A1, By, €).
With these notations, after straightforward cancellations, proving the result amounts
proving that
(h — hy) + (h' = hY) = ns. (8)

This relation (8) will come fromk — h1 = ns andh’ — h = 0.
We first show that — h1 = ns by proving the following equality foralP € ANBNC:

Ip(A,B,C)=1p(A1,B1,C)+ Ip(D,C). 9)

Let P belongtoD N C. SinceAN A NBNB NCNC =@, eitherA’(P) # 0 or
B’(P) # 0, and there is no restriction in supposing thatP) # 0.

Let D’ then be the greatest common divisoibandC: B = D'By, C = D'C2.As A, B
andC are relatively primeD’ is relatively prime withD, and it dividesB1: B1 = D’Bs; it
also dividesA’, and thusD’(P) # 0. Then, according to Secti@n/p (B, C) andl/p(B1, C)
are well-defined and the following equalities hold:

Ip(A,B,C) =1p(AA", B,C) = Ip(B, (),
Ip(A1, B1,C) = Ip(A1A’, B1,C) = Ip(B1, O).
Now, the addition formula of the intersection index gives
Ip(B,C) = Ip(B2,C2) = Ip(B3, C2) + Ip(D, C2) = Ip(B1, C) + Ip(D, C).

Thus, for aP in D N C, equality (9) holds.

Consider now a poinP in A N B N C that does not belong tB. Then/p (D, C) = 0,
whereadp(A, B, C) = Ip(A1, B1, C), and equality (9) also holds.

Now, summing equality (9) over alt € AN B N C gives

h=1(A,B,C)=1(A1, B1,C)+ I(D,C) = hy + sn, (20)

according to Bézout’s theorem.
Now we show that’ — k] = 0 by proving that/p (A, B’, C") = Ip(A’, B’, C}) at all
pointsP of AN B ' NC’.
If P belongs toA’ N B’ N C’ without being inD, then, according to Sectidh we see
thatlp(A', B',C") = Ip(A’, B', DC}) = Ip(A’, B/, C}).
If P belongstaA’ N B’ N D, thenP does not belong t@', and
Ip(A',B',C"y=1Ip(A',B',CC") = Ip(A', B') = Ip(A', B, CC1) = Ip(A’, B', C}).

O

We can now draw the following conclusion.

Corollary 4 (Darboux lemma). Let[A, B, C, A’, B’, C’]be an orthogonal system of poly-
nomials without projective zero. Then A, B, C, A’, B, C') = 0.
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Proof. If [A1, By, C1, A}, By, C;]is the complete reduction A, B, C, A", B’, C'], then,
according to Lemma&, A(A, B, C, A, B', () is the same aa (A1, B1, C1, A}, B}, C7)
and, according to Propositiéh A(A1, B, C1, A}, By, C}) = 0 for an irreducible orthog-
onal system of polynomials. O

4. A global projective proof and an inequality

In the present section, we give another proof of the Darboux lemma. Instead of lookir
at all points of the intersection of several curves in the projective plane, we shall de
directly with the global multiplicity of a homogeneous ideallffix, y, z] with finitely
many zeroes. Moreover, this enables us to produce a stronger result when the assumpg
that the orthogonal system of polynomials has no projective zeroes does not hold.

In this section, where we deal with modules o¥rx, y, z], it is convenient to denote
this polynomial ring byA. The ringA is graded by the degree, its homogeneous compo-
nentsA are finite-dimensional vector spaces o¥erand their dimensions are given by
dim(Ay) = §(k), for every nonnegative integér where the integer functiod is defined

by

(k+1D(k+2)
2 9
This functions will also be useful to express the dimension of homogeneous componen
of A3 for a suitable graduation.

S(k) = Vk € N. (11)

Proposition 5. Let A, B and C be three homogeneous polynomials without a non-trivial
common factor il\, and let/, m andn be their degrees. The total multiplicifyA, B, C)
is equal to

8(k) —8(k —1) —8(k —m) — 8(k —n) +dim(R(A, B, C),

for every large enough integér, whereR(A, B, C); is the homogeneous component of
degreek of the moduleR(A, B, C) of all relations betweem, B and C. The relevant
graduation ofR(A, B, C) is induced by the graduation of the-moduleA2 in which the
homogeneous component of degrae the producth;_; x Ag_p, x Ag_j,.

Proof. In order to begin the computation &A, B, C), first consider the exact sequence
of A-modules:
0-% R@A,B,C) > a3 2% a2 a/4,8,0) %0, (12)
in which
(i) the first A-module R(A, B, C)is a submodule of\3, and consists of all relations
[r1, r2, r3] betweenA, B, C: [r1,r2, 3] € R(A, B, C) & r1A +r2B +r3C = 0;
(i) the morphismeV from A3 to A is the ‘scalar product by the vector= [A, B, C] of
K(x, y, z)%: oV ([r1, 2, r3]) = r1A + r2B + r3C and R(A, B, C)is thus its kernel;
(i) s is the surjective quotient map frofto its quotient by the idedl4, B, C).
By stating that, for every nonnegative integethe homogeneous componeéat®); of
degreek of A3 is Ay_; x Ag_, x Ax_,, we define a graduation at®; endowed with this

graduation A2 is a gradedi-module and so is its submoduld R B, C). Moreover, all
morphisms of the exact sequence (12) are homogeneous and have the degree 0.

https://doi.org/10.1112/51461157000000863 Published online by Catdidge University Press


https://doi.org/10.1112/S1461157000000863

On a result of Darboux

Given a degreé, the dimension ofA/(A, B, C)); is related to diniR(A, B, C);) by
the alternate sum of dimensions in an exact sequence of finite-dimensional vector spac

dim((A/(A, B, C))r) = dim((A)x) — dim((A%);) + dim(R(A, B, C)).

If k > max(, m, n), itis easy to see that dicpA3);) = §(k —I) + 8 (k —m) + 8(k — n),
from which we deduce that
dim((A/(A,B,C))x) = &k)—8k—1)—68k—m)—38(k—n)
+dim(R(A, B, C)).

As I(A, B,C) = dim((A/(A, B, C))y) for a large enouglt according to Propositiof,
we get the required formula for the index. O

13)

If Proposition5 relies on the classical idea to compute the total intersection index from
consideration of the homogeneous components of the module of relations, the next pro
sition uses the orthogonality relatioh)(oetween the two triplegsi, B, Cland[A’, B/, C']
to link the unknown number digR (A, B, C);) to some numerical invariants relatedAq
B’ andC’.

Proposition 6. Let [A, B, C, A’, B’, C'] be an orthogonal system of polynomials. Then
it is possible to construct aA-linear homogeneous map from the modRigA, B, C) of
relations betweem, B andC to A, whose kernel is the principal-module generated by
the particular relation[A’, B’, C'], and whose imagg is a homogeneous ideal &fsuch
that:

(A,B',C'Ycgc(A,B, C):(A B,C). (14)
Moreover, the following relation holds:

l l/ 1./
I(A,B,C)+ I() = M (15)

wherel, m, n,l’, m' andn’ are the degrees o, B, C, A’, B’ andC’, andr is the degree
of the orthogonal system.

Proof. First define an\-linear homogeneous mapW from A3 to A3:
AW([r1,r2,r3]) =[B'r3—C'r2,C'r1 — A'ra, A'ra — B'r1]. (16)

It is easy to check that {fr1, 2, r3] € R(A, B, C), thenAW ([r1, r2, r3]) is collinear toV
in K(x, y, z)3. As V is irreducible, AW ([r1, r2, r3]) has to be a multiple of’ by some
polynomiale ([r1, r2, r3]). The desired map is thus defined.

As W is irreducible, ¢ ([r1,7r2,r3]) = O if and only if [r1, r2, r3] is @ multiple
of [A", B/, C'].

We then get a second exact sequence:

0% aYRra, B0 g %o (17)

in which W stands for the map — P[A’, B’, C'] from A to AS.

The second inclusiogi c (A’, B, C') : (A, B, C) comes inherently from the definition
of ¢: if ¢([r1, r2, r3]) € &, the coordinates ap([r1, r2, r3))V = AW ([r1, r2, r3]) belong
to (A’, B’, C") and thusp([r1, r2, r3]) brings(A, B, C) to (A, B, C).
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To prove the first inclusioA’, B, C') C ¢, it suffices to check that’, B’ andC’ are
in 4. We simply remark thal0, C, —B] is a relation, and that

AW(0,C,—B])=[-B'B—-C'C,A'B, A'C] = A'[A, B, C],
according to the orthogonality relation.

With respect to the graduation defined in Proposiicon A2, W is homogeneous of
degree, andg is homogeneous of degree- I — m — n; then, for any degrek, we deduce
an exact sequence &f-linear maps between finite-dimensional vector spacesivand
the corresponding formula relating the dimensions of these vector spaces:

dlm(R(A, B,C)) = dim(gkﬂ—r—l—m—n) + d|m(Ak—i) (18)

Formula (15) now comes from identity (13), together with identity (18) and the following
self-evident equality:

dim(gk—i-r—l—m—n) = dim(Ak-l-r—l—m—n) - dim((A/g)k—i-r—l—m—n)- (19)
Adding the three equalities (13), (18) and (19), kdarge enough, leads to

I(A,B,C)+1(§) = &k)—68kk—1)—58k—m)—358(k—n)
+8k —r)+8k+r—1—m—n) (20)
= r2—r(l+m+n)+Im+mn+nl.

This is the required result, which does not depend.on O

Corollary 7. Under the hypotheses of Propositioand with the notations of its proof, the
following inequality holds:

l l/ r. !
(A, B,C)+ I(A, B',C') > 2 — rl+m+n)+Im+mn+nl = T EEM o)
r

Proof. This is an easy consequence of the inclugiah B’, C’) C 4. O

Our second corollary gives the result of Darboux; first, however, we need a lemma
complete its proof.

Lemma 8. Let /1 and I, be two homogeneous idealsKixo, - - -, x,] with a finite number
of projective zeroes. If the homogeneous compogignt 1)y is equal toK[xo, - - -, x;]x
for k large enoughwe shall say that; + I» is full in high degree), theid(l1) = I(I1 : I2).

Proof. The quotient ideal; : I» is equal to the quotient, : I3, wherelz = 11 + I, and
I3 is full in high degree, which means that all homogeneous polynomials of degree lare
enough are elements &f.

As I; has a finite number of projective zeroes, there is no restriction in supposing that
has no zero on the liney = 0. Thus, referring to the proof of Propositidnthere exists a
degreekg such that a homogeneous polynomfabf degreek > kg belongs tol1 as soon
asxop f belongs tol;.

As I3 is full in high degree, for every homogeneofi®f degreek > kg in I1 : I3, there
exists a powexg’ of xg such thatng belongs taol;. Thus, f itself belongs td;. O
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Corollary 9. Under the hypotheses of Propositiénif moreover there is no common pro-
jective zero to all six polynomiald, B, C, A’, B’ andC’, the Darboux formula holds:
l l/ 1.7
I(A,B,C)+ I(A', B',C') = % — r(l +m +n) +Im +mn +nl = 22
r

Proof. It suffices to prove thak(A’, B, C") = I1().
From the double inclusiof’, B, C") c § c (A’, B', C’) : (A, B, C), we know that
I(A",B',C") > 1(§) 2 I(A", B',C") : (A, B, 0)).
The additional assumption that there is no common projective zero to all six polynomial
A, B, C, A’, B andC’, shows that the sum of the two homogeneous idealsB, C)

and(A’, B’, C') is full in high degree; thus, according to Lem@gthe total multiplicities
I(A’,B’,C")andI((A’, B, C") : (A, B, C)) are the same. O

Remark 1. In this second proof, the two triples play different rolgs; B, C] is given,
and[A’, B, C’] is some relation betwee#), B andC, with additional properties.

Itis not always true that there exists a relation for which the Darboux rele2jdmo(ds.
For instance, ifA, B, Clis[x2, xy, y2], any irreducible relatiopA’, B’, C’] will be equal
to[A]y, —Ajx—C1y, Cx]for some coprime polynomial$] andC; of the same degreg

In this case/(A, B, C) = 3andI(A’, B”, C) = (d + 1), whereas the right-hand side
of the relation ) is equal tad 4+ 3)2 — 6(d + 3) + 12 = d2 + 3. These two numbers cannot
agree.

Remark 2. Itwould also be very interesting to check the following converse of the Darbous»
lemma: if the Darboux relation holds for some orthogonal system of polynomials, is |
necessary that this system be without projective zero?

This natural question is not simple, and the answer will probably be the subject of anoth
paper. Let us simply say that no poiftcan be a local complete intersection of both ideals
(A, B, C)and(A’, B/, C’) under the assumption thatA’, B’, C") = I(J).

5. Applications

An affine polynomial vector field& = pd/dx + ¢d/dy in C? can be thought of as
a C-derivation of the ringC[x, y], wherep, g € C[x, y]. We say that thelegreeof X is
the maximum of the degrees pfandg.

A projective polynomial vector fiel& = P3/0X + Qd/dY + Rd/3Z in P»(C) of
degreed is aC-derivation of the ringC[ X, Y, Z], whereP, O, R € C[X, Y, Z] are homo-
geneous polynomials with the same degte€hus, the tripld P, O, R] defines a map from
the projective plan®,(C) into itself, with some singularities. We note that, together with
the Euler vector field = X9/0X+Y0d/0Y +Zd/9Z, all theC-derivationsX + A&, where
A is an arbitrary homogeneous polynomialGiX, Y, Z] of degreel — 1, define the same
homogeneous projective Pfaff 1-form of degeee- 1, providing the same homogeneous
foliation of C2 and thus the same foliation B (C); for more details, see [2].

If we have an affine polynomial vector field = pd/dx + ¢d/dy of degreed in C2, it
can be thought of as a projective one, makirngndg homogeneous with the same degiee
in the variables, Y andZ as follows:

0,0 S (X YN O g (X YN0
8, 90 X Yyao X Yy
Pox T%, P\Z2z)ox T2 9\727)ov
where we take&k = 0.
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If we have a projective polynomial vector field = P9d/0X + Q3/dY + RI/0Z
of degreed in P2(C), it can be thought of as an affine one, considering the vector fielc
ZX — R& and takingZ = 1.
Let f € C[x, y]. The algebraic curve (x, y) = 0 is aninvariant algebraic curvef the
affine polynomial vector fieldX if, for some polynomiak € C[x, y], we have
Xf = g—fp+ %q = kf.
X ay
The polynomiak is called thecofactorof the invariant algebraic curvg = 0.
It is easy to verify that iff (x, y) = 0 is an invariant algebraic curve of degretor the
polynomial vector fieldX with cofactork(x, y),thenF(X,Y,Z2) = Z" f(X/Z,Y/Z) =0
is an invariant algebraic curve of degredor its projective vector field with cofactor
K(X,Y,7Z)=2""Y%(X/Z,Y/Z); thatis,
XF oF p oF BFR KF
=ax D Ty @t gz Rk
whereR = 0.
If F(X,Y,Z) = 0is an algebraic curve d&,(C) of degreer, let p = (Xo, Yo, Zo)
be a point ofP2(C). Since the three coordinates pfcannot be zero, we can assume
withoutloss of generality that = (0, 0, 1). Then suppose that the expressiof' ¢k, Y, Z)
restricted toZ = 1is

FX,Y,D)=FX,Y)+ Fip1(X,Y) +...+ F(X,Y),

where 0< i < r, and whereFj (X, Y) denotes a homogeneous polynomial of degrée
the variablesy andY for j =i, ..., r, with F; different from the zero polynomial. We say
thati = m,(F) is themultiplicity of the curveF = 0 at the pointp. If i = 0, then the
point p does not belong to the curnve= 0. If i = 1, we say thap is asimplepoint for the
curveF = 0. If i > 1, we say thap is amultiple point.

Proposition 10. Let f(x, y) = 0 be an irreducible invariant algebraic curve of degree
r > 1 without multiple points for the affine polynomial vector fiéldof degreed. Then
r<d+4+1.

Proof. SinceF = 0 is an invariant algebraic curve of with cofactork, we find that

in P2(C). By using the Euler theorem for the homogeneous functioof degreer, this
equation becomes

oF P lXK + oF 0 1YK + oF 121{ =0 (22)
X r Y r 9Z \ r o
Now we take in the Darboux lemma:
oF oF oF , 1 , 1 , 1
A=—, B=—, C=—, A=P—--XK, B=Q—--YK, C'=—-—-ZK,
X Y 7 r r r

and
h=I1(ANBNCOC), W =IANBNC.

We note that, by assumptiol.andh’ are finite. Moreover, ad N B N C = @, we see that
h=0.
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SinceA, A’, B, B’, C andC’ satisfy equality (22), the Darboux lemma can be used
to obtain

h+w_d&+u—n3
od4r-1
=d’+(r—1D(r—d+1). (23)

By the Bézout theorem, the number of intersection points of the cutVes 0, B" = 0
andC’ = 0 is at most/2, taking into account their multiplicities; that i, < 42. Hence a
lower bound forz is as follows: O0=4 > (r —1)(r —d — 1), and 1< r <d + 1. O

Remark 3. We are not the first to notice the previous result (see, for instahPebpt, in

our opinion, the Darboux lemma provides a simple and elegant means of obtaining it.
More-involved proofs of this fact can be obtained by taking into consideration the ex

actness of the Koszul complex built on the vector of partial derivatives of an irreducibl

homogeneous three-variable polynomial corresponding to a smooth algebraic curve.
On the other hand, Tsygvintsev used the genus-degree formula for a non-singular cu

and the Riemann—Hurwitz formula to achieve his proof [5].

In [1], the first two authors have proved the following result, which we shall need later or

Theorem 11. Let f(x, y) = 0 be an irreducible algebraic curve of degree> 1, which
is invariant with cofactotk # 0, for the affine polynomial vector fietd of degreed > 1.
If 42 is the total number of solutions of the system

rP—XK=0, rQ-YK=0 ZK=0, (24)

in the projective plane, taking their multiplicities or numbers of intersections into account
thenX has a rational first integral.

We recall that dimit cycleof a real affine polynomial vector fields is an isolated periodic
orbit in the set of all periodic orbits of the system. Algebraic limit cycleof degree- is
an oval of an irreducible invariant algebraic curfec, y) = 0 of degree-, which is a limit
cycle of the system.

Theorem 12. Real affine quadratic polynomial vector fields have no algebraic limit cycles
of degrees.

Proof. Let f = 0 be an invariant algebraic curve of degree 3 of a real affine polynomia
vector field of degree 2. If the cubic curye= 0 has multiple points, then it is rational (its
genus is 0) and there is no oval in it. ff= 0 has no multiple points, equatio3) in the
proof of PropositioriL0 implies thath’ = 22 = 4. According to Theorem1, the system
has a rational first integral, and thus no limit cycle. O
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