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Abstract
We prove an analogue of Kirchhoff’s matrix tree theorem for computing the volume of the tropical Prym variety for
double covers of metric graphs. We interpret the formula in terms of a semi-canonical decomposition of the tropical
Prym variety, via a careful study of the tropical Abel–Prym map. In particular, we show that the map is harmonic,
determine its degree at every cell of the decomposition and prove that its global degree is 2𝑔−1. Along the way, we
use the Ihara zeta function to provide a new proof of the analogous result for finite graphs. As a counterpart, the
appendix by Sebastian Casalaina-Martin shows that the degree of the algebraic Abel–Prym map is 2𝑔−1 as well.
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1. Introduction

Kirchhoff’s celebrated matrix tree theorem states that the number of spanning trees of a connected finite
graph G, also known as the complexity of G, is equal to the absolute value of the determinant of the
reduced Laplacian matrix of G. From a tropical viewpoint, this number is also equal to the order of the
Jacobian group Jac(𝐺) of G.

In [ABKS14], Kirchhoff’s theorem was generalised to metric graphs and given a geometric interpre-
tation. The Jacobian variety Jac(Γ) of a metric graph Γ of genus g is a real torus of dimension g, and
its volume can be computed as a weighted sum over all spanning trees of Γ. Given a set 𝐹 ⊂ 𝐸 (Γ) of g
edges of Γ (with respect to a choice of model), denote by 𝑤(𝐹) the product of the lengths of the edges
in F. Then (see Theorem 1.5 in [ABKS14])

Vol2(Jac(Γ)) =
∑
𝐹

𝑤(𝐹), (1)

where the sum is taken over those subsets F such that Γ\𝐹 is a spanning tree of Γ.
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The weighted matrix-tree theorem can be proved by a direct application of the Cauchy–Binet for-
mula (see Remark 5.7 in [ABKS14]), but the authors give a geometric proof in terms of a canonical
representability result for tropical divisor classes, which we briefly recall. Let Φ : Sym𝑔 (Γ) → Pic𝑔 (Γ)
be the tropical Abel–Jacobi map, sending an effective degree g divisor D to its linear equivalence class.
A divisor 𝐷 = 𝑃1 + · · · + 𝑃𝑔 is called a break divisor if each 𝑃𝑖 is supported on an edge 𝑒𝑖 in such a
way that {𝑒1, . . . , 𝑒𝑔} is the complement of a spanning tree of Γ. By a result of Mikhalkin and Zharkov
[MZ08], the map Φ has a canonical continuous section, whose image is the set of break divisors in
Sym𝑔 (Γ). Hence, Pic𝑔 (Γ) (and, by translation, Jac(Γ)) has a canonical cellular decomposition coming
from the cells of Sym𝑔 (Γ) parametrised by the spanning trees of Γ. Computing the volume of Jac(Γ)
in terms of this decomposition gives equation (1), where the terms in the right-hand side correspond to
the volumes of the individual cells. We note that the results of [ABKS14] can be reinterpreted as saying
that the Abel–Jacobi map Φ is a harmonic morphism of polyhedral spaces of degree 1 (see Remark 2.5).

The purpose of this article is to prove analogous results for the tropical Prym variety associated to
a free double cover of metric graphs. Given an étale double cover 𝑓 : 𝐶 → 𝐶 of smooth algebraic
curves of genera 2𝑔 − 1 and g respectively, the kernel of the norm map Nm : Jac(𝐶) → Jac(𝐶) has two
connected components and the even component is an abelian variety of dimension 𝑔 − 1, known as the
Prym variety Prym(𝐶/𝐶) of the double cover. Prym varieties have been extensively studied following
Mumford’s seminal paper [Mum74], as they are one of only few instances of abelian varieties that can
be described explicitly. Furthermore, they play a key role in rationality questions for threefolds [CG72]
and in constructing compact hyper-Kähler manifolds [LSV17].

The notion of an étale cover of algebraic curves has two natural analogues in tropical geometry. One
can consider free covers 𝜋 : Γ̃ → Γ, which are covering spaces in the topological sense: the map 𝜋 is
a local homeomorphism at each point and an isometry if the graphs are metric. It is often necessary to
consider the more general unramified covers, which are finite harmonic morphisms of metric graphs
satisfying a numerical Riemann–Hurwitz condition. This notion does not have an analogue for finite
graphs. The tropicalisation of an étale cover of algebraic curves is an unramified cover of metric graphs
but not necessarily free.

The tropical Prym variety Prym(Γ̃/Γ) associated to an unramified double cover 𝜋 : Γ̃ → Γ of
metric graphs is defined in analogy with its algebraic counterpart [JL18, Definition 6.2]. Specifically,
Prym(Γ̃/Γ) is the connected component of the identity of the kernel of the tropical norm map Nm :
Jac(Γ̃) → Jac(Γ) (note that in the tropical case, the kernel has two connected components if 𝜋 is free
and one if 𝜋 is unramified but not free). As shown in [LU19, Theorem B], this construction commutes
with tropicalisation. Namely, if 𝜋 is the tropicalisation of an étale double cover 𝑓 : 𝐶 → 𝐶 of algebraic
curves, then the tropical abelian variety Prym(Γ̃/Γ) is the skeleton of the Berkovich analytification of
Prym(𝐶/𝐶) and the corresponding Abel–Prym maps commute (the corresponding result for Jacobians
was proved in [BR15]). This observation has recently led to new results concerning the dimensions of
Brill–Noether loci in Prym varieties [CLRW20, Corollary B].

In the current article, we consider only free double covers of finite and metric graphs. We first
compute the order of the Prym group Prym(𝐺/𝐺) of a free double cover 𝑝 : 𝐺 → 𝐺 of a finite graph G
of genus g. The finite group Prym(𝐺/𝐺) is a canonically defined index 2 subgroup of the kernel of the
norm map Nm : Jac(𝐺) → Jac(𝐺). In the spirit of Kirchhoff’s formula, the order of Prym(𝐺/𝐺) is a
weighted sum over certain (𝑔− 1)-element subsets of 𝐸 (𝐺): given a subset 𝐹 ⊂ 𝐸 (𝐺) of 𝑔− 1 edges of
G, we say that F is an odd genus 1 decomposition of rank r if 𝐺\𝐹 consists of r connected components
of genus 1, each having connected preimage in 𝐺.

Kirchhoff–Prym formula (Proposition 3.2). The order of the Prym group Prym(𝐺/𝐺) of a free double
cover 𝑝 : 𝐺 → 𝐺 of finite graphs is equal to

| Prym(𝐺/𝐺) | = 1
2
| Ker Nm | =

𝑔∑
𝑟=1

4𝑟−1𝐶𝑟 ,

where 𝐶𝑟 is the number of odd genus 1 decompositions of G of rank r.
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This formula has already been obtained by Zaslavsky in the seminal paper [Zas82] as the determinant
of the signed Laplacian matrix of the graph G (see Theorem 8A.4 in [Zas82]) and was later explicitly
interpreted as the order of the kernel of the norm map by Reiner and Tseng (see Proposition 9.9 in
[RT14]). We give an alternative proof, by comparing the Ihara zeta functions 𝜁 (𝑠, 𝐺) and 𝜁 (𝑠, 𝐺) of the
graphs 𝐺 and G. By the work of Stark and Terras [ST96, ST00], the quotient 𝜁 (𝑠, 𝐺)/𝜁 (𝑠, 𝐺) for a free
double cover 𝑝 : 𝐺 → 𝐺 is the L-function of the cover evaluated at the nontrivial representation of the
Galois group Z/2Z, and we use the L-function to compute the order of the Prym group. To the best of
our knowledge, this is the first application of the Ihara zeta function to tropical geometry.

We then derive a weighted version of the Kirchhoff–Prym formula for the volume of the Prym
variety of a free double cover of metric graphs, in the same way that equation (1) generalises Kirchhoff’s
theorem.

Theorem A (Theorem 3.4). The volume of the tropical Prym variety Prym(Γ̃/Γ) of a free double cover
𝜋 : Γ̃ → Γ of metric graphs is given by

Vol2 (Prym(Γ̃/Γ)) =
∑

𝐹 ⊂𝐸 (Γ)
4𝑟 (𝐹 )−1𝑤(𝐹),

where the sum is taken over all odd genus 1 decompositions F of Γ and where 𝑤(𝐹) is the product of
the lengths of the edges in F.

In the second part of our article, we derive a geometric interpretation for the volume formula for the
tropical Prym variety, in the spirit of [ABKS14]. Let 𝜋 : Γ̃ → Γ be a free double cover of metric graphs
and let 𝜄 : Γ̃ → Γ̃ be the associated involution. Consider the Abel–Prym map Ψ associated to 𝜋,

Ψ : Sym𝑔−1(Γ̃) → Prym[𝑔−1] (Γ̃/Γ), Ψ(𝐷) = 𝐷 − 𝜄(𝐷),

where Prym[𝑔−1] (Γ̃/Γ) denotes the component of Ker Nm of the same parity as 𝑔 − 1.
Our principal result states that Ψ is a harmonic morphism of polyhedral spaces of degree 2𝑔−1

(as in Definition 2.12). The space Sym𝑔−1(Γ̃) has a natural polyhedral decomposition, with the top-
dimensional cells 𝐶 (𝐹) indexed by multisets 𝐹 ⊂ 𝐸 (Γ̃) of 𝑔 − 1 edges of Γ̃. We define the degree of a
top-dimensional cell to be degΨ (𝐹) = 2𝑟 (𝐹 )−1 if 𝑝(𝐹) consists of distinct edges and is an odd genus 1
decomposition of rank 𝑟 (𝐹) and zero otherwise. Then the Abel–Prym map Ψ contracts the cell 𝐶 (𝐹)
if and only if degΨ (𝐹) = 0. Furthermore, Ψ is harmonic with respect to the degree, meaning that it
satisfies a balancing condition around every codimension 1 cell of Sym𝑔−1(Γ̃). This implies that we can
extend the degree function to all of Sym𝑔−1(Γ̃) in such a way that the sum of the degrees in each fibre
of Ψ is a finite constant, called the global degree of Ψ. To compute the global degree, we first observe
that the harmonicity of the Abel–Prym map allows us to express the volume of Prym(Γ̃/Γ) in terms of
its degree. Comparing the result with Theorem A, we find that the global degree is in fact 2𝑔−1. The
factors 4𝑟 (𝐹 )−1 in the weighted Kirchhoff–Prym formula represent squares of the local degrees of Ψ.

Summarising, we obtain a semi-canonical representability result for tropical Prym divisors.

Theorem B (Theorem 5.1). The Abel–Prym map Ψ : Sym𝑔−1(Γ̃) → Prym[𝑔−1] (Γ̃/Γ) associated to
a free double cover 𝜋 : Γ̃ → Γ of metric graphs is a harmonic morphism of polyhedral spaces of
degree 2𝑔−1. In particular, there is a degree map degΨ : Sym𝑔−1(Γ̃) → Z≥0 such that any element
of Prym[𝑔−1] (Γ̃/Γ) has exactly 2𝑔−1 representatives of the form 𝐷 − 𝜄(𝐷) counted with multiplicity
degΨ (𝐷), where 𝐷 is an effective divisor of degree 𝑔 − 1.

We note that a divisor in Prym[𝑔−1] (Γ̃/Γ) may have infinitely many representatives of the form
𝐷− 𝜄(𝐷) with degΨ (𝐷) = 0, but a generic divisor in Prym[𝑔−1] (Γ̃/Γ) only has representatives 𝐷− 𝜄(𝐷)
with degΨ (𝐷) > 0 and hence finitely many in total.

The canonical representability result of [ABKS14] also holds in the integral setting, after fixing a
generic element 𝜆 ∈ Jac(Γ): given a model G of Γ, any class in Pic𝑔 (𝐺) is represented by a unique
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break divisor 𝐷 ∈ Sym𝑔 (𝐺). Shifting the break divisor by 𝜆, we obtain a divisor supported on the
complement of a spanning tree of G. See [ABKS14, Remark 4.26] and [BBY19, Example 1.3.4] for
more detail. An analogous correspondence result does not hold for Prym groups. In fact, the discrete
Abel–Prym map Sym𝑔−1(𝐺) → Prym[𝑔−1] (𝐺/𝐺) associated to a free double cover 𝑝 : 𝐺 → 𝐺 of
finite graphs is not even surjective in general (see Example 2.9).

We believe that suitable generalisations of Theorems A and B hold for unramified double covers
of metric graphs, which is the more general framework considered in [JL18] and [LU19]. To derive
and prove them using the methods of our article, it would first be necessary to develop a theory of
L-functions of unramified Galois covers of graphs, extending the theory for free covers developed in
[ST96] and [ST00]. Such a theory should be a part of a more general theory of Ihara zeta functions of
graphs of groups. This first step in this direction is the paper [Zak20] by the second author. It would also
be interesting to determine whether the Prym construction generalises to other tropical abelian covers
(see [LUZ19]).

1.1. The algebraic Abel–Prym map and its tropicalisation

Let C be a smooth algebraic curve of genus g and let Φ𝑑 : Sym𝑑 (𝐶) → Pic𝑑 (𝐶) be the degree d
Abel–Jacobi map. It is a classical result that Φ𝑑 has degree 1 when 𝑑 ≤ 𝑔 and is birational when
𝑑 = 𝑔 [ACGH85, Chapter 1.3]. The degree d Abel–Prym map Ψ𝑑 : Sym𝑑 (𝐶) → Prym[𝑑 ] (𝐶/𝐶)
corresponding to an unramified double cover 𝜋 : 𝐶 → 𝐶 of smooth algebraic curves is defined by
Ψ𝑑 (𝐷) = 𝐷 − 𝜄(𝐷). Unlike the Abel–Jacobi map, the degree of Ψ𝑑 depends nontrivially on the Brill–
Noether type of C. For example, if 𝑑 = 1, then the degree is equal to 2 if C is hyperelliptic and 1
otherwise. However, the degree of the Abel–Prym map when 𝑑 = 𝑔 − 1 is always 2𝑔−1. We are very
grateful to Sebastian Casalaina-Martin for a proof of this result (and a number of others) about the
Abel–Prym map, which we have included as an Appendix to this article.

Given that the algebraic Abel–Prym map Ψ𝑔−1 has degree 2𝑔−1, it is tempting to derive Theorem B
from the corresponding algebraic statement by a tropicalisation argument (the same argument would
also give an alternative proof of one of the principal results of [ABKS14], namely, the existence of a
canonical section of the Abel–Jacobi map). It is well known that the tropicalisation of a degree d map
of algebraic curves is a harmonic morphism of metric graphs of the same degree d. However, we are
unaware of a suitable generalisation of this result to higher dimension, and the derivation of such a result
is beyond the scope of this article.

Motivated by this similarity and by the results of the Appendix, we propose the following conjecture.

Conjecture 1.1. Let 𝑓 : 𝐶 → 𝐶 be an étale double cover of algebraic curves tropicalising to a free
double cover 𝜋 : Γ̃ → Γ of metric graphs. Then the degrees of the algebraic and tropical Abel–Prym
maps Ψ𝑑 for 𝑑 ≤ 𝑔 − 2 associated to f and 𝜋 coincide. In particular, the degree of Ψ𝑑 is bounded by 2𝑑 .

We stress that the tropical and algebraic results presented in this article are derived via entirely
different techniques and are independent of each other.

1.2. Degenerations of abelian varieties

Polyhedral decompositions of real tori, such as the ones described above, suggest an interesting con-
nection with degenerations of abelian varieties and compactifications of their moduli spaces.

The Jacobian of a nodal curve is a semi-abelian variety that is not proper in general. There are
numerous compactifications constructed by various authors that depend on a choice of degree and an
ample line bundle (e.g., [Est01, Sim94]). In degree g, these constructions coincide [Cap94] and the
strata in the compactification are in bijection with certain orientations on the dual graph of the curve
[Chr18, Theorem 3.2.8]. In fact, the same strata are in an order reversing bijection with the cells in the
ABKS decomposition of the tropical Jacobian [Cap18, Theorem 4.3.4]. More generally, each Simpson
and Esteves compactified Jacobian of C can be constructed from a polyhedral decomposition of the
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tropical Jacobian of the dual graph of C [CPS19, Theorem 1.1]. An analogous statement in degree g
holds uniformly over the moduli space of curves [AAPT19].

The situation is more subtle for Prym varieties. Given an admissible double cover 𝐶 → 𝐶 of nodal
curves, the identity component of the kernel of the norm map is, again, a nonproper semi-abelian
variety. There are various approaches for compactifying the Prym variety (e.g., [ABH02, CMGHL17]).
However, unlike the case of Jacobians, the Prym–Torelli map R𝑔 → 𝐴𝑔−1 from the moduli space of
étale double covers to the moduli space of abelian varieties does not extend to the boundary for any
reasonable toroidal compactification of 𝐴𝑔−1 [Vol02, FS86].

We therefore ask the following.

Question 1.2. Given an admissible double cover 𝐶 → 𝐶 with tropicalisation Γ̃ → Γ, do the cells
of the semi-canonical decomposition of the tropical Prym variety Prym(Γ̃/Γ) described in Theo-
rem B correspond to the boundary strata of an appropriate compactification of the Prym variety
Prym(𝐶/𝐶)?

A positive answer would suggest a path to a natural compactification of the moduli space of abelian
varieties such that the map R𝑔 → 𝐴𝑔−1 extends to the boundary.

2. Preliminaries

In this section, we review the necessary material about graphs, metric graphs, tropical ppavs, Jacobians,
Prym varieties and polyhedral spaces. The only new material is found in Subsection 2.5, where we define
the Prym group of a free double cover of graphs. Throughout this article, we consider both finite and
metric graphs, which we distinguish by using Latin and Greek letters, respectively. Graphs are allowed
to have loops and multi-edges but not legs, and we do not consider the more general setting of graphs
with vertex weights. All graphs are assumed to be connected unless stated otherwise.

2.1. Graphs and free double covers

We denote the vertex and edge sets of a finite graph G respectively by 𝑉 (𝐺) and 𝐸 (𝐺) and its genus by
𝑔(𝐺) = |𝐸 (𝐺) | − |𝑉 (𝐺) | +1. An orientation of a graph G is a choice of direction for each edge, allowing
us to define source and target maps 𝑠, 𝑡 : 𝐸 (𝐺) → 𝑉 (𝐺). For a vertex 𝑣 ∈ 𝑉 (𝐺), the tangent space 𝑇𝑣𝐺
is the set of edges emanating from v and the valency is val(𝑣) = #𝑇𝑣𝐺 (where each loop at v counts
twice towards the valency). A metric graph Γ is the compact metric space obtained from a finite graph
G by assigning positive lengths ℓ : 𝐸 (𝐺) → R>0 to its edges and identifying each edge 𝑒 ∈ 𝐸 (𝐺) with
a closed interval of length ℓ(𝑒). The pair (𝐺, ℓ) is called a model of Γ and we define 𝑔(Γ) = 𝑔(𝐺). A
metric graph has infinitely many models, obtained by arbitrarily subdividing edges, but the genus 𝑔(Γ)
does not depend on the choice of model.

The only maps of finite graphs that we consider in our article are free double covers 𝑝 : 𝐺 → 𝐺.
Such a map consists of a pair of surjective 2-to-1 maps 𝑝 : 𝑉 (𝐺) → 𝑉 (𝐺) and 𝑝 : 𝐸 (𝐺) → 𝐸 (𝐺) that
preserve adjacency and such that the map is an isomorphism in the neighbourhood of every vertex of
𝐺. Specifically, for any pair of vertices �̃� and v with 𝑝(�̃�) = 𝑣 and for each edge 𝑒 ∈ 𝐸 (𝐺) attached to
v, there is a unique edge �̃� ∈ 𝐸 (𝐺) attached to �̃� that maps to e. We say that 𝑝 : 𝐺 → 𝐺 is oriented
if 𝐺 and G are oriented graphs and if the map p preserves the orientation. There is a naturally defined
involution 𝜄 : 𝐺 → 𝐺 on the source graph that exchanges the two sheets of the cover. It is easy to see
that if G has genus g, then any connected double cover 𝐺 of G has genus 2𝑔 − 1.

Remark 2.1. If 𝑝 : 𝐺 → 𝐺 is a free double cover and 𝑒 ∈ 𝐸 (𝐺) is a loop at v, then the preimage of e
is either a pair of loops, one at each of the two vertices in 𝑝−1 (𝑣), or a pair of edges connecting the two
vertices in 𝑝−1 (𝑣) (oriented in the opposite directions if e is oriented).

A free double cover of metric graphs 𝜋 : Γ̃ → Γ is a free double cover 𝑝 : 𝐺 → 𝐺 of appropriate
models (𝐺, ℓ) and (𝐺, ℓ) respectively of Γ̃ and Γ that preserves edge length, so that ℓ(𝑝(�̃�)) = ℓ(�̃�)
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for all �̃� ∈ 𝐸 (Γ̃). A free double cover is the same as a finite harmonic morphism of global degree 2
and local degree 1 everywhere and we do not consider the more general case of unramified harmonic
morphisms of degree 2 studied in [JL18] and [LU19]. From a topological viewpoint, free double covers
are the same as normal covering spaces with Galois group Z/2Z.

We consistently use the following construction, due to [Wal76], to describe a double cover 𝑝 : 𝐺 → 𝐺
of a graph G of genus g.

Construction A. Let G be a graph of genus g. Fix a spanning tree𝑇 ⊂ 𝐺 and a subset 𝑆 ⊂ {𝑒0, . . . , 𝑒𝑔−1}
of the edges in the complement of T. Let 𝑇+ and 𝑇− be two copies of T and for a vertex 𝑣 ∈ 𝑉 (𝑇) = 𝑉 (𝐺)
denote �̃�± the corresponding vertices in 𝑇±. We define the graph 𝐺 as

𝐺 = 𝑇+ ∪ 𝑇− ∪ {�̃� ±
0 , . . . , �̃�

±
𝑔−1}.

The map 𝑝 : 𝐺 → 𝐺 sends 𝑇± isomorphically to T and �̃� ±
𝑖 to 𝑒𝑖 . For 𝑒𝑖 ∈ 𝑆, each of the two edges �̃� ±

𝑖

above it has one vertex on 𝑇+ and one on 𝑇−, while for 𝑒𝑖 ∉ 𝑆 both vertices of �̃� ±
𝑖 lie on the tree 𝑇±. It is

clear that if G is connected, then 𝐺 is connected if and only if S is nonempty. In the latter case, we may
and will assume that 𝑒0 ∈ 𝑆 and then𝑇 = 𝑇+∪𝑇−∪{�̃� +

0 } is a spanning tree for𝐺. We furthermore always
assume that the starting and ending vertices of �̃� +

0 lie respectively on 𝑇+ and 𝑇− and conversely for �̃�−0 :

𝑠(�̃� ±
0 ) = �𝑠(𝑒0)

±
, 𝑡 (�̃� ±

0 ) = �𝑡 (𝑒0)
∓
.

We do not make the same assumptions about the lifts of the remaining edges 𝑒𝑖 ∈ 𝑆.
The set of connected free double covers of G is thus identified with the set of nonempty subsets of

{𝑒0, . . . , 𝑒𝑔−1}. Alternatively, the fundamental cycle construction defines a basis for 𝐻1(𝐺,Z) corre-
sponding to the edges 𝑒𝑖 (the ith basis element is the unique cycle supported on 𝑇 ∪ {𝑒𝑖} and contain-
ing +𝑒𝑖). The set of nonempty subsets of {𝑒0, . . . , 𝑒𝑔−1} is then identified with the set of nonzero elements
of Hom(𝐻1 (𝐺,Z),Z/2Z) = 𝐻1(𝐺,Z/2Z) (a subset is identified with its indicator function) and the lat-
ter is canonically identified with the set of connected free double covers of G by covering space theory.

Remark 2.2. Let 𝑝 : 𝐺 → 𝐺 be a free double cover corresponding to a tree 𝑇 ⊂ 𝐺 and a subset
𝑆 ⊂ 𝐸 (𝐺)\𝐸 (𝑇) and let 𝐺 ′ ⊂ 𝐺 be a subgraph. Then the preimage 𝑝−1 (𝐺 ′) is connected (equivalently,
the restricted cover 𝑝 |𝑝−1 (𝐺′) : 𝑝−1 (𝐺 ′) → 𝐺 ′ is a nontrivial free double cover) if and only if there is a
cycle on 𝐺 ′ that contains an odd number of edges from S.

2.2. Chip-firing and linear equivalence

We now briefly recall the basic notions of divisor theory for finite and metric graphs (see [BN07,
Section 1] and [LPP12, Section 2] respectively for details).

Let G be a finite graph. The divisor group Div(𝐺) of G is the free abelian group on 𝑉 (𝐺) and the
degree of a divisor is the sum of its coefficients:

Div(𝐺) =
{∑

𝑎𝑣𝑣 : 𝑎𝑣 ∈ Z
}
, deg

∑
𝑎𝑣𝑣 =

∑
𝑎𝑣 .

A divisor 𝐷 =
∑
𝑎𝑣𝑣 is called effective if all 𝑎𝑣 ≥ 0, and we denote the set of divisors of degree d by

Div𝑑 (𝐺).
Let 𝑛 = |𝑉 (𝐺) | be the number of vertices and let Q and A be the 𝑛×𝑛 valency and adjacency matrices:

𝑄𝑢𝑣 = 𝛿𝑢𝑣 val(𝑢), 𝐴𝑢𝑣 = |{edges between 𝑢 and 𝑣}|. (2)
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The Laplacian 𝐿 = 𝑄 − 𝐴 of G is a symmetric degenerate matrix whose rows and columns sum to zero.
Given a vertex v, the divisor obtained via chip-firing from v is

𝐷𝑣 = −
∑

𝑢∈𝑉 (𝐺)
𝐿𝑢𝑣𝑢.

Such a divisor has degree 0; hence, the set of principal divisors Prin(𝐺), which are defined as the image
of the chip-firing map

Z𝑉 (𝐺) → Z𝑉 (𝐺) = Div(𝐺), 𝑎 ↦→ −𝐿𝑎,

lies inside Div0 (𝐺). The Picard group and Jacobian of G are defined as

Pic(𝐺) = Div(𝐺)/Prin(𝐺), Jac(𝐺) = Div0(𝐺)/Prin(𝐺).

Since any principal divisor has degree 0, the degree function descends to Pic(𝐺) and we denote Pic𝑘 (𝐺)
the set of equivalence classes of degree k divisors, so that Jac(𝐺) = Pic0 (𝐺). The group Pic(𝐺) is
infinite, but Jac(𝐺) is a finite group whose order is equal to the absolute value of any cofactor of the
Laplacian L. Kirchhoff’s matrix tree theorem states that | Jac(𝐺) | is equal to the number of spanning
trees of G (see [BS13, Theorem 6.2]).

The Picard variety of a metric graph Γ of genus g is defined as follows (see [BF11]). A divisor on a
metric graph Γ is a finite linear combination of the form

𝐷 = 𝑎1𝑝1 + 𝑎2𝑝2 + · · · + 𝑎𝑘 𝑝𝑘 ,

where 𝑎𝑖 ∈ Z and 𝑝𝑖 can be any point of Γ and deg 𝐷 = 𝑎1 + · · · + 𝑎𝑘 . We denote by Div(Γ) the divisor
group and by Div𝑘 (Γ) the set of divisors of degree k. A rational function M on Γ is a piecewise-linear
real-valued function with integer slopes. The principal divisor div(𝑀) associated to M is the degree 0
divisor whose value at each point 𝑝 ∈ Γ is the sum of the incoming slopes of M at p. It is clear that
div(𝑀 + 𝑁) = div(𝑀) + div(𝑁) and div(−𝑀) = − div(𝑀), so the principal divisors Prin(Γ) form a
subgroup of Div0(Γ) and the degree function descends to the quotient:

Pic(Γ) = Div(Γ)/Prin(Γ), Pic𝑘 (Γ) = {[𝐷] ∈ Pic(Γ) : deg 𝐷 = 𝑘}.

The Picard variety Pic0(Γ) is a real torus of dimension g and is isomorphic to the Jacobian variety of
Γ, which we review in the next section, while each Pic𝑘 (Γ) is a torsor over Pic0 (Γ).

2.3. Tropical abelian varieties

The Jacobian variety of a metric graph Γ is a tropical principally polarised abelian variety (tropical ppav
for short). We review the theory of tropical ppavs, following [FRSS18] and [LU19], though we have
found it convenient to slightly modify the main definitions (see Remark 2.3). In brief, a tropical ppav is a
real torus Σ whose universal cover is equipped with a distinguished lattice (used to define integral local
coordinates on Σ and in general distinct from the lattice defining the torus itself) and an inner product.

Let Λ and Λ′ be finitely generated free abelian groups of the same rank and let [·, ·] : Λ′ × Λ → R
be a nondegenerate pairing. The triple (Λ,Λ′, [·, ·]) defines a real torus with integral structure Σ =
Hom(Λ,R)/Λ′, where the ‘integral structure’ refers to the lattice Hom(Λ,Z) ⊂ Hom(Λ,R) and where
Λ′ is embedded in Hom(Λ,R) via the assignment 𝜆′ ↦→ [𝜆′, ·]. The transposed data (Λ′,Λ, [·, ·]𝑡 )
define the dual torus Σ′ = Hom(Λ′,R)/Λ.
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Let Σ1 = (Λ1,Λ′
1, [·, ·]1) and Σ2 = (Λ2,Λ′

2, [·, ·]2) be two real tori with integral structure and let
𝑓∗ : Λ′

1 → Λ′
2 and 𝑓 ∗ : Λ2 → Λ1 be a pair of maps satisfying

[𝜆′
1, 𝑓

∗(𝜆2)]1 = [ 𝑓∗(𝜆′
1), 𝜆2]2 (3)

for all 𝜆′
1 ∈ Λ′

1 and 𝜆2 ∈ Λ2. The map 𝑓 ∗ defines a dual map 𝑓 : Hom(Λ1,R) → Hom(Λ2,R),
and condition (3) implies that 𝑓 (Λ′

1) ⊂ Λ′
2 (in fact, 𝑓 |Λ′

1
= 𝑓∗). Hence, the pair ( 𝑓∗, 𝑓 ∗) defines a

homomorphism 𝑓 : Σ1 → Σ2 of real tori with integral structures. The transposed pair ( 𝑓 ∗, 𝑓∗) defines
the dual homomorphism 𝑓 ′ : Σ′

2 → Σ′
1.

Let 𝑓 = ( 𝑓∗, 𝑓 ∗) : Σ1 → Σ2 be a homomorphism of real tori with integral structures Σ𝑖 =
(Λ𝑖 ,Λ′

𝑖 , [·, ·]𝑖). We can naturally associate two real tori to f : the connected component of the iden-
tity of the kernel of f, denoted (Ker 𝑓 )0, and the cokernel Coker 𝑓 . It is easy to see that (Ker 𝑓 )0 and
Coker 𝑓 also have integral structures and the natural maps 𝑖 : (Ker 𝑓 )0 → Σ1 and 𝑝 : Σ2 → Coker 𝑓 are
homomorphisms of real tori with integral structure.

Indeed, let 𝐾 = (Coker 𝑓 ∗)𝑡 𝑓 be the quotient of Coker 𝑓 ∗ by its torsion subgroup (equivalently,
the quotient of Λ1 by the saturation of Im 𝑓 ∗) and let 𝐾 ′ = Ker 𝑓∗. Then Hom(𝐾,R) is naturally
identified with the kernel of the map Hom(Λ1,R) → Hom(Λ2,R) dual to 𝑓 ∗, and therefore (Ker 𝑓 )0 =
(𝐾, 𝐾 ′, [·, ·]𝐾 ), where [·, ·]𝐾 : 𝐾 ′ × 𝐾 → R is the pairing induced by [·, ·]1. We note that this pairing
is well-defined: given 𝜆′

1 ∈ 𝐾 ′ and 𝜆2 ∈ Λ2, equation (3) implies that

[𝜆′
1, 𝑓

∗(𝜆2)]1 = [ 𝑓∗(𝜆′
1), 𝜆2]2 = [0, 𝜆2]2 = 0.

Therefore, for 𝜆′ ∈ 𝐾 ′ and 𝜆 ∈ 𝐾 , the pairing [𝜆′, 𝜆]𝐾 = [𝜆′, 𝜆]1 does not depend on a choice of
representative for 𝜆 ∈ 𝐾 . The natural maps 𝑖∗ : Λ1 → 𝐾 and 𝑖∗ : 𝐾 ′ → Λ′

1 define (Ker 𝑓 )0 as an integral
subtorus of Σ1. Similarly, Coker 𝑓 = (𝐶,𝐶 ′, [·, ·]𝐶 ), where 𝐶 = Ker 𝑓 ∗, 𝐶 ′ = (Coker 𝑓∗)𝑡 𝑓 , the pairing
[·, ·]𝐶 is induced by [·, ·]2 and p is given by the natural maps 𝑝∗ : Λ′

2 → 𝐶 ′ and 𝑝∗ : 𝐶 → Λ2. We note
that a morphism f of real tori with integral structure has finite kernel if and only if K and 𝐾 ′ are trivial;
in other words, if 𝑓∗ is injective (equivalently, if Im 𝑓 ∗ has finite index in Λ1).

Let Σ = (Λ,Λ′, [·, ·]) be a real torus with integral structure. A polarisation on Σ is a map 𝜉 : Λ′ → Λ
(necessarily injective) with the property that the induced bilinear form

(·, ·) : Λ′ × Λ′ → R, (𝜆′, 𝜇′) = [𝜆′, 𝜉 (𝜇′)]

is symmetric and positive definite. Given a polarisation 𝜉 on Σ, the pair (𝜉, 𝜉) defines a homomorphism
𝜂 : Σ → Σ′ to the dual, whose finite kernel is identified with Λ/Im 𝜉. The pair (Σ, 𝜉) is called a tropical
polarised abelian variety. The map 𝜂 is an isomorphism if and only if 𝜉 is an isomorphism, in which
case we say that the polarisation 𝜉 is principal.

Let Σ = (Λ,Λ′, [·, ·]) be a g-dimensional tropical polarised abelian variety. The associated bilinear
form (·, ·) on Λ′ extends to an inner product on the universal cover 𝑉 = Hom(Λ,R), which we also
denote (·, ·), and hence to a translation-invariant Riemannian metric on Σ. Let 𝐶 ⊂ Σ be a parallelotope
framed by vectors 𝑣1, . . . , 𝑣𝑔 ∈ 𝑉 ; then the volume of C is equal to the square root

√
det(𝑣𝑖 , 𝑣 𝑗 ) of the

Gramian determinant of the 𝑣𝑖 . In particular, if 𝜆′
1, . . . , 𝜆

′
𝑔 is a basis of Λ′, then

Vol2(Σ) = det(𝜆′
𝑖 , 𝜆

′
𝑗 ).

Finally, let 𝑓 : Σ1 → Σ2 be a homomorphism of real tori with integral structures given by 𝑓 ∗ :
Λ2 → Λ1 and 𝑓∗ : Λ′

1 → Λ′
2 and assume that f has finite kernel (equivalently, 𝑓∗ is injective). Given a

polarisation 𝜉2 : Λ′
2 → Λ2 on Σ2 with associated bilinear form (·, ·)2, we define the induced polarisation

𝜉1 : Λ′
1 → Λ1 by 𝜉1 = 𝑓 ∗ ◦ 𝜉2 ◦ 𝑓∗. This is indeed a polarisation, because by (3) the associated bilinear

form (·, ·)1 on Λ′
1 is given by

(𝜆′
1, 𝜇

′
1)1 = [𝜆′

1, 𝜉1(𝜇′
1)]1 = [𝜆′

1, 𝑓
∗(𝜉2 ( 𝑓∗(𝜇′

1)))]2 = [ 𝑓∗(𝜆′
1), 𝜉2( 𝑓∗(𝜇′

1))]2 = ( 𝑓∗(𝜆′
1), 𝑓∗(𝜇

′
1))2,
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so it is symmetric and positive definite because 𝑓∗ is injective. Hence, in particular, an integral subtorus
𝑖 : Π → Σ of a tropical polarised abelian variety (Σ, 𝜉) has an induced polarisation, which we denote
𝑖∗𝜉. We note that the polarisation induced by a principal polarisation is not necessarily itself principal.

Remark 2.3. In [LU19], a real torus with integral structure is defined as a torus Σ = 𝑁R/Λ with
a distinguished lattice 𝑁 ⊂ 𝑁𝑅 in the universal cover and a morphism 𝑓 : Σ1 → Σ2 as a map
𝑓 : 𝑁1,R → 𝑁2,R satisfying 𝑓 (Λ1) ⊂ Λ2 and induced by a Z-linear map 𝑁1 → 𝑁2. It is easy to see that
this definition is equivalent to ours.

2.4. The Jacobian of a metric graph

We now construct the Jacobian variety Jac(Γ) of a metric graph Γ of genus g as a tropical ppav,
following [BF11] and [LU19]. We first pick an oriented model G of Γ and consider the corresponding
simplicial homology groups. Let A be either Z or R and let 𝐶0 (𝐺, 𝐴) = 𝐴𝑉 (𝐺) and 𝐶1 (𝐺, 𝐴) = 𝐴𝐸 (𝐺)

be respectively the simplicial 0-chain and 1-chain groups of G with coefficients in A. The source and
target maps 𝑠, 𝑡 : 𝐸 (𝐺) → 𝑉 (𝐺) induce a boundary map

𝑑𝐴 : 𝐶1 (𝐺, 𝐴) → 𝐶0 (𝐺, 𝐴),
∑

𝑒∈𝐸 (𝐺)
𝑎𝑒𝑒 ↦→

∑
𝑒∈𝐸 (𝐺)

𝑎𝑒 [𝑡 (𝑒) − 𝑠(𝑒)],

and the first simplicial homology group of G with coefficients in A is 𝐻1(𝐺, 𝐴) = Ker 𝑑𝐴. We also
consider the group of A-valued harmonic 1-forms Ω(𝐺, 𝐴) on G, which is a subgroup of the free
A-module with basis {𝑑𝑒 : 𝑒 ∈ 𝐸 (𝐺)}:

Ω(𝐺, 𝐴) =
⎧⎪⎪⎨⎪⎪⎩

∑
𝑒∈𝐸 (𝐺)

𝜔𝑒𝑑𝑒 :
∑

𝑒:𝑡 (𝑒)=𝑣
𝜔𝑒 =

∑
𝑒:𝑠 (𝑒)=𝑣

𝜔𝑒 for all 𝑣 ∈ 𝑉 (𝐺)
⎫⎪⎪⎬⎪⎪⎭ .

We note that mathematically 𝐻1 (𝐺, 𝐴) and Ω(𝐺, 𝐴) are the same object, but it is convenient to
distinguish them, both for historical purposes and for clarity of exposition.

We now define an integration pairing

[·, ·] : 𝐶1 (𝐺, 𝐴) ×Ω(𝐺, 𝐴) → R

by

[𝛾, 𝜔] =
∫
𝛾
𝜔 =

∑
𝑒∈𝐸 (𝐺)

𝛾𝑒𝜔𝑒ℓ(𝑒), 𝛾 =
∑

𝑒∈𝐸 (𝐺)
𝛾𝑒𝑒, 𝜔 =

∑
𝑒∈𝐸 (𝐺)

𝜔𝑒𝑑𝑒.

By Lemma 2.1 in [BF11], the integration pairing restricts to a perfect pairing on 𝐻1 (𝐺, 𝐴) ×Ω(𝐺, 𝐴).
Let 𝐺 ′ be the model of Γ obtained by subdividing the edge 𝑒 ∈ 𝐸 (𝐺) into two edges 𝑒1 and 𝑒2,

oriented in the same way as e, with ℓ(𝑒1) +ℓ(𝑒2) = ℓ(𝑒). The natural embedding𝐶1 (𝐺, 𝐴) → 𝐶1 (𝐺 ′, 𝐴)
sending e to 𝑒1 + 𝑒2 restricts to an isomorphism 𝐻1 (𝐺, 𝐴) → 𝐻1(𝐺 ′, 𝐴). Similarly, the groups Ω(𝐺, 𝐴)
and Ω(𝐺 ′, 𝐴) are naturally isomorphic, and these isomorphisms preserve the integration pairing. Hence,
we can define Ω(Γ, 𝐴) = Ω(𝐺, 𝐴) and 𝐻1(Γ, 𝐴) = 𝐻1 (𝐺, 𝐴) for any model G, and by a 1-chain, or
path, on Γ we mean a 1-chain on any model of Γ.

We now let Λ = Ω(Γ,Z) and Λ′ = 𝐻1 (Γ,Z), let [·, ·] : Λ′ × Λ → R be the integration pairing
and let 𝜉 : 𝐻1 (Γ,Z) → Ω(Γ,Z) be the natural isomorphism sending the 1-cycle

∑
𝑎𝑒𝑒 to the 1-form∑

𝑎𝑒𝑑𝑒. We denote Ω∗(Γ) = Hom(Ω(Γ,Z),R), and by the universal coefficient theorem the group
Hom(𝐻1 (Γ,Z),R) is canonically isomorphic to 𝐻1 (Γ,R). The Jacobian variety and the Albanese
variety of Γ are the dual tropical ppavs

Jac(Γ) = Ω(Γ)∗/𝐻1 (Γ,Z), Alb(Γ) = 𝐻1 (Γ,R)/Ω(Γ,Z).
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The group 𝐻1(Γ,Z) carries an intersection form

(·, ·) = [·, 𝜉 (·)] : 𝐻1 (Γ,Z) × 𝐻1(Γ,Z) → R,
���

∑
𝑒∈𝐸 (𝐺)

𝛾𝑒𝑒,
∑

𝑒∈𝐸 (𝐺)
𝛿𝑒𝑒

��� =
∑

𝑒∈𝐸 (𝐺)
𝛾𝑒𝛿𝑒ℓ(𝑒) (4)

that induces an inner product on Ω∗(Γ).
Fix a point 𝑞 ∈ Γ and for any 𝑝 ∈ Γ choose a path 𝛾(𝑞, 𝑝) ∈ 𝐶1 (Γ,Z) from q to p. Integrating along

𝛾(𝑞, 𝑝) defines an element of Ω(Γ)∗, and choosing a different path 𝛾′(𝑞, 𝑝) defines the same element
modulo 𝐻1(Γ,Z) ⊂ Ω(Γ)∗. Hence, we have a well-defined Abel–Jacobi map Φ𝑞 : Γ → Jac(Γ) with
base point q:

Φ𝑞 : Γ → Jac(Γ), 𝑝 ↦→
(
𝜔 ↦→

∫
𝛾 (𝑞,𝑝)

𝜔

)
. (5)

The map Φ𝑞 extends by linearity to Div(Γ), and its restriction to Div0 (Γ) does not depend on the choice
of base point q. The tropical analogue of the Abel–Jacobi theorem (see [MZ08], Theorem 6.3) states
that Φ𝑞 descends to a canonical isomorphism Pic0(Γ)  Jac(Γ). Since any Pic𝑘 (Γ) is a torsor over
Pic0 (Γ), we can define Vol(Pic𝑘 (Γ)) = Vol(Jac(Γ)).

Finally, we recall the principal results [ABKS14], which concern the tropical Jacobi inversion
problem. Consider the degree g Abel–Jacobi map

Φ : Sym𝑔 (Γ) → Pic𝑔 (Γ), Φ(𝑝1, . . . , 𝑝𝑔) = 𝑝1 + · · · + 𝑝𝑔 .

A choice of model G for Γ defines a cellular decomposition

Sym𝑔 (Γ) =
⋃

𝐹 ∈Sym𝑔 (𝐸 (𝐺))
𝐶 (𝐹),

where for a multiset 𝐹 = {𝑒1, . . . , 𝑒𝑔} ∈ Sym𝑔 (𝐸 (𝐺)) of g edges of G the cell 𝐶 (𝐹) consists of divisors
supported on F:

𝐶 (𝐹) = {𝑝1 + · · · + 𝑝𝑔 : 𝑝𝑖 ∈ 𝑒𝑖}.

We say that F is a break set if all 𝑒𝑖 are distinct and 𝐺\𝐹 is a tree and the set of break divisors is the
union of the cells 𝐶 (𝐹) over all break sets F.

The map Φ is affine linear on each cell 𝐶 (𝐹) and has maximal rank precisely when F is a break set.
Specifically, the following is true:

(1) If 𝐹 = {𝑒1, . . . , 𝑒𝑔} is a break set, then the restriction of Φ to 𝐶 (𝐹) is injective and

Vol(Φ(𝐶 (𝐹))) = 𝑤(𝐹)
Vol(Jac(Γ)) , 𝑤(𝐹) = Vol(𝐶 (𝐹)) = ℓ(𝑒1) · · · ℓ(𝑒𝑔). (6)

(2) If F is not a break set, then the restriction of Φ to 𝐶 (𝐹) does not have maximal rank and
Vol(Φ(𝐶 (𝐹))) = 0.

Furthermore, the map Φ has a unique continuous section whose image is the set of break divisors.
Hence, the images of the break cells 𝐶 (𝐹) cover Pic𝑔 (Γ) with no overlaps in the interior of cells and
summing together their volumes gives Vol(Jac(Γ)) = Vol(Pic𝑔 (Γ)).
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Theorem 2.4 (Theorem 1.5 of [ABKS14]). The volume of the Jacobian variety of a metric graph Γ of
genus g is given by

Vol2(Jac(Γ)) =
∑

𝐹 ⊂𝐸 (Γ)
𝑤(𝐹), (7)

where the sum is taken over g-element subsets 𝐹 ⊂ 𝐸 (Γ) such that Γ\𝐹 is a tree.

Remark 2.5. This result can be interpreted as saying that Φ is a harmonic morphism of polyhedral
spaces of degree 1, where we define the local degree of Φ on a cell 𝐶 (𝐹) to be 1 if F is a break set and 0
otherwise. Indeed, the harmonicity condition ensures that such a map has a unique continuous section,
since each cell of Pic𝑔 (Γ) has a unique preimage in Sym𝑔 (Γ), and these preimages fit together along
codimension 1 cells. Formula (6) then implies that the map Φ has a common volume dilation factor
1/Vol(Jac(Γ)) on all noncontracted cells.

Remark 2.6. We also note that, from the point of view of the Riemannian geometry of Jac(Γ), the edge
lengths on Γ are measured in units of [length]2, not [length]. This is already clear from formula (4) for
the intersection form. Hence, for example, if Γ is a circle of length L (in other words, consists of a single
loop of length L attached to a vertex), then Γ is canonically isomorphic to Pic1 (Γ), but the volume of
Jac(Γ) is

√
𝐿, rather than L.

2.5. Prym groups

We now discuss the Prym group of a free double cover of finite graphs. Unlike the case of metric graphs
(which we treat in Subsection 2.6), finite groups do not have a distinguished connected component of
the identity. We therefore require a notion of parity on elements of the kernel of the norm map.

Let 𝑝 : 𝐺 → 𝐺 be a free double cover of graphs. The induced maps Nm : Div(𝐺) → Div(𝐺) and
𝜄 : Div(𝐺) → Div(𝐺) given by

Nm
(∑

𝑎𝑣𝑣
)
=

∑
𝑎𝑣 𝑝(𝑣), 𝜄

(∑
𝑎𝑣𝑣

)
=

∑
𝑎𝑣 𝜄(𝑣)

preserve degree and linear equivalence and descend to give a surjective map Nm : Jac(𝐺) → Jac(𝐺)
and an isomorphism 𝜄 : Jac(𝐺) → Jac(𝐺).

A divisor in the kernel 𝐷 ∈ Ker Nm ⊂ Div(𝐺) has degree 0 and can be uniquely represented as
𝐷 = 𝐸 − 𝜄(𝐸), where E is an effective divisor and the supports of E and 𝜄(𝐸) are disjoint. We define the
parity of D as

𝜖 (𝐷) = deg 𝐸 mod 2.

It turns out that parity respects addition and linear equivalence and hence gives a surjective homomor-
phism from Ker Nm ⊂ Jac(𝐺) to Z/2Z:

Proposition 2.7. Let 𝐷1, 𝐷2 ∈ Ker Nm ⊂ Div0 (𝐺).

(1) 𝜖 (𝐷1 + 𝐷2) = 𝜖 (𝐷1) + 𝜖 (𝐷2).
(2) If 𝐷1  𝐷2 then 𝜖 (𝐷1) = 𝜖 (𝐷2).

Proof. Suppose that 𝑝 : 𝐺 → 𝐺 is defined by a spanning tree 𝑇 ⊂ 𝐺 and a nonempty subset
𝑆 ⊂ 𝐸 (𝐺)\𝐸 (𝑇), as in Construction A. Every divisor 𝐷 ∈ Ker Nm ⊂ Div(𝐺) is of the form

𝐷 =
∑

𝑣 ∈𝑉 (𝐺)
(𝑎 �̃�+ �̃�+ + 𝑎 �̃�− �̃�

−),
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where 𝑎 �̃�+ + 𝑎 �̃�− = 0 for each 𝑣 ∈ 𝑉 (𝐺). It follows that if 𝐷 = 𝐸 − 𝜄(𝐸), then deg 𝐸 =
∑

|𝑎 �̃�+ |; hence,

𝜖 (𝐷) =
∑

|𝑎 �̃�+ | mod 2 =
∑

𝑎 �̃�+ mod 2,

which is clearly preserved by addition.
To complete the proof, we need to show that any principal divisor in Ker Nm ⊂ Div(𝐺) is even.

Consider an arbitrary principal divisor

𝐷 =
∑

𝑣 ∈𝑉 (𝐺)
(𝑐 �̃�+𝐷 �̃�+ + 𝑐 �̃�−𝐷 �̃�−)

on 𝐺. Its norm is Nm(𝐷) =
∑
(𝑐 �̃�+ + 𝑐 �̃�−)𝐷𝑣 ∈ Div(𝐺), which is the trivial divisor if and only if

𝑐 �̃�+ + 𝑐 �̃�− = 𝑐 for a fixed 𝑐 ∈ Z and for all 𝑣 ∈ 𝑉 (𝐺). Therefore, if Nm(𝐷) = 0 in Div(𝐺), then setting
𝑎𝑣 = 𝑐 �̃�+ − 𝑐 = −𝑐 �̃�− , we see that

𝐷 = 𝑐𝐷+ +
∑

𝑣 ∈𝑉 (𝐺)
𝑎𝑣 (𝐷 �̃�+ − 𝐷 �̃�−),

where 𝐷+ the principal divisor obtained by firing each vertex �̃�+ of the top sheet once and 𝑎𝑣 ∈ Z. We
now show that each summand above is even, so D is even as well by the first part of the proof.

First, we consider divisors of the form 𝐷 �̃�+ − 𝐷 �̃�− for 𝑣 ∈ 𝑉 (𝐺). Suppose that the double cover p
is described by Construction A. For any vertex 𝑢 ∈ 𝑉 (𝐺), denote 𝑎𝑢 and 𝑏𝑢 as the number of edges
between u and v in 𝐸 (𝐺)\𝑆 and S, respectively. Then

(𝐷 �̃�+ − 𝐷 �̃�−)(�̃� ±) = ±(𝑎𝑢 − 𝑏𝑢),

and

(𝐷 �̃�+ − 𝐷 �̃�−)(�̃� ±) = −
∑
𝑢≠𝑣

∓(𝑎𝑢 + 𝑏𝑢).

It follows that the contribution from each vertex u to the positive part of 𝐷 �̃�+ −𝐷 �̃�− is |𝑎𝑢−𝑏𝑢 |+𝑎𝑢+𝑏𝑢 =
max(2𝑎𝑢 , 2𝑏𝑢), which is even.

As for 𝐷+, a direct calculation shows that

𝐷+ =
∑

𝑣 ∈𝑉 (𝐺)
𝐷 �̃�+ =

∑
𝑒∈𝑆

(
𝑠(𝑒)

−
+ 𝑡 (𝑒)

−
− 𝑠(𝑒)

+
− 𝑡 (𝑒)

+)
;

hence, 𝐷+ is even and the proof is complete. �

Definition 2.8. The Prym group Prym(𝐺/𝐺) ⊂ Jac(𝐺) of a free double cover 𝑝 : 𝐺 → 𝐺 is the
subgroup of even divisors in Ker Nm.

It is clear that the order of the Prym group is equal to

| Prym(𝐺/𝐺) | = 1
2
| Ker Nm | = | Jac(𝐺) |

2| Jac(𝐺) | ,

and one of the principal results of our article is a combinatorial formula (14) for | Prym(𝐺/𝐺) |. For
now, we illustrate with an example.

Example 2.9. Consider the free double cover 𝑝 : 𝐺 → 𝐺 shown in Figure 1. In terms of Construction A,
we can describe it by choosing 𝑇 ⊂ 𝐺 to be the tree containing 𝑒3, 𝑒4 and 𝑒5 and setting 𝑆 = {𝑒1, 𝑒2}.
Using Kirchhoff’s theorem, we find that | Jac(𝐺 ′) | = 64 and | Jac(𝐺) | = 4; therefore, Ker Nm and
Prym(𝐺/𝐺) have orders 16 and 8, respectively. The group Ker Nm is spanned by the divisors 𝐷𝑖 =
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Figure 1. An example of a free double cover.

�̃�+𝑖 −�̃�−𝑖 , where 𝑖 = 1, 2, 3, 4 and an exhaustive calculation using Dhar’s burning algorithm give a complete
set of relations on the 𝐷𝑖:

2𝐷1 = 0, 8𝐷2 = 0, 𝐷4 = 𝐷1 + 4𝐷2, 𝐷3 = 3𝐷2.

It follows that Ker Nm  Z/2Z ⊕ Z/8Z with generators 𝐷1 and 𝐷2 and hence Prym(𝐺/𝐺)  Z/8Z
with generator 𝐷1 + 𝐷2.

We note that the Abel–Prym map𝐺 = Sym1(𝐺) → Prym1(𝐺/𝐺) sending �̃�±𝑖 to±𝐷𝑖 is not surjective:
both sets have eight elements, but the images of �̃�±1 are equal, as well as those of �̃�±4 .

2.6. Prym varieties

Finally, we recall the definition of the Prym variety of a free double cover 𝜋 : Γ̃ → Γ of metric graphs
(see [JL18] and [LU19]). As in the finite case, the cover 𝜋 induces a surjective norm map

Nm : Pic0(Γ̃) → Pic0(Γ), Nm
(∑

𝑎𝑖 𝑝𝑖

)
=

∑
𝑎𝑖𝜋(𝑝𝑖),

and a corresponding involution 𝜄 : Pic0 (Γ̃) → Pic0 (Γ̃).
The kernel Ker Nm consists of divisors having a representative of the form 𝐸− 𝜄(𝐸) for some effective

divisor E on Γ̃. Indeed, suppose that 𝐷 is a divisor on Γ̃ such that Nm(𝐷)  0. Then Nm(𝐷) +div 𝑓 = 0
for some piecewise linear function f. Defining 𝑓 (𝑥) = 𝑓 (𝜋(𝑥)), we see that 𝐷 is equivalent to a divisor
whose pushforward is the zero divisor on the nose. Furthermore, the parity of E is well-defined and
Ker Nm has two connected components corresponding to the parity of E [JL18, Proposition 6.1] (note
that, in the more general case when 𝜋 is a dilated unramified double cover, Ker Nm has only one
connected component).

Definition 2.10. The Prym variety Prym(Γ̃/Γ) ⊂ Pic0 (Γ̃) of the free double cover 𝜋 : Γ̃ → Γ of metric
graphs is the connected component of the identity of Ker Nm.

The Prym variety Prym(Γ̃/Γ) has the structure of a tropical ppav, which we now describe. Denote
Λ̃ = Ω(Γ̃,Z), Λ̃′ = 𝐻1(Γ̃,Z), Λ = Ω(Γ,Z) and Λ′ = 𝐻1(Γ,Z). Choose an oriented model 𝑝 : 𝐺 → 𝐺
for 𝜋 and consider the pushforward and pullback maps 𝜋∗ : 𝐻1(Γ̃,Z) → 𝐻1(Γ,Z) and 𝜋∗ : Ω(Γ,Z) →
Ω(Γ̃,Z) defined by

𝜋∗

⎡⎢⎢⎢⎢⎣
∑

�̃�∈𝐸 (𝐺)

𝑎�̃� �̃�

⎤⎥⎥⎥⎥⎦ =
∑

�̃�∈𝐸 (𝐺)

𝑎�̃�𝜋(�̃�), 𝜋∗
⎡⎢⎢⎢⎢⎣

∑
𝑒∈𝐸 (𝐺)

𝑎𝑒𝑑𝑒

⎤⎥⎥⎥⎥⎦ =
∑

𝑒∈𝐸 (𝐺)
𝑎𝑒 (𝑑�̃� + + 𝑑�̃� −).

It is easy to verify that the maps 𝜋∗ and 𝜋∗ satisfy equation (3) with respect to the integration pairings
on Γ̃ and Γ. Therefore, the pair (𝜋∗, 𝜋∗) defines a homomorphism Nm : Jac(Γ̃) → Jac(Γ) of real tori
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with integral structure (by Proposition 2.2.3 in [LU19], this homomorphism is identified with the norm
homomorphism Nm : Pic0(Γ̃) → Pic0 (Γ) under the Abel–Jacobi isomorphism, justifying the notation).
Hence, Prym(Γ̃/Γ) is in fact the real torus with integral structure (Ker Nm)0 = (𝐾, 𝐾 ′, [·, ·]𝐾 ), where
𝐾 = (Coker 𝜋∗)𝑡 𝑓 , 𝐾 ′ = Ker 𝜋∗ and [·, ·]𝐾 is the pairing induced by the integration pairing on Γ̃.
Alternatively, we can describe Prym(Γ̃/Γ) as the quotient

Prym(Γ̃/Γ) = Ker 𝜋 : Ω∗(Γ̃) → Ω∗(Γ)
Ker 𝜋∗ : 𝐻1 (Γ̃,Z) → 𝐻1 (Γ,Z)

,

where 𝜋 is the map dual to 𝜋∗.
The polarisation 𝜉 : 𝐻1 (Γ̃,Z) → Ω(Γ̃,Z) on Jac(Γ̃) induces a polarisation 𝑖∗𝜉 : 𝐾 ′ → 𝐾 on

Prym(Γ̃/Γ), and Theorem 2.2.7 in [LU19] states that there exists a principal polarisation 𝜓 : 𝐾 ′ → 𝐾
on Prym(Γ̃/Γ) such that 𝑖∗𝜉 = 2𝜓. Hence, Prym(Γ̃/Γ) is a tropical ppav. We note that the inner product
(·, ·)𝑃 on Prym(Γ̃/Γ) induced by the principal polarisation𝜓 is half of the restriction of the inner product
(·, ·)Γ̃ from Jac(Γ̃). In other words, for 𝛾, 𝛿 ∈ Ker 𝜋∗ we have

(𝛾, 𝛿)𝑃 = [𝛾, 𝜓(𝛿)] = 1
2
[𝛾, 𝜉 (𝛿)] = 1

2
(𝛾, 𝛿)Γ̃ =

1
2

∑
�̃�∈𝐸 (Γ̃)

𝛾�̃�𝛿�̃�ℓ(�̃�), 𝛾 =
∑

�̃�∈𝐸 (Γ̃)

𝛾�̃� �̃�, 𝛿 =
∑

�̃�∈𝐸 (Γ̃)

𝛿�̃� �̃�,

(8)

and similarly for the induced product on Ker 𝜋. When discussing the metric properties of Prym(Γ̃/Γ),
such as its volume, we always employ the inner product (·, ·)𝑃 induced by the principal polarisation.

We use a set of explicit coordinates on the torus Prym(Γ̃/Γ) or, more accurately, on its universal
cover Ker 𝜋. Choose a basis

�̃� 𝑗 =
∑

�̃�∈𝐸 (𝐺)

�̃� 𝑗 ,�̃� �̃�, 𝑗 = 1, . . . , 𝑔 − 1

for Ker 𝜋∗ : 𝐻1 (Γ̃,Z) → 𝐻1(Γ,Z). The principal polarisation 𝜓 = 1
2𝜉 gives a corresponding basis of

the second lattice (Coker 𝜋∗)𝑡 𝑓 :

𝜔 𝑗 = 𝜓(�̃� 𝑗 ) =
1
2

∑
�̃�∈𝐸 (𝐺)

�̃� 𝑗 ,�̃�𝑑�̃�, 𝑗 = 1, . . . , 𝑔 − 1.

Let 𝜔∗
𝑗 denote the basis of Ker 𝜋 : Ω∗(Γ̃) → Ω∗(Γ) dual to the 𝜔 𝑗 , so that 𝜔∗

𝑗 (𝜔𝑘 ) = 𝛿 𝑗𝑘 ; then elements
of Prym(Γ̃/Γ) can be given (locally uniquely) as linear combinations of the 𝜔∗

𝑗 .
We compute for future reference the volume of the unit cube 𝐶 (𝜔∗

1, . . . , 𝜔
∗
𝑔−1) in the coordinate

system defined by the 𝜔∗
𝑗 . We know that Vol(Prym(Γ̃/Γ)) =

√
det𝐺, where 𝐺𝑖 𝑗 = (�̃�𝑖 , �̃� 𝑗 )𝑃 is the

Gramian matrix of the basis �̃� 𝑗 . The �̃� 𝑗 , viewed as elements of Ker 𝜋, are themselves a basis, so we can
write 𝜔∗

𝑖 =
∑
𝑗 𝐴𝑖 𝑗 �̃� 𝑗 for some matrix 𝐴𝑖 𝑗 . Pairing with 𝜔 𝑗 and using that [�̃�𝑖 , 𝜔 𝑗 ] = 𝐺𝑖 𝑗 , we see that A

is in fact the inverse matrix of G. Hence, we see that

Vol(𝐶 (𝜔∗
1, . . . , 𝜔

∗
𝑔−1)) = det(𝜔∗

𝑖 , 𝜔
∗
𝑗 ) = det𝐺−1 det(�̃�𝑖 , �̃� 𝑗 ) det𝐺−1 =

1
det𝐺

=
1

Vol(Prym(Γ̃/Γ))
.

(9)

In particular, this volume does not depend on the choice of basis �̃� 𝑗 .

Remark 2.11. The definition of the Prym group for a free double cover of finite graphs is consistent
with the definition for metric graphs in the following sense. Let 𝑝 : 𝐺 → 𝐺 be a free double cover of
finite graphs and let 𝜋 : Γ̃ → Γ be the corresponding double cover of metric graphs, where Γ̃ and Γ are
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obtained respectively from 𝐺 and G by setting all edge lengths to 1. Then Jac(𝐺) is naturally a subgroup
of Jac(Γ̃), consisting of divisors supported at the vertices and Prym(𝐺/𝐺) = Jac(𝐺) ∩ Prym(Γ̃/Γ).

2.7. Polyhedral spaces and harmonic morphisms

The spaces Sym𝑑 (Γ), Jac(Γ) and Prym(Γ̃/Γ) are examples of rational polyhedral spaces, which are
topological spaces locally modelled on rational polyhedral sets inR𝑛. A rational polyhedral space comes
equipped with a structure sheaf, pulled back from the sheaf of affine Z-linear functions on the embedded
polyhedra. We shall not require the general theory of rational polyhedral spaces; in particular, we shall
use only the polyhedral decomposition and not the sheaf of affine functions. See [MZ14], [GS19] for
details.

A rational polyhedral space P is a finite union of polyhedra, which we call cells. We only consider
compact polyhedral spaces. The intersection of any two cells is either empty or a face of each. A
polyhedral space P is equidimensional of dimension n if each maximal cell of P (with respect to
inclusion) has dimension n and is connected through codimension 1 if the complement in P of all cells
of codimension 2 is connected. A map 𝑓 : 𝑃 → 𝑄 of polyhedral spaces is locally given by affine Z-
linear transformations and is required to map each cell of P surjectively onto a cell of Q. We say that f
contracts a cell C of P if dim( 𝑓 (𝐶)) < dim(𝐶).

We use an ad hoc definition of harmonic morphisms of polyhedral spaces, modelled on the corre-
sponding definition for metric graphs.

Definition 2.12. [cf. Definition 2.5 in [LR18]] Let 𝑓 : 𝑃 → 𝑄 be a map of equidimensional polyhedral
spaces of the same dimension and let deg 𝑓 be a nonnegative integer-valued function defined on the top-
dimensional cells of P. Let C be a codimension 1 cell of P mapping surjectively onto a codimension 1
cell D of Q. We say that f is harmonic at C (with respect to the degree function deg 𝑓 ) if the following
condition holds: for any codimension 0 cell N of Q adjacent to D, the sum

deg 𝑓 (𝐶) =
∑

𝑀 ⊂ 𝑓 −1 (𝑁 ) , 𝑀 ⊃𝐶
deg 𝑓 (𝑀) (10)

of the degrees deg 𝑓 𝑀 over all codimension 0 cells M of P adjacent to C and mapping to N is the
same; in other words, does not depend on the choice of N. We say that f is harmonic if f is harmonic at
every codimension 1 cell of P and, in addition, if 𝑓 (𝐶) = 0 on a codimension 0 cell C if and only if f
contracts C.

Given a harmonic morphism 𝑓 : 𝑃 → 𝑄, equation (10) extends the degree function deg 𝑓 to
codimension 1 cells of P. If Q is connected through codimension 1, we can similarly define the degree on
cells of any codimension and hence on all of P (note, however, that for a cell C of positive codimension,
deg 𝑓 (𝐶) = 0 does not imply that C is contracted). The function deg 𝑓 is locally constant in fibres: given
𝑝 ∈ 𝑃 and an open neighbourhood 𝑉 � 𝑓 (𝑝), there exists an open neighbourhood 𝑈 � 𝑝 such that
𝑓 (𝑈) ⊂ 𝑉 and such that for any 𝑞 ∈ 𝑉 the sum of the degrees over all points of 𝑓 −1(𝑞) ∩𝑈 is the same
(in particular, this sum is finite). It follows that a harmonic morphism to a target connected through
codimension 1 is surjective and has a well-defined global degree, which is the sum of the degrees over
all points of any fibre.

The structure of a rational polyhedral space on a tropical abelian variety, such as Jac(Γ) and
Prym(Γ̃/Γ), is induced by the integral structure: an affine linear function is Z-linear if it has integer
slopes with respect to the embedded lattice. The correct definition of a rational polyhedral structure on
Sym𝑑 (Γ), however, requires some care. The space Sym𝑑 (Γ) has a natural cellular decomposition, with
top-dimensional cells 𝐶 (𝐹) indexed by d-tuples 𝐹 ⊂ 𝐸 (𝐺) of edges of a suitably chosen model G of
Γ (see equation (21)). If the d-tuple 𝐹 = {𝑒1, . . . , 𝑒𝑑} contains neither loops nor repeated edges, then
𝐶 (𝐹) is the parallelotope obtained by taking the Cartesian product of the 𝑒𝑖 inside R𝑑 . If F contains
loop edges, then the corresponding cell will have self-gluings along some of its boundary cells. A more
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serious issue arises if F has repeated edges; in this case, the cell 𝐶 (𝐹) is a quotient of a parallelotope
by a finite permutation action, which requires introducing additional cells at the appropriate diagonals.

A complete description of the polyhedral structure on Sym𝑑 (Γ) is given in the paper [BU18].
However, neither of the aforementioned issues arise in our article. First, we can always choose a loopless
model for any tropical curve. Second, and more important, all of the calculations in this article concern
only those cells 𝐶 (𝐹) for which F has no repeated edges. Specifically, we are interested in the structure
of the Abel–Prym map Ψ𝑑 : Sym(Γ̃) → Prym(Γ̃/Γ) associated to a double cover Γ̃ → Γ, and one
of our first results (Theorem 4.1 part (1)) states that Ψ𝑑 contracts all of those cells 𝐶 (𝐹) where F has
repeated edges. Hence, all top-dimensional cells of the symmetric product Sym𝑑 (Γ) can be assumed to
be parallelotopes.

3. Kirchhoff’s theorem for the Prym group and the Prym variety

In this section, we give combinatorial formulas for the order (14) of the Prym group of a free double
cover 𝑝 : 𝐺 → 𝐺 of finite graphs and the volume (17) of the Prym variety of a free double cover
𝜋 : Γ̃ → Γ of metric graphs.

Formula (14) had already been obtained by Zaslavsky (see Theorem 8A.4 in [Zas82]). Specifically,
a free double cover 𝑝 : 𝐺 → 𝐺 induces the structure of a signed graph on G: defining the cover p in
terms of Construction A with respect to a spanning tree 𝑇 ⊂ 𝐺, we attach a negative sign − to each
edge 𝑒 ∈ 𝑆 ⊂ 𝐸 (𝐺)\𝐸 (𝑇) and a positive sign + to all other edges. Zaslavsky then defines the signed
Laplacian matrix of G and shows that its determinant is given by (14) (note that the signed Laplacian
is nonsingular, unlike the ordinary Laplacian). Reiner and Tseng specifically interpret the determinant
of the signed Laplacian as the order of the Prym group Prym(𝐺/𝐺) (see Proposition 9.9 in [RT14]).

We give an alternative proof of (14) using the Ihara zeta function. Given a free double cover
𝑝 : 𝐺 → 𝐺, the orders of Jac(𝐺) and Jac(𝐺) can be computed from the corresponding zeta functions
𝜁 (𝐺, 𝑠) and 𝜁 (𝐺, 𝑠) using Northshield’s class number formula [Nor98]. Hence, the ratio | Prym(𝐺/𝐺) | =
| Jac(𝐺) |/2| Jac(𝐺) | is given by the ratio of the zeta functions. This is equal to the Artin–Ihara L-function
of the cover and can be explicitly computed from the corresponding determinantal formula, derived by
Stark and Terras (see [ST96] and [ST00]).

The volume formula (17) is new, to the best of our knowledge, and is derived from (14) by a scaling
argument.

3.1. The Ihara zeta function and the Artin–Ihara L-function

The Ihara zeta function 𝜁 (𝑠, 𝐺) of a finite graph G is the graph-theoretic analogue of the Dedekind zeta
function of a number field and is defined as an Euler product over certain equivalence classes of closed
paths on G. We recall its definition and properties (see [Ter10] for an elementary treatment).

Let G be a graph with 𝑛 = #(𝑉 (𝐺)) vertices and 𝑚 = #(𝐸 (𝐺)) edges. A path P of length 𝑘 = ℓ(𝑃)
is a sequence 𝑃 = 𝑒1 · · · 𝑒𝑘 of oriented edges of G such that 𝑡 (𝑒𝑖) = 𝑠(𝑒𝑖+1) for 𝑖 = 1, . . . , 𝑘 − 1. We
say that a path P is closed if 𝑡 (𝑒𝑘 ) = 𝑠(𝑒1) and reduced if 𝑒𝑖+1 ≠ 𝑒𝑖 for 𝑖 = 1, . . . , 𝑘 − 1 and 𝑒1 ≠ 𝑒𝑘 .
We can define positive integer powers of closed paths by concatenation, and a closed reduced path
P is called primitive if there does not exist a closed path Q such that 𝑃 = 𝑄𝑘 for some 𝑘 ≥ 2. We
consider two reduced paths to be equivalent if they differ by a choice of starting point; that is, we set
𝑒1 · · · 𝑒𝑘 ∼ 𝑒 𝑗 · · · 𝑒𝑘 · 𝑒1 · · · 𝑒 𝑗−1 for all 𝑗 = 1, . . . 𝑘 . A prime 𝔭 of G is an equivalence class of primitive
paths and has a well-defined length ℓ(𝔭). We note that a primitive path and the same path traversed in
the opposite direction represent distinct primes.

The Ihara zeta function 𝜁 (𝑠, 𝐺) of a graph G is the product

𝜁 (𝑠, 𝐺) =
∏
𝔭

(1 − 𝑠ℓ (𝔭) )−1
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over all primes 𝔭 of G, where s is a complex variable. This product is usually infinite, converges for
sufficiently small s and extends to rational function.

The three-term determinant formula, due to Bass [Bas92] (see also [Ter10]), expresses the reciprocal
𝜁 (𝑠, 𝐺)−1 as an explicit polynomial

𝜁 (𝑠, 𝐺)−1 = (1 − 𝑠2)𝑔−1 det(𝐼𝑛 − 𝐴𝑠 + (𝑄 − 𝐼𝑛)𝑠2),

where Q and A are the valency and adjacency matrices (see (2)) and 𝑔 = 𝑚−𝑛+1 is the genus of G. It is
clear from this formula that 𝜁 (𝑠, 𝐺)−1 vanishes at 𝑠 = 1 to order at least g, because for 𝑠 = 1 the matrix
inside the determinant is equal to the Laplacian L of G and det 𝐿 = 0. In fact, the order of vanishing is
equal to g, and Northshield [Nor98] shows that the leading Taylor coefficient computes the complexity;
that is, the order of the Jacobian of G:

𝜁 (𝑠, 𝐺)−1 = (−1)𝑔−12𝑔 (𝑔 − 1) | Jac(𝐺) |(𝑠 − 1)𝑔 +𝑂 ((𝑠 − 1)𝑔+1). (11)

This result may be viewed as a graph-theoretic analogue of the class number formula.
The analogy with number theory was further reinforced by Stark and Terras, who developed (see

[ST96] and [ST00]) a theory of L-functions of Galois covers of graphs, as follows. Let 𝑝 : 𝐺 → 𝐺 be
a free Galois cover of graphs with Galois group K (we do not define these, since we only consider free
double covers, which are Galois covers with 𝐾 = Z/2Z) and fix a representation 𝜌 of K. Given a prime
𝔭 of G, choose a representative P with starting vertex 𝑣 ∈ 𝑉 (𝐺) and choose a vertex �̃� ∈ 𝑉 (𝐺) lying
over v. The path P lifts to a unique path 𝑃 in 𝐺 starting at �̃� and mapping to P and the terminal vertex
of 𝑃 also maps to v. The Frobenius element 𝐹 (𝑃, 𝐺/𝐺) ∈ 𝐾 is the unique element of the Galois group
mapping �̃� to the terminal vertex of 𝑃. The Artin–Ihara L-function is now defined as the product

𝐿(𝑠, 𝜌, 𝐺/𝐺) =
∏
𝔭

det(1 − 𝜌(𝐹 (𝑃, 𝐺/𝐺))𝑠ℓ (𝔭) )−1

taken over the primes 𝔭 of G, where for each prime 𝔭 we pick an arbitrary representative P (Frobenius
elements corresponding to different representatives of 𝔭 are conjugate, so the determinant is well-
defined).

Similar to the zeta function, the product defining the L-function converges to a rational function and
is given by a determinant formula. Pick a spanning tree 𝑇 ⊂ 𝐺 and index its preimages in 𝐺, called the
sheets of the cover, by the elements of K. Given an edge 𝑒 ∈ 𝐸 (𝐺), the Frobenius element 𝐹 (𝑒) ∈ 𝐾 is
equal to ℎ−1𝑔, where h and g are respectively the indices of the sheets of the source and the target of e.
Let d be the degree of 𝜌 and define the 𝑛𝑑 × 𝑛𝑑 Artinised valency and Artinised adjacency matrices as

𝑄𝜌 = 𝑄 ⊗ 𝐼𝑑 , (𝐴𝜌)𝑢𝑣 =
∑

𝜌(𝐹 (𝑒)),

where in the right-hand side we sum over all edges e between u and v. The three-term determinant
formula for the L-function states that

𝐿(𝑠, 𝜌, 𝐺/𝐺)−1 = (1 − 𝑠2) (𝑔−1)𝑑 det(𝐼𝑛𝑑 − 𝐴𝜌𝑠 + (𝑄𝜌 − 𝐼𝑛𝑑)𝑠2). (12)

Finally, we relate the zeta and L-functions associated to a free Galois cover 𝑝 : 𝐺 → 𝐺 with Galois
group K. First of all, the zeta functions of 𝐺 and G are equal to the L-function evaluated respectively at
the right regular and trivial representations 𝜌𝐾 and 1𝐾 :

𝜁 (𝑠, 𝐺) = 𝐿(𝑠, 𝜌𝐾 , 𝐺/𝐺), 𝜁 (𝑠, 𝐺) = 𝐿(𝑠, 1𝐾 , 𝐺/𝐺).

Furthermore, for a reducible representation 𝜌 = 𝜌1 ⊕ 𝜌2 the L-function factors as

𝐿(𝑠, 𝜌, 𝐺/𝐺) = 𝐿(𝑠, 𝜌1, 𝐺/𝐺)𝐿(𝑠, 𝜌2, 𝐺/𝐺).
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It follows that the zeta function of 𝐺 has a factorisation

𝜁 (𝑠, 𝐺) = 𝜁 (𝑠, 𝐺)
∏
𝜌

𝐿(𝑠, 𝜌, 𝐺/𝐺)𝑑 (𝜌) , (13)

where the product is taken over the distinct nontrivial irreducible representations of K.

3.2. The order of the Prym group

We now specialise to the case where 𝐾 = Z/2Z in order to compute the order of the Prym group of
a free double cover 𝑝 : 𝐺 → 𝐺 of finite graphs. By (11), the leading Taylor coefficients of the zeta
functions 𝜁 (𝑠, 𝐺)−1 and 𝜁 (𝑠, 𝐺)−1 at 𝑠 = 1 respectively compute the orders | Jac(𝐺) | and | Jac(𝐺) |.
Since 𝜁−1(𝑠, 𝐺) is the product of 𝜁−1 (𝑠, 𝐺) with the inverse of the L-function evaluated at the nontrivial
representation of Z/2Z, the leading Taylor coefficient of the latter computes the order of the Prym.

By the results of [ABKS14], the Jacobian group of a graph G of genus g (and, by extension, the
Jacobian variety of a metric graph) admits a noncanonical combinatorial description in terms of certain
g-element subsets of 𝐸 (𝐺), specifically the complements of spanning trees. We now give an analogous
definition for (𝑔 − 1)-element subsets of 𝐸 (𝐺), which, as we shall see, enumerate the elements of
Prym(𝐺/𝐺) and control the geometry of the Prym varieties of double covers of metric graphs.

Definition 3.1. Let G be a graph of genus g and let 𝑝 : 𝐺 → 𝐺 be a connected free double cover.
A subset 𝐹 ⊂ 𝐸 (𝐺) of 𝑔 − 1 edges of G is called a genus 1 decomposition of rank r if the graph
𝐺\𝐹 = 𝐺0 ∪ · · · ∪ 𝐺𝑟−1 has r connected components, each of which has genus 1. We say that a genus
1 decomposition F is odd if the preimage of each 𝐺𝑘 in 𝐺 is connected.

We note that when removing edges from a graph we never remove vertices – even isolated ones. A
simple counting argument shows that if 𝐹 ⊂ 𝐸 (𝐺) is a subset such that each connected component of
𝐺\𝐹 has genus 1, then F consists of 𝑔 − 1 edges and a genus 1 decomposition cannot have rank greater
than g.

A genus 1 graph has two free double covers: the disconnected trivial cover and a unique nontrivial
connected cover. Hence, we can equivalently require that the restriction of the cover p to each 𝐺𝑘 is a
nontrivial free double cover. If the cover p is described by Construction A with respect to a choice of
spanning tree 𝑇 ⊂ 𝐺 and a nonempty subset 𝑆 ⊂ 𝐸 (𝐺)\𝐸 (𝑇), then a genus 1 decomposition 𝐹 ⊂ 𝐸 (𝐺)
is odd if and only if each 𝐺𝑘 has an odd number of edges from S on its unique cycle (see Remark 2.2).

Theorem 3.2. Let G be a graph of genus g and let 𝑝 : 𝐺 → 𝐺 be the connected free double cover
determined by 𝑇 ⊂ 𝐺 and 𝑆 ⊂ 𝐸 (𝐺)\𝐸 (𝑇). The order of the Prym group Prym(𝐺/𝐺) is equal to

| Prym(𝐺/𝐺) | = 1
2
| Ker Nm | =

𝑔∑
𝑟=1

4𝑟−1𝐶𝑟 , (14)

where 𝐶𝑟 is the number of odd genus 1 decompositions of G of rank r.

Proof. Denote 𝑛 = |𝑉 (𝐺) | and 𝑚 = |𝐸 (𝐺) | = 𝑛 + 𝑔 − 1. According to (13), the zeta function of 𝐺 is
the product of the zeta function of G and the L-function of the cover 𝐺/𝐺 evaluated at the nontrivial
representation 𝜌 of the Galois group Z/2Z:

𝜁 (𝑠, 𝐺)−1 = 𝜁 (𝑠, 𝐺)−1𝐿(𝑠, 𝐺/𝐺, 𝜌)−1.

The class number formula (11) gives the leading Taylor coefficients at 𝑠 = 1:

𝜁 (𝑠, 𝐺)−1 = 22𝑔−1(2𝑔 − 2) | Jac(𝐺) |(𝑠 − 1)2𝑔−1 +𝑂
(
(𝑠 − 1)2𝑔

)
,

𝜁 (𝑠, 𝐺)−1 = (−1)𝑔−12𝑔 (𝑔 − 1) | Jac(𝐺) |(𝑠 − 1)𝑔 +𝑂
(
(𝑠 − 1)𝑔+1

)
.
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The leading coefficient of the L-function is found directly from (12) (note that, unlike in formula (11),
the determinant does not vanish at 𝑠 = 1):

𝐿(𝑠, 𝜌, 𝐺/𝐺)−1 = (−1)𝑔−12𝑔−1 det(𝑄𝜌 − 𝐴𝜌) (𝑠 − 1)𝑔−1 +𝑂 ((𝑠 − 1)𝑔) .

Therefore, comparing the expansions of 𝐿(𝑠, 𝜌, 𝐺/𝐺)−1 with 𝜁 (𝑠, 𝐺)−1/𝜁 (𝑠, 𝐺)−1, we see that

| Prym(𝐺/𝐺) | = | Jac(𝐺) |
2| Jac(𝐺) | =

1
4

det(𝑄𝜌 − 𝐴𝜌).

We now calculate this 𝑛 × 𝑛 determinant. First of all, 𝑄𝜌 = 𝑄 since 𝜌 is 1-dimensional. The Frobenius
element 𝐹 (𝑒) of an edge 𝑒 ∈ 𝐸 (𝐺) is the nontrivial element of Z/2Z, and hence 𝜌(𝐹 (𝑒)) = −1, if and
only if 𝑒 ∈ 𝑆. Putting this together, we see that the matrix 𝑄𝜌 − 𝐴𝜌 has the following form:

(𝑄𝜌 − 𝐴𝜌)𝑢𝑣 =

{
|{edges from 𝑢 to 𝑣 in 𝑆}| − |{edges from 𝑢 to 𝑣 not in 𝑆}|, 𝑢 ≠ 𝑣,

4|{loops at 𝑢 in 𝑆}| + |{non-loops at 𝑢}|, 𝑢 = 𝑣.

The matrix 𝑄𝜌− 𝐴𝜌 turns out to be equal to the signed Laplacian matrix of the graph G (see Proposition
9.5 in [RT14]), and its determinant is computed using a standard argument involving an appropriate
factorisation and the Cauchy–Binet formula. We only give a sketch of these calculations, since they are
not new (see Proposition 9.9 in loc. cit.).

Pick an orientation on G. We factorise the signed Laplacian as 𝑄𝜌 − 𝐴𝜌 = 𝐵𝑆 (𝐺)𝑡𝐵𝑆 (𝐺), where

(𝐵𝑆 (𝐺))𝑣𝑒 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, 𝑡 (𝑒) = 𝑣 and 𝑠(𝑒) ≠ 𝑣, or 𝑠(𝑒) = 𝑣, 𝑡 (𝑒) ≠ 𝑣 and 𝑒 ∈ 𝑆,
−1, 𝑠(𝑒) = 𝑣, 𝑡 (𝑒) ≠ 𝑣 and 𝑒 ∉ 𝑆,
2, 𝑠(𝑒) = 𝑡 (𝑒) = 𝑣 and 𝑒 ∈ 𝑆,
0, otherwise

is the 𝑛 × 𝑚𝑆-twisted adjacency matrix 𝐵𝑆 (𝐺) of the graph G, whose rows and columns are indexed
respectively by 𝑉 (𝐺) and 𝐸 (𝐺). By the Cauchy–Binet formula, we have

| Prym(𝐺/𝐺) | = 1
4

det(𝑄𝜌 − 𝐴𝜌) =
1
4

∑
𝐹 ⊂𝐸 (𝐺) , |𝐹 |=𝑔−1

det 𝐵𝑆 (𝐺\𝐹)2. (15)

Here the sum is taken over all subsets F of 𝐸 (𝐺) consisting of 𝑚 − 𝑛 = 𝑔 − 1 elements and 𝐵𝑆 (𝐺\𝐹)
is the matrix obtained from 𝐵𝑆 (𝐺) by deleting the columns corresponding to the edges that are in F or,
equivalently, the S-twisted adjacency matrix of the graph 𝐺\𝐹.

Let 𝐹 ⊂ 𝐸 (𝐺) be such a subset and let 𝐺\𝐹 = 𝐺0 ∪ · · · ∪ 𝐺𝑟−1 be the decomposition of G into
connected components. The matrix 𝐵𝑆 (𝐺\𝐹) is block-diagonal, with blocks 𝐵𝑆 (𝐺𝑘 ) corresponding to
the 𝐺𝑘 . A block-diagonal matrix has nonzero determinant only if all blocks are square, meaning that
𝑔(𝐺𝑘 ) = 1 for all k, in which case

det 𝐵𝑆 (𝐺\𝐹)2 =
𝑟−1∏
𝑘=0

det 𝐵𝑆 (𝐺𝑘 )2. (16)

The quantity det 𝐵𝑆 (𝐺𝑘 )2 for a genus 1 graph 𝐺𝑘 is computed by induction on the extremal edges (if
any) and turns out to be equal to 4 if the unique cycle of 𝐺𝑘 has an odd number of edges from S and
0 if the number is even. Hence, only odd genus 1 decompositions contribute to the sum (15) and the
contribution of a decomposition of rank r is equal to 4𝑟 . This completes the proof. �
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Example 3.3. Consider the free double cover 𝑝 : 𝐺 → 𝐺 shown in Figure 1. Here 𝑔 − 1 = 1, and it
is easy to see that any edge of G is an odd genus 1 decomposition. The edges 𝑒1, 𝑒2, 𝑒4 and 𝑒5 are
decompositions of rank 1, while 𝑒3 is a decomposition of rank 2. Hence, by (14)

| Prym(𝐺/𝐺) | = 4 + 1 · 4 = 8,

which agrees with the calculations in Example 2.9.

3.3. The volume of the tropical Prym variety

In this subsection, we prove a weighted version of Theorem 3.2 that gives the volume of the Prym
variety of a free double cover of metric graphs. Let 𝜋 : Γ̃ → Γ be such a cover, where Γ̃ and Γ have
genera 2𝑔−1 and 𝑔−1, respectively. Choose a model G for Γ. Similar to the discrete case, an odd genus
1 decomposition F of Γ of rank 𝑟 (𝐹) (with respect to the choice of model G) is a subset 𝐹 ⊂ 𝐸 (𝐺) of
(necessarily) 𝑔 − 1 edges of G such that 𝐸 (𝐺)\𝐹 consists of 𝑟 (𝐹) connected components of genus 1,
each having a connected preimage in Γ̃. For such an F, we denote by 𝑤(𝐹) the product of the lengths
of the edges in F.

Theorem 3.4. The volume of the Prym variety of a free double cover 𝜋 : Γ̃ → Γ of metric graphs is
given by

Vol2 (Prym(Γ̃/Γ)) =
∑

𝐹 ⊂𝐸 (Γ)
4𝑟 (𝐹 )−1𝑤(𝐹), (17)

where the sum is taken over all odd genus 1 decompositions F of Γ.

Remark 3.5. The right-hand side of formula (17) is defined with respect to a choice of model G for Γ.
Let 𝐺 ′ be the model obtained from G by subdividing an edge 𝑒 ∈ 𝐸 (𝐺) into edges 𝑒′1 and 𝑒′2, so that
ℓ(𝑒) = ℓ(𝑒′1) + ℓ(𝑒′2). If 𝑒 ∈ 𝐹 for some odd genus 1 decomposition F of G, then (𝐹\{𝑒}) ∪ {𝑒′1} and
(𝐹\{𝑒}) ∪ {𝑒′2} are odd genus 1 decompositions of 𝐺 ′ of the same rank as F and vice versa. It follows
that the right-hand side is invariant under edge subdivision and hence does not depend on the choice
of model for Γ. We also note that Vol2 (Prym(Γ̃/Γ)) is computed with respect to the intrinsic principal
polarisation on Prym(Γ̃/Γ), which is half of the restriction of the principal polarisation on Jac(Γ̃).

We first establish the relationship between the volumes of the three tropical ppavs Jac(Γ̃), Jac(Γ) and
Prym(Γ̃/Γ). To compute the last of the three volumes, we define (building on Construction A) an explicit
basis for the kernel of the pushforward map 𝜋∗ : 𝐻1(Γ̃, /Z) → 𝐻1(Γ,Z), which we also use later.

Let G be a graph. Introduce the Z-valued bilinear pairing

〈·, ·〉 : 𝐶1 (𝐺,Z) × 𝐶1 (𝐺,Z) → Z,
〈 ∑
𝑒∈𝐸 (𝐺)

𝑎𝑒𝑒,
∑

𝑒∈𝐸 (𝐺)
𝑏𝑒𝑒

〉
=

∑
𝑒∈𝐸 (𝐺)

𝑎𝑒𝑏𝑒 . (18)

We note that this pairing does not take edge lengths into account and is not to be confused with the
integration pairing (·, ·) on a metric graph.

Construction B. Let 𝜋 : Γ̃ → Γ be a connected free double cover of metric graphs. Choose an oriented
model 𝑝 : 𝐺 → 𝐺 and suppose that the cover p is given by Construction A with respect to a spanning tree
𝑇 ⊂ 𝐺 and a nonempty subset 𝑆 ⊂ 𝐸 (𝐺)\𝐸 (𝑇) = {𝑒0, . . . , 𝑒𝑔−1} containing 𝑒0. In this construction,
we define an explicit basis of the kernel of the pushforward map 𝑝∗ : 𝐻1 (𝐺,Z) → 𝐻1(𝐺,Z), as well
as bases for 𝐻1 (𝐺,Z) and 𝐻1 (𝐺,Z). We use these bases to compute Gramian determinants; hence, we
view them to be unordered sets.
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We first construct a basis for 𝐻1(𝐺,Z). Let 𝛾𝑖 ∈ 𝐻1 (𝐺,Z) for 𝑖 = 0, . . . , 𝑔 − 1 denote the unique
cycle of 𝑇 ∪ {𝑒𝑖} such that 〈𝛾𝑖 , 𝑒𝑖〉 = 1. It is a standard fact that

B = {𝛾0, . . . , 𝛾𝑔−1}

is a basis of 𝐻1(𝐺,Z) and, furthermore, any 𝛾 ∈ 𝐻1 (𝐺,Z) can be explicitly decomposed in terms of B
as follows:

𝛾 = 〈𝛾, 𝑒1〉𝛾1 + · · · + 〈𝛾, 𝑒𝑔〉𝛾𝑔 .

Similarly, let �̃�0 ∈ 𝐻1 (𝐺,Z) and �̃� ±
𝑖 ∈ 𝐻1 (𝐺,Z) for 𝑖 = 1, . . . , 𝑔−1 denote the unique cycle respectively

of𝑇 ∪{�̃� −
0 } and𝑇 ∪{�̃� ±

𝑖 } such that 〈�̃�0, �̃�
−

0 〉 = 1 and 〈�̃�±𝑖 , �̃� ±
𝑖 〉 = 1 respectively for 𝑖 = 1, . . . , 𝑔−1. Then

B̃ = {�̃�0, �̃�
±

1 , . . . , �̃� ±
𝑔−1}

is a basis of 𝐻1 (𝐺,Z) and we similarly have

�̃� = 〈�̃�, �̃� −
0 〉�̃�0 + 〈�̃�, �̃� +

1 〉�̃�
+
1 + · · · + 〈�̃�, �̃� +

𝑔−1〉�̃�
+
𝑔−1 + 〈�̃�, �̃� −

1 〉�̃�−1 + · · · + 〈�̃�, �̃� −
𝑔−1〉�̃�

−
𝑔−1

for any �̃� ∈ 𝐻1 (𝐺,Z).
We now compute the action of the pushforward map 𝑝∗ : 𝐻1 (𝐺,Z) → 𝐻1 (𝐺,Z) and the involution

map 𝜄∗ : 𝐻1(𝐺,Z) → 𝐻1 (𝐺,Z) on the basis B̃. The cycle �̃�0 starts at the vertex 𝑠(�̃�−0 ) = �𝑠(𝑒0)
−

on the
lower sheet 𝑇− and then proceeds via +�̃�−0 to the vertex 𝑡 (�̃�−0 ) = �𝑡 (𝑒0)

+
on the upper sheet 𝑇+, then to�𝑠(𝑒0)

+
via a unique path in 𝑇+, then back to 𝑡 (�̃� +

0 ) = �𝑡 (𝑒0)
−

on 𝑇− via +�̃� +
0 and then back to �𝑠(𝑒0)

−
via

a unique path in 𝑇−. In other words,

�̃�0 = �̃�+0 + �̃�−0 + edges of 𝑇±, 𝜄∗(�̃�0) = �̃�+0 + �̃�−0 + edges of 𝑇±, 𝑝∗(�̃�0) = 2𝑒0 + edges of 𝑇 ;

therefore, computing the intersection numbers with B̃ and B we see that

𝜄∗(�̃�0) = �̃�0, 𝑝∗(�̃�0) = 2𝛾0.

Now consider the cycle �̃�+𝑖 for 𝑒𝑖 ∈ 𝑆\{𝑒0}. We introduce the index

𝜎𝑖 =

{
+1, 𝑠(�̃�+𝑖 ) = 𝑠(𝑒𝑖)+,
−1, 𝑠(�̃�+𝑖 ) = 𝑠(𝑒𝑖)−.

If 𝜎𝑖 = 1, then the cycle �̃�+𝑖 starts at 𝑠(�̃� +
𝑖 ) = �𝑠(𝑒𝑖)+ on 𝑇+ and then moves to 𝑡 (�̃� +

𝑖 ) = �𝑡 (𝑒𝑖)− on 𝑇− via
�̃� +
𝑖 and then back to �𝑠(𝑒𝑖)+ on 𝑇+ via a unique path in 𝑇 . This path crosses from 𝑇− to 𝑇+ and hence

must contain the edge −�̃� +
0 . If 𝜎𝑖 = −1, then �̃�+𝑖 crosses from 𝑇+ to 𝑇− and hence contains �̃� +

0 . Similarly,
we calculate that the cycle �̃�−𝑖 contains the edge 𝜎𝑖 �̃�

+
0 . In other words, for 𝑒𝑖 ∈ 𝑆\{𝑒0} we have

�̃� ±
𝑖 = �̃� ±

𝑖 ∓ 𝜎𝑖 �̃�
+
0 + edges of 𝑇±, 𝜄∗(�̃� ±

𝑖 ) = �̃�∓𝑖 ∓ 𝜎𝑖 �̃�
−
0 + edges of 𝑇±, 𝑝∗(�̃�±𝑖 ) = 𝑒𝑖 ∓ 𝜎𝑖𝑒0 + edges of 𝑇 ;

hence, computing the intersection numbers, we see that

𝜄∗(�̃� ±
𝑖 ) = �̃�∓𝑖 ∓ 𝜎𝑖 �̃�0, 𝑝∗(�̃�±𝑖 ) = 𝛾𝑖 ∓ 𝜎𝑖𝛾0, 𝑒𝑖 ∈ 𝑆\{𝑒0}.
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Finally, for 𝑒𝑖 ∉ 𝑆 the cycle 𝛾±𝑖 is contained in 𝑇± ∪ {�̃� ±
𝑖 } and hence does not contain the edge �̃� +

0 . It
follows that

𝜄∗(�̃� ±
𝑖 ) = �̃�∓𝑖 + edges of 𝑇±, 𝑝∗(�̃� ±

𝑖 ) = 𝑒𝑖 + edges of 𝑇, 𝑒𝑖 ∉ 𝑆,

and therefore

𝜄∗(�̃� ±
𝑖 ) = �̃�∓𝑖 , 𝑝∗(�̃� ±

𝑖 ) = 𝛾𝑖 , 𝑒𝑖 ∉ 𝑆.

It is now clear that

B̃′
2 = {�̃�+𝑖 − 𝜄∗(�̃�+𝑖 )}

𝑔−1
𝑖=1 = {�̃�+𝑖 − �̃�−𝑖 + 𝜎𝑖 �̃�0}𝑒𝑖 ∈𝑆\{𝑒0 } ∪ {�̃�+𝑖 − �̃�−𝑖 }𝑒𝑖∉𝑆 (19)

is a basis for Ker 𝑝∗.
In Example 5.5, we explicitly construct this basis for a double cover 𝜋 : Γ̃ → Γ with 𝑔 = 3.

We now establish the relationship between the volumes of our three tropical ppavs.

Proposition 3.6. Let 𝜋 : Γ̃ → Γ be a free double cover of metric graphs. Then the volumes of Jac(Γ̃),
Jac(Γ) and Prym(Γ̃/Γ) are related as

Vol2 (Prym(Γ̃/Γ)) = Vol2 (Jac(Γ̃))
2 Vol2 (Jac(Γ))

,

where the volume of each tropical ppav is calculated using its intrinsic principal polarisation.

Proof. We first introduce the following alternative basis B′ for 𝐻1(𝐺,Z):

B′ = {𝛾0} ∪ {𝛾𝑖 − 𝜎𝑖𝛾0}𝑒𝑖 ∈𝑆\{𝑒0 } ∪ {𝛾𝑖}𝑒𝑖∉𝑆 . (20)

We now compute the pullback B̃′
1 of B′ to 𝐻1 (𝐺,Z) via the map

𝑝∗ : 𝐻1 (𝐺,Z) → 𝐻1 (𝐺,Z),
∑

𝑒∈𝐸 (𝐺)
𝑎𝑒𝑒 ↦→

∑
𝑒∈𝐸 (𝐺)

𝑎𝑒 (�̃� + + �̃� −).

Since 𝛾𝑖 consists of +𝑒𝑖 and edges of T, we have

𝑝∗(𝛾𝑖) = �̃� +
𝑖 + �̃� −

𝑖 + edges of 𝑇±

for 𝑖 = 0, . . . , 𝑔 − 1. Computing intersection numbers as before, we see that

𝑝∗(𝛾0) = �̃�0, 𝑝∗(𝛾𝑖) = �̃�+𝑖 + �̃�−𝑖 , 𝑖 = 1, . . . , 𝑔 − 1.

Hence,

B̃′
1 = 𝑝∗(B′) = {�̃�0} ∪ {�̃�+𝑖 + �̃�−𝑖 − 𝜎𝑖 �̃�0}𝑒𝑖 ∈𝑆\{𝑒0 } ∪ {�̃�+𝑖 + �̃�−𝑖 }𝑒𝑖∉𝑆 .

Let (·, ·)𝐺 and (·, ·)𝐺 denote the intersection pairings (4) on 𝐻1(𝐺,Z) and 𝐻1(𝐺,Z), respectively, and let
(·, ·)𝑃 = 1

2 (·, ·)𝐺 denote the intersection pairing on Ker 𝑝∗ corresponding to the principal polarisation on
Prym(Γ̃/Γ). We add the corresponding subscripts to each Gramian determinant, in order to keep track
of the inner product that is used to compute it. Thus, the volumes of Jac(𝐺) and Prym(Γ̃/Γ) are given by

Vol2 (Jac(Γ)) = Gram𝐺 (B′), Vol2(Prym(Γ̃/Γ)) = Gram𝑃 (B̃
′
2).
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We now consider the set B̃′
= B̃′

1∪B̃
′
2, which is a basis for the vector space 𝐻1(Γ̃,Q). By appropriately

ordering the basis elements, the change-of-basis matrix from B̃ to B̃′
becomes block-triangular with a 1

in the top left corner and a block
(

1 1
−1 1

)
for each edge 𝑒𝑖 , 𝑖 = 1, 2 . . . , 𝑔 − 1. Its determinant is therefore

±2𝑔−1 and it follows that

Vol2(Jac(Γ̃)) = Gram𝐺 (B̃) = 22−2𝑔 Gram𝐺 (B̃
′).

We now compute Gram(B̃′) using its block structure. First, we note that 𝜄∗(�̃�′
1) = �̃�′

1 for all �̃�′
1 ∈ B̃′

1 and
𝜄∗(�̃�′

2) = −�̃�′
2 for all �̃�′

2 ∈ B̃′
2. Since 𝜄∗ preserves the pairing (·, ·)𝐺 , it follows that (�̃�′

1, �̃�
′
2)𝐺 = 0 for all

�̃�′
1 ∈ B̃′

1 and all �̃�′
2 ∈ B̃′

2; therefore,

Gram𝐺 (B̃
′) = Gram𝐺 (B̃

′
1) Gram𝐺 (B̃

′
2).

Since (·, ·)𝑃 = 1
2 (·, ·)𝐺 , it is clear that

Gram𝐺 (B̃
′
2) = 2𝑔−1 Gram𝑃 (B̃

′
2).

Finally, for any 𝛾1, 𝛾2 ∈ 𝐻1(𝐺,Z), we have (𝑝∗(𝛾1), 𝑝∗(𝛾2))𝐺 = 2(𝛾1, 𝛾2)𝐺 and therefore

Gram𝐺 (B̃
′
1) = 2𝑔 Gram𝐺 (B′),

because B̃′
1 is the pullback of B′. Putting all this together, we have

Vol2(Jac(Γ̃))
2 Vol2(Jac(Γ))

=
22−2𝑔 Gram𝐺 (B̃

′)
2 Gram𝐺 (B′) =

21−2𝑔 Gram𝐺 (B̃
′
1) Gram𝐺 (B̃

′
2)

Gram𝐺 (B′) = Gram𝑃 (B̃
′
2),

which is equal to Vol2 (Prym(Γ̃/Γ)), as required. �

The proof of Theorem 3.4 now follows from Theorem 3.2 and equation (7) by an elementary scaling
argument.

Proof of Theorem 3.4. The right-hand side of (17) is a homogeneous degree 𝑔 − 1 polynomial in the
edge lengths of Γ and so is the left-hand side, being the determinant of a (𝑔 − 1) × (𝑔 − 1) Gramian
matrix. Hence, it is sufficient to prove equation (17) in the case when Γ, and hence Γ̃, have integer edge
lengths. Choose a model 𝑝 : 𝐺 → 𝐺 for 𝜋 such that each edge of 𝐺 and G has length 1. In this case,
Vol(𝐹) = 1 for any set of edges; hence, by Kirchhoff’s theorem and (7) we have

Vol2(Jac(Γ̃)) = | Jac(𝐺) |, Vol2(Jac(Γ)) = | Jac(𝐺) |.

It follows by Proposition 3.6 that

Vol2(Prym(Γ̃/Γ)) = Vol2(Jac(Γ̃))
2 Vol2(Jac(Γ))

=
| Jac(𝐺) |

2| Jac(𝐺) | = | Prym(𝐺/𝐺) |.

But | Prym(𝐺/𝐺) | can be computed using (14), which agrees with the right-hand side of (17) when all
edge lengths are equal to 1. This completes the proof. �

Example 3.7. Let Γ be the genus 2 dumbbell graph, with loops 𝑒1 and 𝑒2 of lengths 𝑥1 and 𝑥2, connected
by a bridge 𝑒3 of length 𝑥3. The unique spanning tree of Γ consists of the edge 𝑒3. The graph Γ has two
topologically distinct connected free double covers 𝜋1 : Γ̃1 → Γ and 𝜋2 : Γ̃2 → Γ, corresponding to
flipping the edges 𝑆1 = {𝑒1, 𝑒2} and 𝑆2 = {𝑒1} (see Figure 2).
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Figure 2. Two free double covers of the dumbbell graph. Flipped edges are blue.

For the cover 𝜋1, the odd genus 1 decompositions are {𝑒1} and {𝑒2} of rank 1 and {𝑒3} of rank 2.
For 𝜋2, the only odd genus 1 decomposition is {𝑒2} of rank 1. Hence, Theorem 3.4 states that

Vol2 (Prym(Γ̃1/Γ)) = 𝑥1 + 𝑥2 + 4𝑥3, Vol2(Prym(Γ̃2/Γ)) = 𝑥2.

Note that in each case the Prym variety is a circle and the square of its volume is its circumference (see
Remark 2.6).

4. The local structure of the Abel–Prym map

In the remaining two sections, we provide a geometrisation of the volume formula (17) for the Prym
variety of a free double cover of graphs, in the spirit of the analogous formula (7) for the volume of the
Jacobian variety of a metric graph derived in [ABKS14].

Let 𝜋 : Γ̃ → Γ be a free double cover of metric graphs and let 𝜄 : Γ̃ → Γ̃ be the associated involution.
For any integer d, we denote Prym[𝑑 ] (Γ̃/Γ) as the connected component of the kernel of the pushforward
map Nm : Jac(Γ̃) → Jac(Γ) having the same parity as d, so that Prym[𝑑 ] (Γ̃/Γ) = Prym(Γ̃/Γ) if d
is even and Prym[𝑑 ] (Γ̃/Γ) is the odd connected component if d is odd. In this section, we study the
Abel–Prym map

Ψ𝑑 : Sym𝑑 (Γ̃) → Prym[𝑑 ] (Γ̃/Γ), Ψ𝑑 (𝐷) = 𝐷 − 𝜄(𝐷), (21)

for 𝑑 ≤ 𝑔 − 1. The space Sym𝑑 (Γ̃) has a natural cellular structure, with cells enumerated by the edges
and vertices of Γ̃ supporting the divisor. The restriction of Ψ𝑑 to each cell is an affine linear map and
we determine the cells on which Ψ𝑑 has maximal rank.

Choose an oriented model 𝑝 : 𝐺 → 𝐺 for 𝜋 such that 𝐺 and G have no loops. Let 0 ≤ 𝑘 ≤ 𝑑,
let 𝐹 = { �̃�1, . . . , �̃�𝑘 } be a multiset of k edges of 𝐺 and let 𝑍 be an effective divisor of degree 𝑑 − 𝑘
supported on 𝑉 (𝐺). Denote by 𝐶𝑘 (𝐹, 𝑍) the k-dimensional set of effective divisors on Γ̃ of the form
𝐷 = 𝑃1+· · ·+𝑃𝑘 +𝑍 , where each 𝑃𝑖 lies on �̃�𝑖 . Any effective degree d divisor on Γ̃ can be split up in such
a way (uniquely if each point lies in the interior of an edge); hence, we have a cellular decomposition

Sym𝑑 (Γ̃) =
𝑑⋃
𝑘=0

⋃
𝐹,𝑍

𝐶𝑘 (𝐹, 𝑍), (22)

where the union is taken over all 𝐹 ∈ Sym𝑘 (𝐸 (𝐺)) and 𝑍 ∈ Sym𝑑−𝑘 (𝑉 (𝐺)).
The principal result of this section describes the cells 𝐶𝑘 (𝐹, 𝑍) that are not contracted by the Abel–

Prym map Ψ𝑑 . It is clear that the divisor 𝑍 plays no role in this question; hence, we assume that 𝑘 = 𝑑,
𝑍 = 0 and only consider the top-dimensional cells, which we denote

𝐶 (𝐹) = 𝐶𝑑 (𝐹, 0) = {𝑃1 + · · · + 𝑃𝑑 : 𝑃𝑖 ∈ �̃�𝑖} ⊂ Sym𝑑 (Γ̃), 𝐹 = { �̃�1, . . . , �̃�𝑑} ∈ Sym𝑑 (𝐸 (𝐺)).
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Theorem 4.1. Let 𝜋 : Γ̃ → Γ be a free double cover of metric graphs with oriented loopless model
𝑝 : 𝐺 → 𝐺 and let Ψ𝑑 : Sym𝑑 (Γ̃) → Prym[𝑑 ] (Γ̃/Γ) be the degree d Abel–Prym map, where
1 ≤ 𝑑 ≤ 𝑔 − 1. Let 𝐹 = { �̃�1, . . . , �̃�𝑑} ⊂ 𝐸 (𝐺) be a multiset of edges of 𝐺, let 𝐶 (𝐹) ⊂ Sym𝑑 (Γ̃) be the
corresponding top-dimensional cell and denote 𝐹 = { 𝑓1, . . . , 𝑓𝑑}, where 𝑓𝑖 = 𝑝( �̃�𝑖).

(1) If the edges in F are not distinct (in particular, if the edges in 𝐹 are not distinct), then Ψ𝑑 contracts
𝐶 (𝐹).

(2) If the edges in F are distinct, then Ψ𝑑 does not contract 𝐶 (𝐹) if and only if the preimage under p
of each connected component of 𝐺\𝐹 is connected.

The proof of the first part of the theorem is quite elementary: for any 𝐷 ∈ 𝐶 (𝐹) we construct a nearby
divisor 𝐷 ′ such that Ψ𝑑 (𝐷) = 𝐷 − 𝜄(𝐷) is linearly equivalent to Ψ𝑑 (𝐷 ′) = 𝐷 ′ − 𝜄(𝐷 ′) via an explicit
rational function. To prove the second part, we calculate the matrix of Ψ𝑑 with respect to a convenient
basis and compute its rank. This part and the necessary constructions will occupy the greater part of
this section.

Proof of Theorem 4.1, part (1). Let 𝐹 = { �̃�1, . . . , �̃�𝑑} be a multiset such that not all 𝑓𝑖 = 𝑝( �̃�𝑖) are
distinct. Without loss of generality, we assume that 𝑓1 = 𝑓2, which means that either �̃�1 = �̃�2 or
�̃�1 = 𝜄( �̃�2). Let 𝐷 = 𝑃1 + · · · + 𝑃𝑑 be a point of 𝐶 (𝐹), where each 𝑃𝑖 lies in the interior of �̃�𝑖 .

If �̃�1 = �̃�2, we can assume that either 𝑃1 = 𝑃2 or that the direction from 𝑃1 to 𝑃2 is positive with
respect to the orientation. Denote 𝐷 ′ = 𝑃′

1 + 𝑃′
2 + 𝑃3 + · · · + 𝑃𝑑 , where 𝑃′

1 and 𝑃′
2 are obtained by

moving 𝑃1 and 𝑃2 a small distance of 𝜀 > 0 respectively in the negative and the positive directions
along �̃�1 = �̃�2. Then the divisor

Ψ𝑑 (𝐷) − Ψ𝑑 (𝐷 ′) = 𝐷 − 𝜄(𝐷) − 𝐷 ′ + 𝜄(𝐷 ′) = 𝑃1 + 𝑃2 − 𝑃′
1 − 𝑃′

2 − 𝜄(𝑃1) − 𝜄(𝑃2) + 𝜄(𝑃′
1) + 𝜄(𝑃′

2)

is the principal divisor of a piecewise linear function on Γ̃. Indeed, consider the function 𝑀 : Γ̃ → R
having the following slopes on the edges of Γ̃:

◦ On �̃�1 = �̃�2, M has slope 0 to the left of 𝑃′
1, slope +1 on [𝑃′

1, 𝑃1], slope 0 on [𝑃1, 𝑃2], slope −1 on
[𝑃2, 𝑃

′
2] and slope 0 to the right of 𝑃′

2.
◦ On 𝜄( �̃�1) = 𝜄( �̃�2), M has slope 0 to the left of 𝜄(𝑃1), slope −1 on [𝜄(𝑃′

1), 𝜄(𝑃1)], slope 0 on
[𝜄(𝑃1), 𝜄(𝑃2)], slope +1 on [𝜄(𝑃2), 𝜄(𝑃′

2)] and slope 0 to the right of 𝜄(𝑃′
2).

◦ The function M has zero slope on all other edges of Γ̃.

The net changes of M along �̃�1 = �̃�2 and 𝜄( �̃�1) = 𝜄( �̃�2) cancel out; hence, the function M is continuous
and it is clear that Ψ𝑑 (𝐷) − Ψ𝑑 (𝐷 ′) is the divisor of M. Therefore, Ψ𝑑 is not locally injective at 𝐷.

The case �̃�1 = 𝜄( �̃�2) is similar. We consider 𝐷 ′ = 𝑃′
1 + 𝑃′

2 + 𝑃3 + · · · + 𝑃𝑑 , where 𝑃′
1 and 𝑃′

2 are
obtained by moving 𝑃1 and 𝑃2 a small distance of 𝜀 > 0 in the same direction along �̃�1 and �̃�2 = 𝜄( �̃�1)
respectively. It is easy to check that Ψ𝑑 (𝐷) − Ψ𝑑 (𝐷 ′) is a principal divisor; hence, Ψ𝑑 is not locally
injective at 𝐷. �

To prove part (2) of Theorem 4.1, we give an explicit description of the Abel–Prym map Ψ𝑑 on a
cell 𝐶 (𝐹). We first consider the case 𝑑 = 1. Fix a base point 𝑞 ∈ Γ̃ and for each point 𝑝 ∈ Γ̃ fix a path
𝛾(𝑞, 𝑝) from q to p. The Abel–Prym map Ψ1 is a difference of Abel–Jacobi maps (5):

Ψ1 : Γ̃ → Prym[1] (Γ̃/Γ) ⊂ Jac(Γ̃), Ψ1(𝑝) (𝜔) =
∫
𝛾 (𝑞,𝑝)

𝜔 −
∫
𝛾 (𝑞, 𝜄 (𝑝))

𝜔.

It is more convenient to work with the even component Prym(Γ̃/Γ). The odd component Prym[1] (Γ̃/Γ)
is a torsor over Prym(Γ̃/Γ), and we can pass to the even component by translating by any element of
the odd component; for example, the element Ψ1(𝜄(𝑞)) =

∫
𝛾 (𝑞, 𝜄 (𝑞)) . We can further assume that the
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path 𝛾(𝑞, 𝜄(𝑝)) in the formula above consists of 𝛾(𝑞, 𝜄(𝑞)) followed by the path 𝜄∗(𝛾(𝑞, 𝑝)). Putting this
together, we obtain the translated Abel–Prym map, which we also denote Ψ1 by abuse of notation:

Ψ1 : Γ̃ → Prym(Γ̃/Γ), Ψ1(𝑝) (𝜔) =
∫
𝛾 (𝑞,𝑝)

𝜔 −
∫
𝜄∗ (𝛾 (𝑞,𝑝))

𝜔. (23)

Choose a basis �̃�1, . . . , �̃�𝑔−1 for Ker 𝜋∗ : 𝐻1(Γ̃,Z) → 𝐻1(Γ,Z). As explained in Subsection 2.6, the
functionals 𝜔∗

𝑗 ∈ Ω∗(Γ̃) dual to 𝜔 𝑗 = 𝜓(�̃� 𝑗 ) define a coordinate system on Prym(Γ̃/Γ), so we can write

Ψ1(𝑝) =
∫
𝛾 (𝑞,𝑝)

−
∫
𝜄∗ (𝛾 (𝑞,𝑝))

=
𝑔−1∑
𝑗=1

𝑎 𝑗 (𝑝)𝜔∗
𝑗 ,

where we find the coefficients 𝑎 𝑗 (𝑝) by pairing with 𝜔 𝑗 :

𝑎 𝑗 (𝑝) =
∫
𝛾 (𝑞,𝑝)

𝜔 𝑗 −
∫
𝜄∗ (𝛾 (𝑞,𝑝))

𝜔 𝑗 .

We now assume that p lies on the interior of an edge �̃� ∈ 𝐸 (Γ̃), which we identify using the orientation
with the segment (0, ℓ( �̃� )). Pick 𝑥1, 𝑥2 ∈ (0, ℓ( �̃� )) such that 𝑥1 < 𝑥2; then we see that

𝑎 𝑗 (𝑥2) − 𝑎 𝑗 (𝑥1) =
∫
𝛾 (𝑞,𝑥2)

𝜔 𝑗 −
∫
𝜄∗ (𝛾 (𝑞,𝑥2))

𝜔 𝑗 −
∫
𝛾 (𝑞,𝑥1)

𝜔 𝑗 +
∫
𝜄∗ (𝛾 (𝑞,𝑥1))

𝜔 𝑗

=
∫
𝛾 (𝑥1 ,𝑥2)

𝜔 𝑗 −
∫
𝜄∗ (𝛾 (𝑥1 ,𝑥2))

𝜔 𝑗 .

We can assume that 𝛾(𝑥1, 𝑥2) is the segment [𝑥1, 𝑥2] ⊂ (0, ℓ( �̃� )). The integral of 𝜔 𝑗 over 𝛾(𝑥1, 𝑥2) is
equal to the length 𝑥2 − 𝑥1 multiplied by the coefficient with which �̃� occurs in 𝜔 𝑗 , which is 1

2 〈�̃� 𝑗 , �̃� 〉
(the 1

2 coefficient comes from using the principal polarisation of the Prym). Similarly, the integral of 𝜔 𝑗

over 𝜄∗(𝛾(𝑥1, 𝑥2)) is equal to 1
2 (𝑥2 − 𝑥1)〈�̃� 𝑗 , 𝜄( �̃� )〉 and therefore

𝑎 𝑗 (𝑥2) − 𝑎 𝑗 (𝑥1) =
1
2
(𝑥2 − 𝑥1)〈�̃� 𝑗 , �̃� − 𝜄( �̃� )〉,

where 〈·, ·〉 is the edge pairing (18). It follows that, with respect to the coordinate vectors 𝜔∗
𝑗 defined by

the basis �̃� 𝑗 , the restriction of the Abel–Prym map (23) to an edge �̃� = [0, ℓ( �̃� )] is an affine Z-linear
map of the form

Ψ1(𝑥) = 1
2

𝑔−1∑
𝑗=1

〈�̃� 𝑗 , �̃� − 𝜄( �̃� )〉𝜔∗
𝑗𝑥 + 𝐶,

where C is a constant vector.
This formula readily generalises to any degree. Let 𝐹 = { �̃�1, . . . , �̃�𝑑} be a set of distinct edges

of 𝐺. We identify the cell 𝐶 (𝐹) with the parallelotope [0, ℓ( �̃�1)] × · · · × [0, ℓ( �̃�𝑑)], where the point
(𝑥1, . . . , 𝑥𝑑) corresponds to the divisor 𝐷 = 𝑃1 + · · · + 𝑃𝑑 , where 𝑃𝑖 lies on �̃�𝑖 at a distance of 𝑥𝑖 from
the starting vertex. Translating by any odd Prym divisor and moving to the even component if d is odd,
we see that the restriction of the Abel–Prym map (21) to the cell 𝐶 (𝐹) is affine Z-linear:

Ψ𝑑 (𝑥1, . . . , 𝑥𝑑) =
𝑑∑
𝑖=1

𝑔−1∑
𝑗=1

(Ψ𝑑) 𝑗𝑖𝜔∗
𝑗𝑥𝑖 + 𝐶 ∈ Prym(Γ̃/Γ),
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where (Ψ𝑑) 𝑗𝑖 is the (𝑔 − 1) × 𝑑 matrix

(Ψ𝑑) 𝑗𝑖 =
1
2

〈
�̃� 𝑗 , �̃�𝑖 − 𝜄( �̃�𝑖)

〉
(24)

and C is some constant vector.
To prove part (2) of Theorem 4.1, we compute the rank of (Ψ𝑑) 𝑗𝑖 with respect to a carefully chosen

basis �̃� 𝑗 of Ker 𝜋∗. Specifically, the ‘if’ and ‘only if’ statements will require slightly different choices of
basis.

Proof of Theorem 4.1, part (2). We consider the decomposition of 𝐺\𝐹 into connected components,
which we enumerate as follows:

𝐺\𝐹 = 𝐺0 ∪ · · · ∪ 𝐺𝑟−1.

Before proceeding, we derive a relationship between the genera 𝑔𝑘 = |𝐸 (𝐺𝑘 ) | − |𝑉 (𝐺𝑘 ) | + 1 of the
components 𝐺𝑘 :

𝑔0 + · · · + 𝑔𝑟−1 =
𝑟−1∑
𝑘=0

|𝐸 (𝐺𝑘 ) | −
𝑟−1∑
𝑘=0

|𝑉 (𝐺𝑘 ) | + 𝑟 = |𝐸 (𝐺) | − 𝑑 − |𝑉 (𝐺) | + 𝑟 = 𝑔 + 𝑟 − 𝑑 − 1. (25)

We now consider the two possibilities.
The preimage of one of the connected components is disconnected. Equivalently, we assume that

the restriction of the cover p to one of the connected components is isomorphic to the trivial free double
cover. Let 𝐺𝑘 be a connected component of genus 𝑔𝑘 . If 𝑝−1 (𝐺𝑘 ) is connected, then Construction
B, applied to the cover 𝑝 |𝑝−1 (𝐺𝑘 ) : 𝑝−1 (𝐺𝑘 ) → 𝐺𝑘 , produces 𝑔𝑘 − 1 linearly independent cycles
𝛾𝑘𝑙 ∈ 𝐻1(𝐺,Z) that are supported on 𝑝−1 (𝐺𝑘 ) and that lie in Ker 𝑝∗. However, if the restriction of
p to, say, 𝐺𝑘 is trivial, then we can find 𝑔𝑘 such cycles, by applying (Id−𝜄)∗ to the lifts of a linearly
independent collection of cycles on 𝐺𝑘 . In this case, it follows from (25) that there are at least

(𝑔0 − 1) + (𝑔1 − 1) + . . . + 𝑔𝑘 + . . . + (𝑔𝑟−1 − 1) = 𝑔 − 𝑑

linearly independent cycles 𝛾𝑘𝑙 ∈ 𝐻1(𝐺,Z), lying in the kernel of 𝑝∗ and supported on

𝑝−1 (𝐺0) ∪ . . . ∪ 𝑝−1 (𝐺𝑟−1) = 𝐺\(𝐹 ∪ 𝜄(𝐹)).

Any such cycle 𝛾𝑘𝑙 pairs trivially with each �̃�𝑖 and 𝜄( �̃�𝑖). Therefore, by completing these cycles to a
basis of Ker 𝑝∗ (passing to Q-coefficients if necessary), we see that the matrix (24) of Ψ𝑑 with respect
to this basis has at least 𝑔 − 𝑑 rows of zeroes and hence has rank less than d and contracts 𝐶 (𝐹).
The preimage of each connected component is connected. Equivalently, the restriction of p to each
connected component is a nontrivial free double cover. This implies that 𝑔𝑘 ≥ 1 for each k, since any
free double cover of a tree is trivial.

We show that the matrix (24) has rank d with respect to an explicit choice of basis �̃�𝑖 of Ker 𝜋∗. The
construction of this basis is somewhat involved and will be used again in the proof of Theorem 5.1, so
we typeset it separately.

Construction C. Let 𝜋 : Γ̃ → Γ be a connected free double cover of metric graphs of genera 2𝑔 − 1
and g, respectively, and let 𝑝 : 𝐺 → 𝐺 be an oriented model. Let 𝐹 = { �̃�1, . . . , �̃�𝑑} ⊂ 𝐸 (𝐺) be a set of
d edges so that the edges 𝑓𝑖 = 𝑝( �̃�𝑖) are distinct and denote 𝐹 = 𝑝(𝐹). Let

𝐺\𝐹 = 𝐺0 ∪ · · · ∪ 𝐺𝑟−1

https://doi.org/10.1017/fms.2021.75 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.75


28 Yoav Len and Dmitry Zakharov

be the decomposition of 𝐺\𝐹 into connected components and further assume that 𝑝−1 (𝐺𝑘 ) is connected
for each k. In this construction, we elaborate on Constructions A and B by carefully choosing a spanning
tree 𝑇 ⊂ 𝐺 and a corresponding basis �̃�1, . . . , �̃�𝑔−1 for Ker 𝜋∗ : 𝐻1(𝐺,Z) → 𝐻1(𝐺,Z), with respect
to which the matrix of the Abel–Prym map on the cell 𝐶 (𝐹) has a convenient triangular structure.
This construction involves a number of choices and relabellings, so we break it down into steps. At the
same time, we will contract the portions of the graphs 𝐺 and G that are irrelevant to our intersection
calculations.

Contracting the 𝐺𝑘 and choosing the spanning tree 𝑇 ⊂ 𝐺. Choose a spanning tree 𝑇𝑘 for each
connected component 𝐺𝑘 . Denote by 𝐺𝑐 the graph obtained from G by contracting each subtree 𝑇𝑘 to
a separate vertex 𝑣𝑘 . Specifically, the vertex set of 𝐺𝑐 is 𝑉 (𝐺𝑐) = {𝑣0, . . . , 𝑣𝑟−1} and the edge set of
𝐺𝑐 is the set of edges G that are not in any 𝑇𝑘 . There is a natural contraction map (·)𝑐 : 𝐺 → 𝐺𝑐;
this map sends each vertex and edge of 𝑇𝑘 to 𝑣𝑘 and sends each edge of G that is not in any 𝑇𝑘 to the
corresponding edge of 𝐺𝑐 . The contracted graph 𝐺𝑐 has the same genus g as G; hence, it has 𝑔 + 𝑟 − 1
edges, namely, the edges 𝐹 = { 𝑓1, . . . , 𝑓𝑑} and 𝑔 + 𝑟 − 𝑑 − 1 loops corresponding to the uncontracted
edges of the 𝐺𝑘 . Choose a spanning tree 𝑇𝑐 for the contracted graph 𝐺𝑐; the 𝑟 − 1 edges of 𝑇𝑐 are a
subset of the edges { 𝑓1, . . . , 𝑓𝑑}.

Before proceeding, we relabel the edges �̃�𝑖 and 𝑓𝑖 = 𝑝( �̃�𝑖) so that 𝐸 (𝑇𝑐) = { 𝑓1, . . . , 𝑓𝑟−1}. We then
choose 𝑣0 as the root vertex of 𝑇𝑐 and further relabel and reorient the edges 𝑓1, . . . , 𝑓𝑟−1 away from 𝑣0.
Specifically, we require that, along the unique path in 𝑇𝑐 starting at 𝑣0 and ending at any other vertex,
the edges are oriented in the direction of the path and appear in increasing order. Finally, we relabel
the vertices 𝑣1, . . . , 𝑣𝑟−1 so that 𝑡 ( 𝑓 𝑗 ) = 𝑣 𝑗 for 𝑗 = 1, . . . , 𝑟 − 1; this implies that 𝑠( 𝑓 𝑗 ) = 𝑣𝛼( 𝑗) for some
index 𝛼( 𝑗) < 𝑗 .

We now form a spanning tree T for G by joining the subtrees 𝑇𝑘 with the edges of 𝑇𝑐 (viewed as edges
of G):

𝑇 = 𝑇0 ∪ · · · ∪ 𝑇𝑟−1 ∪ { 𝑓1, . . . , 𝑓𝑟−1}.

We denote the complementary edges of T in G by 𝐸 (𝐺)\𝐸 (𝑇) = {𝑒0, 𝑒1, . . . , 𝑒𝑔−1}, and we explain
below how the 𝑒 𝑗 are chosen.

Choosing 𝑒0 and contracting the preimages of the𝐺𝑘 . We now describe the cover p using the spanning
tree T and Construction A. The tree T has two disjoint lifts 𝑇± to 𝐺, and we denote 𝑇±

𝑘 = 𝑇± ∩ 𝑝−1 (𝑇𝑘 )
the corresponding lifts of the 𝑇𝑘 . For each 𝑖 = 1, . . . , 𝑑, each of the trees 𝑇± contains exactly one
of the two edges �̃�𝑖 and 𝜄( �̃�𝑖). The cover 𝑝 : 𝑓 −1(𝐺0) → 𝐺0 is not trivial, so we can pick an edge
𝑒0 ∈ 𝐸 (𝐺0)\𝐸 (𝑇0) having a lift �̃�0 = �̃� +

0 that connects 𝑇+
0 and 𝑇−

0 . Then

𝑇 = 𝑇+ ∪ 𝑇− ∪ {�̃�+0}

is a spanning tree for 𝐺. We note that, by our labelling convention, for 𝑘 = 1, . . . , 𝑟 − 1 the target vertex
𝑡 ( �̃�𝑘 ) lies on either 𝑇+

𝑘 or 𝑇−
𝑘 , while 𝑡 (𝜄( �̃�𝑘 )) lies on the other subtree.

We now perform a contraction on the graph 𝐺 that is consistent with the contraction (·)𝑐 : 𝐺 → 𝐺𝑐

defined above. The tree 𝑇+
0 ∪ 𝑇−

0 ∪ {�̃� +
0 } is a spanning tree for the preimage 𝑝−1 (𝐺0), while for each

𝑘 = 1, . . . , 𝑟 − 1 the two disjoint trees 𝑇+
𝑘 and 𝑇−

𝑘 form a spanning forest for 𝑝−1 (𝐺𝑘 ). Let 𝐺𝑐 denote
the graph obtained from 𝐺 by contracting 𝑇+

0 ∪ 𝑇−
0 ∪ {�̃� +

0 } to a vertex �̃�0 and contracting each 𝑇±
𝑘 to

a separate vertex �̃�±𝑘 . We denote the contraction map by (·)𝑐 : 𝐺 → 𝐺𝑐 and for a noncontracted edge
�̃� ∈ 𝐸 (𝐺) (i.e., for any edge not in 𝑇+

0 ∪ 𝑇−
0 ∪ {�̃� +

0 } or in any 𝑇±
𝑘 ) we denote (�̃�)𝑐 = �̃� by abuse of

notation. The double cover 𝑝 : 𝐺 → 𝐺 descends to a map 𝑝 : 𝐺𝑐 → 𝐺𝑐 (which is almost a double
cover of graphs, except that 𝑣0 and 𝑒0 each have a single preimage) and the projections commute with
the contractions. The contraction 𝑇𝑐 of 𝑇 is a spanning tree for 𝐺𝑐 , having vertex and edge sets

𝑉 (𝑇𝑐) = 𝑉 (𝐺𝑐) = {�̃�0, �̃�
±
1 , . . . , �̃�

±
𝑟−1}, 𝐸 (𝑇𝑐) = { �̃�1, . . . , �̃�𝑟−1, 𝜄( �̃�1), . . . , 𝜄( �̃�𝑟−1)}.
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The tree 𝑇𝑐 can be viewed as two copies of 𝑇𝑐 joined at the common vertex �̃�0.
Labeling the complementary edges. Finally, we label the complementary edges

𝐸 (𝐺)\𝐸 (𝑇) = 𝐸 (𝐺0)\𝐸 (𝑇0) ∪ · · · ∪ 𝐸 (𝐺𝑟−1)\𝐸 (𝑇𝑟−1) ∪ { 𝑓𝑟 , . . . , 𝑓𝑑} = {𝑒0, . . . , 𝑒𝑔−1}.

Each of the 𝑒 𝑗 is either an edge of a subgraph 𝐺𝑘 that does not lie on the spanning tree 𝑇𝑘 or one of
the 𝑓𝑘 . Since the restriction of the double cover 𝑝 : 𝐺 → 𝐺 to each of the 𝐺𝑘 is nontrivial, for each
𝑘 = 1, . . . , 𝑟 − 1 we can choose an edge in 𝐸 (𝐺𝑘 )\𝐸 (𝑇𝑘 ) whose preimages cross 𝑇±

𝑘 , and we label this
edge 𝑒𝑘 . We pick the preimage �̃�𝑘 = �̃� +

𝑘 ∈ 𝐸 (𝐺)\𝐸 (𝑇) in such a way that the source vertex 𝑠(�̃�𝑘 ) lies on
the same subtree 𝑇+

𝑘 or 𝑇−
𝑘 as the target vertex 𝑡 ( �̃�𝑘 ). Furthermore, for 𝑘 = 𝑟, . . . , 𝑑, we denote 𝑒𝑘 = 𝑓𝑘

and �̃�𝑘 = �̃� +
𝑘 = �̃�𝑘 . The remaining edges 𝑒𝑘 for 𝑘 = 𝑑 + 1, . . . , 𝑔− 1 and their preimages �̃� ±

𝑘 are labelled
arbitrarily. We note that in this case, 𝑒𝑘 ∈ 𝑆 for 𝑘 = 0, . . . , 𝑟 − 1.

To help follow the intersection calculations in the following proofs, we summarise the structure of
the graphs 𝐺𝑐 and 𝐺𝑐 and the map 𝑝 : 𝐺𝑐 → 𝐺𝑐:

(1) The vertices of the graphs 𝐺𝑐 and 𝐺𝑐 are

𝑉 (𝐺𝑐) = {�̃�0, �̃�
±
1 , . . . , �̃�

±
𝑟−1}, 𝑉 (𝐺𝑐) = {𝑣0, 𝑣1, . . . , 𝑣𝑟−1}.

The map p sends �̃�0 to 𝑣0 and �̃�±𝑘 to 𝑣𝑘 .
(2) The edges of the graph 𝐺𝑐 are as follows:

𝐸 (𝐺𝑐) = { 𝑓1, . . . , 𝑓𝑟−1, 𝑒0, . . . , 𝑒𝑟−1, 𝑒𝑟 = 𝑓𝑟 , . . . , 𝑒𝑑 = 𝑓𝑑 , 𝑒𝑑+1, . . . , 𝑒𝑔−1}.

The 𝑟−1 edges { 𝑓1, . . . , 𝑓𝑟−1} are the edges of the spanning tree𝑇𝑐; these are oriented in increasing
order away from the root vertex 𝑣0, so that 𝑡 ( 𝑓 𝑗 ) = 𝑣 𝑗 for 𝑗 = 1, . . . , 𝑟 − 1. The remaining g edges
{𝑒0, . . . , 𝑒𝑔−1} are split into three groups: for 𝑗 = 0, . . . , 𝑟 − 1 the edge 𝑒 𝑗 is a loop at 𝑣 𝑗 , for
𝑗 = 𝑟, . . . , 𝑑 the edge 𝑒 𝑗 = 𝑓 𝑗 may or may not be a loop and for 𝑗 = 𝑑 + 1, . . . , 𝑔− 1 each remaining
𝑒 𝑗 is a loop at one of the 𝑣𝑘 .

(3) The edges of the graph 𝐺𝑐 are as follows. For 𝑗 = 1, . . . , 𝑟 − 1, each 𝑓 𝑗 has two preimages labelled
�̃� 𝑗 and 𝜄( �̃� 𝑗 ); these 2𝑟 − 2 edges form the spanning tree 𝑇𝑐 . Furthermore, for 𝑗 = 1, . . . , 𝑟 − 1 the
target vertex 𝑡 ( �̃� 𝑗 ) is one of the two vertices �̃� ±

𝑗 . The edge 𝑒0 has a unique preimage �̃� −
0 , while for

𝑗 = 1, . . . , 𝑔 − 1 each 𝑒 𝑗 has two preimages �̃� +
𝑗 = �̃� 𝑗 and �̃�−𝑗 = 𝜄(�̃� 𝑗 ). For 𝑗 = 1, . . . , 𝑟 − 1 the edges

�̃� 𝑗 and 𝜄(�̃� 𝑗 ) (lying over the loop 𝑒 𝑗 ) connect �̃�+𝑗 and �̃�−𝑗 in opposite directions, in such a way that
𝑠(�̃� 𝑗 ) = 𝑡 ( �̃� 𝑗 ). For 𝑗 = 𝑟, . . . , 𝑑, we have �̃� 𝑗 = �̃� 𝑗 and for each 𝑗 = 𝑑 + 1, . . . , 𝑔 − 1 the two edges �̃� 𝑗
and 𝜄(�̃� 𝑗 ) over 𝑒 𝑗 are either parallel edges between �̃�+𝑘 and �̃�−𝑘 for some k or form a pair of loops.

We now employ Construction B to produce a basis �̃�1, . . . , �̃�𝑔−1 of Ker 𝜋∗ : 𝐻1 (𝐺,Z) → 𝐻1 (𝐺,Z),
with respect to the chosen spanning tree 𝑇 ⊂ 𝐺. Let �̃�0 and �̃� ±

𝑗 for 𝑗 = 1, . . . , 𝑔 − 1 be the unique cycle
respectively of 𝑇 ∪ {�̃� −

0 } and 𝑇 ∪ {�̃� ±
𝑗 } such that 〈�̃�0, �̃�

−
0 〉 = 1 and 〈�̃�±𝑗 , �̃� ±

𝑗 〉 = 1 for 𝑗 = 1, . . . , 𝑔 − 1.
Then the cycles

�̃� 𝑗 = �̃�+𝑗 − 𝜄∗(�̃�+𝑗 ) =
{
�̃�+𝑗 − �̃�−𝑗 + 𝜎𝑗 �̃�0, 𝑒 𝑗 ∈ 𝑆,

�̃�+𝑗 − �̃�−𝑗 , 𝑒 𝑗 ∉ 𝑆,
, 𝑗 = 1, . . . , 𝑔 − 1 (26)

form a basis for Ker 𝜋∗.
In Example 5.5, we deploy this construction for a specific cover 𝜋 : Γ̃ → Γ with 𝑔 = 3.
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We now return to the proof. We need to compute the rank of the matrix (24) with respect to the
basis (26)

(Ψ𝑑) 𝑗𝑖 =
1
2

〈
�̃� 𝑗 , �̃�𝑖 − 𝜄( �̃�𝑖)

〉
=

1
2

〈
�̃�+𝑗 − 𝜄∗(�̃�+𝑗 ), �̃�𝑖 − 𝜄( �̃�𝑖)

〉
=

〈
�̃�+𝑗 , �̃�𝑖 − 𝜄( �̃�𝑖)

〉
.

To compute the intersection numbers 〈�̃�+𝑗 , �̃�𝑖〉 and 〈�̃�+𝑗 , 𝜄( �̃�𝑖)〉, we pass to the contracted graph 𝐺𝑐 . First
of all, we note that none of edges �̃�𝑖 or 𝜄( �̃�𝑖) on 𝐺 are contracted. Therefore, for any cycle �̃� on 𝐺, its
intersection with �̃�𝑖 or 𝜄( �̃�𝑖) can be computed on the contracted graph 𝐺𝑐:

〈�̃�, �̃�𝑖〉 = 〈�̃�𝑐 , �̃�𝑖〉, 〈�̃�, 𝜄( �̃�𝑖)〉 = 〈�̃�𝑐 , 𝜄( �̃�𝑖)〉, 𝑖 = 1, . . . , 𝑑.

Furthermore, we observe that, since �̃�+𝑗 is the unique cycle on 𝑇 ∪ {�̃� 𝑗 } such that 〈�̃�+𝑗 , �̃� 𝑗〉 = 1, the
contracted cycle (�̃� 𝑗 )𝑐 is the unique cycle on 𝑇𝑐 ∪ {�̃� 𝑗 } such that 〈(�̃�+𝑗 )𝑐 , �̃� 𝑗〉 = 1.

We first look at the cycles (�̃�+𝑗 )𝑐 for 𝑗 = 1, . . . , 𝑟 − 1. The edge 𝑒 𝑗 ∈ 𝐸 (𝐺𝑐) is a loop at 𝑣 𝑗 . Its lift
�̃� 𝑗 ∈ 𝐸 (𝐺𝑐) starts at 𝑡 ( �̃� 𝑗 ), which is one of the two vertices �̃�±𝑗 (say �̃�+𝑗 ), and ends at the other vertex �̃�−𝑗
(by our labelling convention �̃�−𝑗 = 𝑡 (𝜄( �̃� 𝑗 ))). The contracted cycle (�̃�+𝑗 )𝑐 is the unique cycle of the graph
𝑇𝑐 ∪ {�̃� 𝑗 } containing +�̃� 𝑗 : it starts at �̃�+𝑗 , proceeds to �̃�−𝑗 via �̃� 𝑗 and then to �̃�0 via the unique path on 𝑇𝑐

from �̃�+𝑗 (the first edge of this path being −𝜄( �̃� 𝑗 )) and then from �̃�0 to �̃�−𝑗 via a unique path (the last edge
of this path being + �̃� 𝑗 ). By the ordering convention that we chose for 𝑇𝑐 and hence 𝑇𝑐 , the only edges
that can occur on this (other than the generating edge �̃� 𝑗 , which does not lie on 𝑇𝑐) are �̃�𝑖 and 𝜄( �̃�𝑖) with
𝑖 ≤ 𝑗 . Furthermore, �̃� 𝑗 and 𝜄( �̃� 𝑗 ) occur, as we have seen, with coefficients +1 and −1, respectively. It
follows that for 𝑗 = 1, . . . , 𝑟 − 1 we have

(Ψ𝑑) 𝑗𝑖 =
〈
�̃�+𝑗 , �̃�𝑖 − 𝜄( �̃�𝑖)

〉
= 〈(�̃�+𝑗 )𝑐 , �̃�𝑖 − 𝜄( �̃�𝑖)〉 =

⎧⎪⎪⎨⎪⎪⎩
0 or ± 2, 𝑖 < 𝑗 ,

2, 𝑖 = 𝑗 ,
0, 𝑖 > 𝑗 .

We now calculate the intersection numbers 〈�̃�+𝑗 , �̃�𝑖 − 𝜄( �̃�𝑖)〉 for 𝑗 = 𝑟, . . . , 𝑑. Recall that we have
chosen �̃� 𝑗 = �̃� 𝑗 , so the cycle (�̃�+𝑗 )𝑐 is the unique cycle on 𝑇𝑐 ∪ { �̃� 𝑗 } containing + �̃� 𝑗 . By our ordering
convention, the edges of the tree 𝑇𝑐 are �̃�𝑖 and 𝜄( �̃�𝑖) for 1 ≤ 𝑖 ≤ 𝑟 − 1. Hence, (�̃�+𝑗 )𝑐 intersects �̃� 𝑗 with
multiplicity +1 and does not intersect any �̃�𝑖 or 𝜄( �̃�𝑖) with 𝑖 ≥ 𝑟 . Therefore, for 𝑗 ≥ 𝑟 we have

(Ψ𝑑) 𝑗𝑖 =
〈
�̃�+𝑗 , �̃�𝑖 − 𝜄( �̃�𝑖)

〉
= 〈(�̃�+𝑗 )𝑐 , �̃�𝑖 − 𝜄( �̃�𝑖)〉 =

⎧⎪⎪⎨⎪⎪⎩
0,±1, or ± 2, 𝑖 ≤ 𝑟 − 1,

1, 𝑖 = 𝑗 ,
0, 𝑖 ≥ 𝑟, 𝑖 ≠ 𝑗 .

Putting everything together, we see that the 𝑑 × 𝑑 minor of (Ψ𝑑) 𝑗𝑖 corresponding to the partial basis
�̃�1, . . . , �̃�𝑑 is a lower-triangular matrix, whose first 𝑟 − 1 diagonal entries are 2 and the remaining equal
to 1. Hence, Ψ𝑑 has rank d. �

We now restrict our attention to the Abel–Prym map in degree 𝑑 = 𝑔 − 1, which we denote Ψ:

Ψ : Sym𝑔−1(Γ̃) → Prym[𝑔−1] (Γ̃/Γ), Ψ(𝐷) = 𝐷 − 𝜄(𝐷),

In this case the source has the same dimension as the target and we can compute the determinant of
the matrix (24) of Ψ on any top-dimensional cell 𝐶 (𝐹). This determinant depends on a choice of basis
�̃�1, . . . , �̃�𝑔−1 for Ker 𝜋∗ but only up to sign; hence, the quantity

degΨ (𝐹) = | detΨ(𝐷) |, 𝐷 ∈ 𝐶 (𝐹), (27)
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which we call the degree of Ψ on 𝐶 (𝐹), is well-defined.
We now compute the degree of Ψ on the top-dimensional cells of Sym𝑔−1(Γ̃). We recall from

Subsection 3.2 that, given a connected free double cover 𝑝 : 𝐺 → 𝐺 of a graph G of genus g, a subset
𝐹 ⊂ 𝐸 (𝐺) of 𝑔 − 1 edges of G is called an odd genus 1 decomposition of rank r if 𝐺\𝐹 consists of r
connected components of genus 1 and each of them has connected preimage in 𝐺.

Corollary 4.2. Let 𝜋 : Γ̃ → Γ be a free double cover with model 𝑝 : 𝐺 → 𝐺, let Ψ : Sym𝑔−1(Γ̃) →
Prym[𝑔−1] (Γ̃/Γ) be the Abel–Prym map, let 𝐶 (𝐹) = 𝐶𝑔−1 (𝐹, 0) ⊂ Sym𝑔−1(Γ̃) be a top-dimensional
cell corresponding to the multiset 𝐹 = { �̃�1, . . . , �̃�𝑔−1} ⊂ 𝐸 (𝐺) and let 𝐹 = 𝑝(𝐹). Then degΨ (𝐹) is
equal to

degΨ (𝐹) =
{

2𝑟−1, edges of 𝐹 are distinct and form an odd genus 1 decomposition of rank 𝑟,
0 otherwise. (28)

In particular, the volume of the image of 𝐶 (𝐹) in Prym[𝑔−1] (Γ̃/Γ) is equal to

Vol(Ψ(𝐶 (𝐹))) = 2𝑟 (𝐹 )−1𝑤(𝐹)
Vol(Prym(Γ̃/Γ))

, 𝑤(𝐹) = 𝑤(𝐹) = ℓ( �̃�1) · · · ℓ( �̃�𝑔−1) (29)

if F is an odd genus 1 decomposition of rank 𝑟 (𝐹) and zero otherwise.

Proof. This follows directly from the proof of Theorem 4.1. If the edges of 𝐹 = 𝑝(𝐹) are not all
distinct, then Ψ contracts the cell 𝐶 (𝐹) and hence detΨ = 0 on 𝐶 (𝐹). If F consists of distinct edges,
let 𝐺\𝐹 = 𝐺0 ∪ · · · ∪ 𝐺𝑟−1 be the decomposition into connected components. By (25) we have that
𝑔0 + · · · + 𝑔𝑟−1 = 𝑟; hence, either 𝑔𝑘 = 0 for some k or all 𝑔𝑘 = 1. In the former case 𝐺𝑘 is a tree, so the
restriction of the cover p to 𝐺𝑘 is trivial and hence detΨ = 0 on 𝐹. In the latter case, Ψ has rank 𝑑 = 𝑔−1
if and only if the restriction of p to each 𝐺𝑘 is nontrivial, which is true precisely when F is an odd genus
1 decomposition. Furthermore, the matrix of Ψ with respect to the basis (26) is lower triangular, with
the first 𝑟 − 1 diagonal entries equal to 2 and the remaining equal to 1. Hence, detΨ = 2𝑟−1 on 𝐶 (𝐹),
as required.

To prove (4.2), it is sufficient to note that 𝐶 (𝐹) is a parallelotope with volume 𝑤(𝐹) and that
Vol(Prym(Γ̃/Γ))−1 is the volume of the unit cube in the coordinate system on Prym(Γ̃/Γ) that we used
to compute the matrix of Ψ (see equation (9)). �

5. Harmonicity of the Abel–Prym map

In this section, we consider the degree 𝑔 − 1 Abel–Prym map Ψ : Sym𝑔−1(Γ̃) → Prym[𝑔−1] (Γ̃/Γ)
associated to a free double cover 𝜋 : Γ̃ → Γ. The cellular decomposition of Sym𝑔−1(Γ̃) induces a
decomposition of Prym[𝑔−1] (Γ̃/Γ) (which is locally modelled on R𝑔−1). Pulling this decomposition
back to Sym𝑔−1(Γ̃/Γ) and refining cells as needed, the Abel–Prym map Ψ is a map of polyhedral
spaces. We show that Ψ is a harmonic map of polyhedral spaces of global degree 2𝑔−1, with respect to
the degree function (28).

Theorem 5.1. Let 𝜋 : Γ̃ → Γ be a free double cover of metric graphs. Then the Abel–Prym map

Ψ : Sym𝑔−1(Γ̃) → Prym[𝑔−1] (Γ̃/Γ), Ψ(𝐷) = 𝐷 − 𝜄(𝐷)

is a harmonic map of polyhedral spaces of global degree 2𝑔−1, with respect to the degree function degΨ
defined on the codimension 0 cells of Sym𝑔−1(Γ̃) by (28).

The proof consists of two parts. First, we show that Ψ is harmonic at each codimension 1 cell of
Sym𝑔−1(Γ̃/Γ) and hence has a well-defined global degree d because the polyhedral space Prym(Γ̃/Γ) is
connected through codimension 1. We then show that 𝑑 = 2𝑔−1. The proof of the first part is a somewhat
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involved calculation. We separate this result into a proposition and give its proof after the proof of the
main Theorem 5.1.

Proposition 5.2. The degree 𝑔 − 1 Abel–Prym map

Ψ : Sym𝑔−1(Γ̃) → Prym[𝑔−1] (Γ̃/Γ), Ψ(𝐷) = 𝐷 − 𝜄(𝐷)

is harmonic at each codimension 1 cell of Sym𝑔−1(Γ̃).

Proof of Theorem 5.1. By Proposition 5.2, the Abel–Prym map has a certain global degree d. It may
be possible to directly show that 𝑑 = 2𝑔−1 by somehow counting the preimages in a single fibre of Ψ,
but we employ a different method. Namely, we use the harmonicity of the map Ψ to give an alternative
calculation of the volume of the Prym variety, in terms of the unknown global degree d (similar to how
the volume of Jac(Γ) is computed in [ABKS14]). However, we have already computed the volume of
the Prym variety in Theorem 3.4, using an entirely different method. Comparing the two formulas, we
find that in fact 𝑑 = 2𝑔−1.

Let 𝑀𝑖 for 𝑖 = 1, . . . , 𝑁 be the codimension 0 cells of Prym[𝑔−1] (Γ̃/Γ) and let 𝑀𝑖 𝑗 for 𝑗 = 1, . . . , 𝑘𝑖
be the codimension 0 cells of Sym𝑔−1(Γ̃) mapping surjectively to 𝑀𝑖 . The cells 𝑀𝑖 𝑗 are obtained by
refining the natural cellular decomposition of Sym𝑔−1(Γ̃); in other words, each 𝑀𝑖 𝑗 is a subset of a cell
𝐶 (𝐹𝑖 𝑗 ), where 𝐹𝑖 𝑗 ⊂ 𝐸 (Γ̃) is a subset of edges such that 𝑝(𝐹𝑖 𝑗 ) is an odd genus 1 decomposition of Γ
of some rank 𝑟𝑖 𝑗 = 𝑟 (𝑝(𝐹𝑖 𝑗 )). Equation (29) gives the volume dilation factor of Ψ on the cell 𝐶 (𝐹𝑖 𝑗 )
and hence on 𝑀𝑖 𝑗 . Therefore,

Vol(𝑀𝑖) =
2𝑟𝑖 𝑗−1 Vol(𝑀𝑖 𝑗 )

Vol(Prym(Γ̃/Γ))

for all i and j. On the other hand, the harmonicity condition implies that for each i we have

𝑑 =
𝑘𝑖∑
𝑗=1

degΨ (𝑀𝑖 𝑗 ) =
𝑘𝑖∑
𝑗=1

2𝑟𝑖 𝑗−1.

Putting this together, we can write

Vol(𝑀𝑖) =
1
𝑑

𝑘𝑖∑
𝑗=1

2𝑟𝑖 𝑗−1 · Vol(𝑀𝑖) =
1

𝑑 · Vol(Prym(Γ̃/Γ))

𝑘𝑖∑
𝑗=1

4𝑟𝑖 𝑗−1 Vol(𝑀𝑖 𝑗 ).

The sum of the volumes of the 𝑀𝑖 is the volume of the Prym variety:

Vol(Prym(Γ̃/Γ)) = Vol(Prym[𝑔−1] (Γ̃/Γ)) =
𝑁∑
𝑖=1

Vol(𝑀𝑖) =
1

𝑑 · Vol(Prym(Γ̃/Γ))

∑
𝑖, 𝑗

4𝑟𝑖 𝑗−1 Vol(𝑀𝑖 𝑗 ).

On the other hand, corresponding to each odd genus 1 decomposition F of Γ there are 2𝑔−1 subsets
𝐹 ⊂ 𝐸 (Γ̃) such that 𝑝(𝐹) = 𝐹, because each decomposition has exactly 𝑔 − 1 edges. The volume
Vol(𝐶 (𝐹)) of each of these cells is equal to 𝑤(𝐹). Each cell 𝐶 (𝐹) corresponding to an odd genus 1
decomposition 𝐹 = 𝑝(𝐹) is a disjoint union of some of the 𝑀𝑖 𝑗 and each 𝑀𝑖 𝑗 lies in some 𝐶 (𝐹). Hence,
in fact the sum in the right-hand side can be written as∑

𝑖, 𝑗

4𝑟𝑖 𝑗−1 Vol(𝑀𝑖 𝑗 ) =
∑

𝐹 ⊂𝐸 (Γ̃)

4𝑟 (𝑝 (𝐹 ))−1 Vol(𝐹) = 2𝑔−1
∑

𝐹 ⊂𝐸 (Γ)
4𝑟 (𝐹 )−1𝑤(𝐹),
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Figure 3. A double cover with a Prym divisor with representatives of distinct degrees.

where the last sum is over all odd genus 1 decompositions F of Γ. Therefore,

Vol(Prym(Γ̃/Γ)) = 2𝑔−1

𝑑 · Vol(Prym(Γ̃/Γ))

∑
𝐹 ⊂𝐸 (Γ)

4𝑟 (𝐹 )−1𝑤(𝐹).

Comparing this formula with (17), we see that 𝑑 = 2𝑔−1. �

Remark 5.3. Given a Prym divisor class represented by Ψ(𝐷) = 𝐷 − 𝜄(𝐷), the degree of Ψ at
𝐷 ∈ Sym𝑔−1(Γ̃) in general depends on the choice of representative (in other words, the degree of Ψ
is not constant in fibres). We give an example of a free double cover 𝜋 : Γ̃ → Γ and effective divisors
𝐷1 and 𝐷2 on the source, such that 𝐷1 − 𝜄(𝐷1)  𝐷2 − 𝜄(𝐷2), but the degrees of Ψ at 𝐷1 and 𝐷2 are
different.

Consider the free double cover 𝜋 : Γ̃ → Γ shown on Figure 3. The curves Γ̃ and Γ have genera 5 and
3, respectively. The edge �̃�3 has length at least 3, while all other edges have length 1. Fix real numbers
0 < 𝑦 < 𝑥 < 1. Let 𝑃1, 𝑄1, 𝑃2 and 𝑄2 be the points on the edges �̃� +

1 , �̃� +
2 , �̃� −

1 and �̃� +
3 , respectively,

located at the following distances from the corresponding end vertices:

𝑑 (�̃�+1 , 𝑃1) = 𝑥, 𝑑 (�̃�+3 , 𝑄1) = 𝑦, 𝑑 (�̃�−2 , 𝑃2) = 𝑥 − 𝑦, 𝑑 (�̃�+2 , 𝑄2) = 1 + 2𝑦.

Let 𝐷1 = 𝑃1+𝑄1 and 𝐷2 = 𝑃2+𝑄2. The divisor (𝐷1− 𝜄𝐷1)− (𝐷2− 𝜄𝐷2) is seen to be equivalent to 0 by
repeatedly applying Dhar’s burning algorithm [BS13, Section 5.1] at each point where the divisor has a
negative number of chips. As a consequence, 𝐷1 − 𝜄𝐷1 and 𝐷2 − 𝜄𝐷2 are linearly equivalent. However,
𝜋(𝐷1) is supported on the odd genus 1 decomposition {�̃�1, �̃�2} of rank 2, while 𝜋(𝐷2) is supported on
the odd genus 1 decomposition {�̃�1, �̃�3} of rank 1, so the degrees of Ψ at 𝐷1 and 𝐷2 are distinct.

By varying x and y, we obtain two polyhedral cells in Sym2(Γ̃) having the same image in Prym(Γ̃/Γ):
the subset𝐶1 = {(𝑥−𝑦, 1+2𝑦) : 0 < 𝑦 < 𝑥 < 1} of �̃� −

1 × �̃� +
3 and the subset𝐶2 = {(𝑥, 𝑦) : 0 < 𝑦 < 𝑥 < 1}

of �̃� +
1 × �̃� +

2 . The volumes of 𝐶1 and 𝐶2 are equal to 1 and 1/2, respectively, which agrees with the fact
that the degree of Ψ, equal to 1 on 𝐶1 and 2 on 𝐶2, is the volume dilation factor. We also observe that
the global degree of Ψ is equal to 2𝑔−1 = 4. Therefore, Theorem B implies that there is a third divisor
𝐷3 (effective of degree 2) such that 𝐷1 − 𝜄𝐷1  𝐷3 − 𝜄𝐷3 and such that Γ \ 𝜋(𝐷3) consists of a single
connected component.

Before giving the proof of Proposition 5.2, we describe the structure of the Abel–Prym map for the
covers of a genus 2 dumbbell graph.

Example 5.4. Consider the two covers 𝜋1 : Γ̃1 → Γ and 𝜋2 : Γ̃2 → Γ of the dumbbell graph Γ
described in Example 3.7. In this case, 𝑔 − 1 = 1 and the Abel–Prym maps Ψ1 : Γ̃1 → Prym(Γ̃1/Γ) and
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Figure 4. Abel–Prym maps corresponding to the covers in Example 3.7.

Ψ2 : Γ̃2 → Prym(Γ̃2/Γ) are harmonic morphisms of metric graphs of degree 2, which we now describe.
With respect to the cover 𝜋1, each edge of Γ is an odd genus 1 decomposition; hence, Ψ1 does not

contract any edges. The edges �̃� ±
1 and �̃� ±

2 are mapped onto edges 𝑓1 and 𝑓2, respectively. The degree of
Ψ1 on these edges is equal to 1; hence, the lengths of 𝑓1 and 𝑓2 are 𝑥1 and 𝑥2, respectively. Each of the
two edges �̃� ±

3 is mapped onto an edge 𝑓 ±3 , of length 2𝑥3, because the degree of Ψ1 is equal to 2. Hence,
Prym(Γ̃1/Γ) is a circle of circumference 𝑥1 + 𝑥2 + 4𝑥3, as we have already seen in Example 3.7.

The map Ψ2, on the other hand, contracts the edges �̃� ±
1 and �̃� ±

3 because {𝑒1} and {𝑒3} are not genus
1 decompositions and maps �̃� ±

2 to a unique loop edge 𝑓2 of Prym(Γ̃2/Γ) of length 𝑥2. The morphisms
Ψ1 and Ψ2 are given in Figure 4.

Proof of Proposition 5.2. Let 𝐶 be a codimension 1 cell of Sym𝑔−1(Γ̃) such that its image 𝐶 = Ψ(𝐶) is
a codimension 1 cell in Prym(Γ̃/Γ). Since Prym(Γ̃/Γ) is a torus, it locally looks like R𝑔−1, and we can
think of the cell C as lying in a hyperplane 𝐻0 ⊂ R𝑔−1, with respect to an appropriate local coordinate
system. There are exactly two codimension 0 cells 𝑀± attached to C, each contained in a corresponding
half-space of R𝑔−1, which we also denote 𝑀± by abuse of notation. To show that Ψ is harmonic at 𝐶,
we need to show that the sum of | detΨ| over the codimension 0 cells of Sym𝑔−1(Γ̃/Γ) mapping to 𝑀+

is the same as the sum over those mapping to 𝑀−, in which case this sum is the degree of Ψ on 𝐶.
IfΨ contracts every codimension 0 cell of Sym𝑔−1(Γ̃) attached to𝐶, then the harmonicity condition is

trivially verified and we set degΨ (𝐶) = 0. Hence, we assume that Ψ does not contract some codimension
0 cell attached to 𝐶. By Corollary 4.2, this cell is a subset of 𝐶 (𝐹), where 𝐹 = 𝑝(𝐹) is an odd genus
1 decomposition of G. If 𝐶 lies in the interior of 𝐶 (𝐹), then Sym𝑔−1(Γ̃) also locally looks like R𝑛 in
a neighbourhood of 𝐶, the map Ψ is simply an affine linear map near 𝐶 and therefore harmonic (such
cells 𝐶 do not occur in the standard polyhedral decomposition (22) of Sym𝑔−1(Γ̃/Γ) but may occur in
the refined decomposition induced by the map Ψ).

We therefore assume that 𝐶 lies on the boundary of a cell 𝐶 (𝐹), where 𝐹 = { �̃�1, . . . , �̃�𝑔−1} is a set of
edges of 𝐺 such that 𝐹 = { 𝑓1, . . . , 𝑓𝑔−1}, 𝑓𝑖 = 𝑝( �̃�𝑖) is an odd genus 1 decomposition of G of rank r. To
simplify notation, we assume that in fact 𝐶 is a codimension 1 cell of 𝐶 (𝐹) with respect to the standard
polyhedral decomposition (22) of Sym𝑔−1(Γ̃/Γ). In other words, we assume that 𝐶 = 𝐶𝑔−2(𝐹\{ �̃�𝑎}, �̃�)
for some 𝑎 ∈ {1, . . . , 𝑔−1} and where �̃� = 𝑠( �̃�𝑎) is the starting vertex of �̃�𝑎 with respect to an appropriate
orientation (we shall later specify which edge �̃�𝑎 we pick, in order to make our notation consistent with
Construction C).

The top dimensional cells of Sym𝑔−1(Γ̃) that are adjacent to 𝐶 have the form 𝐶 (𝐹 ′), where 𝐹 ′ =
(𝐹\{ �̃�𝑎}) ∪ { �̃� ′} and where �̃� ′ is any edge rooted at �̃�. We assume that all edges �̃� ′ are oriented in
such a way that 𝑠( �̃� ′) = �̃�. By Corollary 4.2, Ψ does not contract 𝐶 (𝐹 ′) if and only if 𝑝(𝐹 ′) is an odd
genus 1 decomposition of G. To prove harmonicity, we need to show that the sum of | detΨ| on those
cells 𝐶 (𝐹 ′) mapping to 𝑀+ is equal to the sum of those that map to 𝑀−. By Corollary 4.2, the value of
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Figure 5. The Abel–Prym map near a noncontracted codimension 1 cell.

| detΨ| on a noncontracted cell 𝐶 (𝐹 ′) is a power of 2. In fact, as we shall see, adjacent to any cell 𝐶
there are either two, three, or four noncontracted cells 𝐶 (𝐹), with the degrees distributed as shown on
Figure 5 (plus an arbitrary number of contracted cells).

We calculate the matrix of Ψ (or, rather, some of its entries) on each cell 𝐶 (𝐹 ′) with respect to
an appropriate coordinate system, in the same way that we proved part (2) of Theorem 4.1. First,
we choose local coordinates on Sym𝑔−1(Γ̃/Γ). As before, we identify 𝐶 (𝐹) with the parallelotope
[0, ℓ( �̃�1)]×· · ·×[0, ℓ( �̃�𝑔−1)] lying in the half-space 𝐻+ = {𝑥 : 𝑥𝑎 ≥ 0} ⊂ R𝑔−1. Under this identification,
the cell 𝐶 lies in the hyperplane 𝐻0 = {𝑥 : 𝑥𝑎 = 0} and the corresponding cells of Prym(Γ̃/Γ) are
𝐶 = Ψ(𝐶) ⊂ Ψ(𝐻0) and 𝑀± = Ψ(𝐻±), where 𝐻− = {𝑥 : 𝑥𝑎 ≤ 0} ⊂ R𝑔−1. Similarly, we think of each
of the other 𝐶 (𝐹 ′) as lying in its own 𝐻+.

To construct coordinates on Prym(Γ̃/Γ), we apply Construction C to the set 𝐹. The output is a basis
�̃�1, . . . , �̃�𝑔−1 of Ker 𝜋∗ : 𝐻1(Γ̃,Z) → 𝐻1(Γ,Z) given by equation (26). As explained in Subsection 2.6,
the basis �̃�1, . . . , �̃�𝑔−1 defines a coordinate system on Prym(Γ̃/Γ), with respect to which the map Ψ on
the cell 𝐶 (𝐹) is affine linear and the (𝑔− 1) × (𝑔− 1) matrix of the linear part is given by equation (24):

Ψ(𝐹) 𝑗𝑖 =
1
2
〈�̃� 𝑗 , �̃�𝑖 − 𝜄( �̃�𝑖)〉 =

1
2
〈�̃�+𝑗 − 𝜄∗(�̃�+𝑗 ), �̃�𝑖 − 𝜄( �̃�𝑖)〉 = 〈�̃�+𝑗 , �̃�𝑖 − 𝜄( �̃�𝑖)〉.

We recall that we showed in Theorem 4.1 and Corollary 4.2 that Ψ(𝐹)𝑖 𝑗 is a lower triangular matrix
with determinant 2𝑟−1, where r is the rank of 𝐹.

Now let 𝐶 (𝐹 ′) be another codimension 0 cell of Sym𝑔−1(Γ̃/Γ) adjacent to 𝐶, so 𝐹 ′ = (𝐹\{ �̃�𝑎}) ∪
{ �̃� ′}, where �̃� ′ is an edge rooted at �̃� other than 𝑓𝑎. We calculate the matrix of Ψ on 𝐶 (𝐹 ′) using
the same basis �̃�1, . . . , �̃�𝑔−1 (in other words, we do not recalculate the basis by replacing 𝐹 with 𝐹 ′ in
Construction C). The resulting matrix differs from Ψ(𝐹) 𝑗𝑖 by a single column only:

Ψ(𝐹 ′) 𝑗𝑖 =
{

Ψ(𝐹) 𝑗𝑖 , 𝑖 ≠ 𝑎,

〈�̃�+𝑗 , �̃� ′ − 𝜄( �̃� ′)〉, 𝑖 = 𝑎.
(30)

To check the harmonicity of Ψ around 𝐶, it suffices to compute the determinants detΨ(𝐹 ′) for all
𝐹 ′. Indeed, the Abel–Prym map Ψ contracts the cell 𝐶 (𝐹 ′) if and only if detΨ(𝐹 ′) = 0. Furthermore,
𝐶 (𝐹 ′) maps to 𝑀+ if detΨ(𝐹 ′) > 0 and to 𝑀− if detΨ(𝐹 ′) < 0, and to prove harmonicity we need to
check that the positive determinants exactly cancel the negative determinants.

The set F is an odd genus 1 decomposition of G of some rank r and we denote

𝐺\𝐹 = 𝐺0 ∪ · · · ∪ 𝐺𝑟−1

the decomposition into connected components. Each 𝐺𝑘 has genus 1 and each 𝑝−1 (𝐺𝑘 ) is connected.
We denote

�̃� = 𝑡 ( �̃�𝑎), 𝑣 = 𝑝(�̃�) = 𝑠( 𝑓𝑎), 𝑢 = 𝑝(�̃�) = 𝑡 ( 𝑓𝑎).
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There are two separate cases that we need to consider: either both endpoints u and v of the edge
𝑓𝑎 = 𝑝( �̃�𝑎) that we are removing lie on one connected component or the edge 𝑓𝑎 connects two different
components.

Both endpoints of the edge 𝑓𝑎 lie on a single connected component of 𝐺\𝐹. Without loss of
generality, we assume that 𝑓𝑎 is rooted on the component 𝐺0. The edge 𝑓𝑎 is a loop on the contracted
graph 𝐺𝑐 rooted at the vertex 𝑣0. Since a loop cannot be part of a spanning tree, we can further assume
without loss of generality that �̃�𝑎 = �̃�𝑔−1. We observe that, on the contracted graph 𝐺𝑐 , the edge �̃�𝑔−1
is a loop rooted at �̃�0. The contraction of the cycle �̃�+𝑔−1 is the unique cycle containing + �̃�𝑔−1, but since
this is already a loop, we see that (�̃�+𝑔−1)

𝑐 = �̃�𝑔−1.
It follows that the intersection of �̃�+𝑔−1 with all other edges �̃�𝑖 and 𝜄( �̃�𝑖) for 𝑖 = 1, . . . , 𝑔 − 2 is 0.

Hence, the matrix Ψ 𝑗𝑖 is block upper triangular, having a (𝑔 − 2) × (𝑔 − 2) lower triangular block with
determinant 2𝑟−1 in the upper left corner and a 1 in the lower right corner. Therefore, the images of the
subspaces 𝐻± and the hyperplane 𝐻0 are

𝑀+ = Ψ(𝐻+) = {𝑦 : 𝑦𝑔−1 ≥ 0}, 𝑀− = Ψ(𝐻−) = {𝑦 : 𝑦𝑔−1 ≤ 0}, Ψ(𝐻0) = {𝑦 : 𝑦𝑔−1 = 0}.

Now let �̃� ′ be an edge at �̃�, so that 𝐹 ′ = { �̃�1, . . . , �̃�𝑔−2, �̃�
′} defines a cell 𝐶 (𝐹 ′) adjacent to 𝐶 (𝐹) via 𝐶 ′.

The matrix Ψ(𝐹 ′) 𝑗𝑖 is given by (30) and is obtained from the matrix Ψ(𝐹) by replacing the last column.
Hence, it is also block upper triangular, and to compute detΨ(𝐹 ′) it suffices to find the new entry

Ψ(𝐹 ′)𝑔−1,𝑔−1 = 〈�̃�+𝑔−1, �̃�
′ − 𝜄( �̃� ′)〉 (31)

in the lower right corner. Furthermore, the sign of this entry determines the sign of detΨ(𝐹 ′) and hence
the image cell Ψ(𝐶 (𝐹 ′)) of Prym(Γ̃/Γ): if the entry is positive, then Ψ maps 𝐶 (𝐹 ′) to the same half-
space 𝑀+ as𝐶 (𝐹), while if it is negative then Ψ(𝐶 (𝐹 ′)) ⊂ 𝑀− and if it is zero then𝐶 (𝐹 ′) is contracted.

There are several possibilities to consider, depending on the relative positions of 𝑣 = 𝑠( 𝑓𝑔−1) and
𝑢 = 𝑡 ( 𝑓𝑔−1) on the component 𝐺0. Let 𝛾(𝐺0) denote the unique cycle on 𝐺0 (oriented in any direction);
then any vertex of 𝐺0 has a unique (possibly trivial) shortest path to 𝛾(𝐺0). For two distinct vertices
𝑣1, 𝑣2 ∈ 𝑉 (𝐺0), we write 𝑣1 < 𝑣2 if the unique path from 𝑣2 to 𝛾(𝐺0) passes through 𝑣1; this defines a
partial order on 𝑉 (𝐺0).

(1) The vertex v does not lie on 𝛾(𝐺0) and 𝑣 ≮ 𝑢. In other words, v lies on a tree attached to 𝛾(𝐺0) and
u does not lie higher up on the same tree.

Let 𝑔1 be the unique edge rooted at v that points in the direction of the cycle 𝛾(𝐺0). Since the
unique path from u to 𝛾(𝐺0) avoids v, the graph𝐺 ′

0 = 𝐺0∪{ 𝑓𝑔−1}\{𝑔1} is connected, has genus 1 and
has connected preimage, since the unique cycle of 𝐺 ′

0 is 𝛾(𝐺0). Therefore, 𝐹1 = { 𝑓1, . . . , 𝑓𝑔−2, 𝑔1}
is an odd genus 1 decomposition of G, of the same length r as F. For any other edge 𝑒′ rooted at
v, removing it disconnects the corresponding branch of the tree from 𝐺0 and attaching 𝑓𝑔−1 does
not reconnect this branch. Hence, 𝐺\{ 𝑓1, . . . , 𝑓𝑔−2, 𝑒

′} has a connected component of genus 0 and
{ 𝑓1, . . . , 𝑓𝑔−2, 𝑒

′} is not a genus 1 decomposition. The graph 𝐺0 and its preimage 𝜋−1 (𝐺0) are
shown on Figure 6.

We see that the only cell 𝐶 (𝐹 ′) adjacent to 𝐶 (𝐹) through 𝐶 ′ on which | detΨ| is nonzero
corresponds to 𝐹 ′ = 𝐹1 = 𝐹 ∪ {�̃�1}\{ �̃�𝑔−1}, where �̃�1 is the unique edge rooted at �̃� that maps to
𝑔1. Furthermore, F and 𝐹1 = 𝑝(𝐹1) have the same rank r; hence, the value of | detΨ| on the two
cells 𝐶 (𝐹) and 𝐶 (𝐹1) is equal to 2𝑟−1, so to prove harmonicity we only need to show that Ψ maps
𝐶 (𝐹1) to the half-space 𝑀−. As explained above, it suffices to compute the last diagonal entry (31)
of Ψ(𝐹1), where �̃� ′ = �̃�1.

The cycle �̃�+𝑔−1 is the unique cycle of the graph 𝑇 ∪{ �̃�𝑔−1} containing + �̃�𝑔−1. It starts at the vertex
�̃� = 𝑠( �̃�𝑔−1), proceeds to �̃� = 𝑡 ( �̃�𝑔−1) via + �̃�𝑔−1 and then from �̃� back to �̃� via the unique path in
the tree 𝑇 . This path actually lies in the spanning tree 𝑇+

0 ∪ 𝑇−
0 ∪ {�̃� +

0 } of 𝑝−1 (𝐺0). The last edge
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Figure 6. The cycle �̃�+𝑔−1 in Case (1).

of the path is �̃�1, oriented in the opposite direction, since we have assumed that 𝑠(�̃�1) = �̃�; hence,
〈�̃�+𝑔−1, �̃�1〉 = −1. In addition, the path does not contain 𝜄(�̃�1). It follows that

Ψ(𝐹1)𝑔−1,𝑔−1 = 〈�̃�+𝑔−1, �̃�1 − 𝜄(�̃�1)〉 = −1.

Therefore, Ψ maps the cell 𝐶 (𝐹1) to the half-space 𝑀−, hence Ψ is harmonic.
(2) The vertex v does not lie on 𝛾(𝐺0) and 𝑣 < 𝑢. As before, let 𝑔1 denote the unique edge at v pointing

towards 𝛾(𝐺0) and let 𝑔2 be the unique edge rooted at v which lies on the path from v to u (this path,
when reversed, is part of the unique path from u to 𝛾(𝐺0)). Attaching 𝑓𝑔−1 to 𝐺0 produces a graph
of genus 2. Any edge 𝑒′ rooted at v other than 𝑓𝑔−1, 𝑔1 or 𝑔2 is the starting edge of a separate branch
of 𝐺0 ∪ { 𝑓𝑔−1}, so removing 𝑒′ creates a genus 0 connected component. Hence, the only genus 1
decompositions of the form (𝐹\{ 𝑓 ′}) ∪ { 𝑓𝑔−1} are 𝐹1 = { 𝑓1, . . . , 𝑓𝑔−2, 𝑔1}, 𝐹2 = { 𝑓1, . . . , 𝑓𝑔−2, 𝑔2}
and F itself. The decompositions F and 𝐹2 have length r, while 𝐹1 has length 𝑟 +1, because the edge
𝑔1 is a bridge edge of 𝐺0 ∪ { 𝑓𝑔−1} and removing it produces two genus 1 connected components.

We now consider the edges �̃�1, �̃�2 and �̃�𝑔−1 on 𝐺, lying above 𝑔1, 𝑔2 and 𝑓𝑔−1 and rooted at
�̃� = 𝑠( �̃�𝑔−1). Denote 𝐹1 = { �̃�1, . . . , �̃�𝑔−2, �̃�1} and 𝐹2 = { �̃�1, . . . , �̃�𝑔−2, �̃�2}. The edges 𝑔1 and 𝑔2 lie
on the same tree attached to the cycle 𝛾(𝐺0) as the vertex v and the lift of a tree is a tree. Hence,
the endpoints of the edges �̃�1 and �̃�2 both lie on the same subtree 𝑇 ±

0 of 𝑝−1 (𝐺0) as �̃� and we
assume without loss of generality that this component is 𝑇+

0 . For 𝑡 ( �̃�𝑔−1), however, there are two
sub-possibilities, as shown on Figure 7.

(a) The target vertex �̃� = 𝑡 ( 𝑓𝑔−1) lies on 𝑇+
0 . In this case, the unique cycle �̃�+𝑔−1 of the graph

𝑇 ∪ { �̃�𝑔−1} actually lies on 𝑇+
0 ∪ { �̃�𝑔−1}: it starts at �̃�, proceeds to �̃� via + �̃�𝑔−1 and then

returns to �̃� via the unique path that ends with the edge −�̃�2. It follows that 〈�̃�+𝑔−1, 𝑔2〉 = −1
and 〈�̃�+𝑔−1, 𝜄(𝑔2)〉 = 0. Furthermore, the cycle �̃�+𝑔−1 does not intersect the edges �̃�1 and
𝜄(�̃�1). Hence, we can compute the last diagonal entries of the upper-triangular matrices
Ψ(𝐹1) and Ψ(𝐹2):

Ψ(𝐹1)𝑔−1,𝑔−1 = 〈�̃�+𝑔−1, �̃�1 − 𝜄(�̃�1)〉 = 0, Ψ(𝐹2)𝑔−1,𝑔−1 = 〈�̃�+𝑔−1, �̃�2 − 𝜄(�̃�2)〉 = −1.
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Figure 7. The cycle �̃�+𝑔−1 in the two sub-cases of Case (2).

It follows that | detΨ(𝐹1) | = 0; hence, the cell 𝐶 (𝐹1) is contracted. Also, Ψ maps the cell
𝐶 (𝐹2) to the opposite half-space 𝑀− as 𝐶 (𝐹) but with the same determinant, since 𝐹 and
𝐹2 have the same rank r. Hence, Ψ is harmonic.

(b) The target vertex �̃� = 𝑡 ( 𝑓𝑔−1) lies on 𝑇−
0 . In this case, the cycle �̃�+𝑔−1 starts at �̃�, proceeds

to �̃� via �̃�𝑔−1 and proceeds to 𝜄(�̃�) via a unique path that ends with the edge −𝜄(�̃�2). From
there the path returns from 𝜄(�̃�) to �̃� via the unique path that passes through the edge �̃� +

0 that
links the two trees𝑇±

0 ; this path starts with the edge 𝜄(�̃�1) and ends with −�̃�1. Summarising,
we see that

〈�̃�+𝑔−1, �̃�1〉 = −1, 〈�̃�+𝑔−1, 𝜄(�̃�1)〉 = 1, 〈�̃�+𝑔−1, �̃�2〉 = 0, 〈�̃�+𝑔−1, 𝜄(�̃�1)〉 = −1.

Hence, we calculate the final diagonal entries of Ψ(𝐹1) and Ψ(𝐹2):

Ψ(𝐹1)𝑔−1,𝑔−1 = 〈�̃�+𝑔−1, �̃�1 − 𝜄(�̃�1)〉 = −2, Ψ(𝐹2)𝑔−1,𝑔−1 = 〈�̃�+𝑔−1, �̃�2 − 𝜄(�̃�2)〉 = 1.

It follows that Ψ maps 𝐶 (𝐹2) to the same half-space 𝑀+ with the same determinant
| det 𝑑Ψ(𝐹2) | = | det 𝑑Ψ(𝐹) | = 2𝑟−1, while 𝐶 (𝐹1) is mapped to the opposite space 𝑀−

with determinant | det 𝑑Ψ(𝐹1) | = 2𝑟 . Since 2𝑟 = 2𝑟−1 + 2𝑟−1, the map Ψ is harmonic.
(3) The vertex v lies on 𝛾(𝐺0) and 𝑣 ≮ 𝑢. Let 𝑔1 and 𝑔2 be the two edges of 𝐺0 rooted at v that lie on the

cycle 𝛾(𝐺0); then 𝐹1 = { 𝑓1, . . . , 𝑓𝑔−2, 𝑔1} and 𝐹2 = { 𝑓1, . . . , 𝑓𝑔−2, 𝑔2} are genus 1 decompositions
of 𝐺0 of the same rank r as F, since removing 𝑔1 or 𝑔2 from 𝐺0 ∪ { 𝑓𝑔−1} gives a connected
graph of genus 1. Any edge 𝑓 ′ ∈ 𝑇𝑣𝐺0 other than 𝑔1 and 𝑔2 is the starting edge of a separate tree
which does not contain 𝑢 = 𝑡 ( 𝑓𝑔−1), so 𝐺0 ∪ { 𝑓𝑔−1}\{ 𝑓 ′} has a genus 0 connected component and
{ 𝑓1, . . . , 𝑓𝑔−2, 𝑓

′} is not a genus 1 decomposition.
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Figure 8. The cycle �̃�+𝑔−1 in Case (3).

Let �̃�1 and �̃�2 be the edges of 𝐺 at �̃� lying above 𝑔1 and 𝑔2, respectively, and denote 𝐹1 =
{ �̃�1, . . . , �̃�𝑔−2, �̃�1} and 𝐹2 = { �̃�1, . . . , �̃�𝑔−2, �̃�2}. The preimage of the cycle 𝛾(𝐺0) is the unique cycle
𝛾(𝑝−1 (𝐺0)) of the genus 1 graph 𝑝−1 (𝐺0). We orient this cycle so that it starts with the edge �̃�1,
passes through 𝜄(�̃�) and ends with −�̃�2. Let �̃�′ be the end vertex of the unique shortest path from �̃�
to 𝛾(𝑝−1 (𝐺0)); this vertex may be �̃� itself but cannot be �̃� or 𝜄(�̃�), since we have assumed that the
shortest path from u to 𝛾(𝐺0) does not pass through v. We now assume without loss of generality
that �̃�′ lies on the same path from �̃� to 𝜄(�̃�) as �̃�1; otherwise, exchange �̃�1 and �̃�2 (see Figure 8).

All cells adjacent to 𝐶 other than 𝐶 (𝐹), 𝐶 (𝐹1) and 𝐶 (𝐹2) are contracted. For the last two, we
need to compute the matrix entry (31). We now calculate the relevant intersection numbers. The
path �̃�+𝑔−1 starts at �̃�, proceeds via + �̃�𝑔−1 to �̃� and then to �̃�′ and then back to �̃� along a path lying in
𝛾(𝑝−1 (𝐺0)) that ends with −�̃�1 and does not contain 𝜄(�̃�1), �̃�2 or 𝜄(�̃�2). It follows that

Ψ(𝐹1)𝑔−1,𝑔−1 = 〈�̃�+𝑔−1, �̃�1 − 𝜄(�̃�1)〉 = −1, Ψ(𝐹2)𝑔−1,𝑔−1 = 〈�̃�+𝑔−1, �̃�2 − 𝜄(�̃�2)〉 = 0.

Therefore, Ψ maps 𝐶 (𝐹1) to the opposite side 𝑀− as 𝐶 (𝐹) but with the same determinant | detΨ| =
2𝑟−1. On the other hand, 𝐶 (𝐹2) is contracted (this can also be seen by noting that the preimage of
the graph 𝐺0 ∪ { 𝑓𝑔−1}\{𝑔2} is disconnected). Hence, Ψ is harmonic.

(4) Finally, we consider the possibility that v lies on 𝛾(𝐺0) and that 𝑣 < 𝑢; in other words, u lies on
a tree attached to v. In this case, there are three edges at v that give genus 1 decompositions: the
two edges 𝑔1 and 𝑔2 lying on the cycle 𝛾(𝐺0) and the edge 𝑔3 that starts the unique path from v to
u. All other edges 𝑒′ at v support trees, and their removal from 𝐺0 ∪ { 𝑓𝑔−1} produces a connected
component of genus 0.

For 𝑖 = 1, 2, 3 denote �̃�𝑖 the lift of 𝑔𝑖 rooted at �̃� and denote 𝐹𝑖 = { �̃�1, . . . , �̃�𝑔−2, �̃�𝑖}. As in Case
2 above, there are two subcases, depending on whether the target vertex �̃� lies on the same tree 𝑇±

0
as �̃� (say 𝑇+

0 ) or on the other tree. The two possibilities are shown on Figure 9.
(a) The vertex �̃� lies on 𝑇+

0 . In this case, any path on the graph 𝑝−1 (𝐺0 ∪ { 𝑓𝑔−1}) starting at
�̃� and ending at 𝜄(�̃�) passes through the preimage 𝑝−1 (𝛾(𝐺0)) of the unique cycle of 𝐺0.
Removing either {�̃�1, 𝜄(�̃�1)} or {�̃�2, 𝜄(�̃�2)} from 𝑝−1 (𝛾(𝐺0)) disconnects the cycle and
therefore the entire preimage graph 𝑝−1 (𝐺0 ∪ { 𝑓𝑔−1}). It follows that 𝐹1 and 𝐹2 are not
odd genus 1 decompositions. To prove harmonicity, we need to compute Ψ(𝐹3)𝑔−1,𝑔−1.
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Figure 9. The cycle �̃�+𝑔−1 in the two sub-cases of Case (4).

The cycle �̃�+𝑔−1 starts at �̃�, proceeds to �̃� via �̃�𝑔−1 and then back to �̃� via a path in 𝑇+
0 that

ends in −�̃�3 and does not contain 𝜄(�̃�3). It follows that

Ψ(𝐹3)𝑔−1,𝑔−1 = 〈�̃�+𝑔−1, �̃�3 − 𝜄(�̃�3)〉 = −1.

Therefore, Ψ maps 𝐶 (𝐹3) to the opposite side 𝑀− as 𝐶 (𝐹) but with the same determinant
2𝑟−1. Hence, Ψ is harmonic.

(b) The vertex �̃� lies on 𝑇−
0 . In this case, all three genus 1 decompositions 𝐹1, 𝐹2 and 𝐹3 are

odd. There are two paths from �̃� to 𝜄(�̃�) along the cycle 𝑝−1(𝛾(𝐺0)), starting with edges
�̃�1 and �̃�2. We assume without loss of generality that the path that contains the edge �̃� +

0
(and hence lies in the spanning tree 𝑇) begins with �̃�1. In this case, the path �̃�+𝑔−1 begins at
�̃�, moves to �̃� via �̃�𝑔−1 and then to 𝜄(�̃�) via a path ending in −𝜄(�̃�3) and finally from 𝜄(�̃�)
via the path (passing through �̃� +

0 ) that starts with 𝜄(�̃�2) and ends with −�̃�1. Hence, �̃�+𝑔−1
contains −�̃�1 + 𝜄(�̃�2) − 𝜄(�̃�3) and does not contain the edges 𝜄(�̃�1), �̃�2 or �̃�3 and therefore
the diagonal entries are

Ψ(𝐹1)𝑔−1,𝑔−1 = 〈�̃�+𝑔−1, �̃�1 − 𝜄(�̃�1)〉 = −1, Ψ(𝐹2)𝑔−1,𝑔−1 = 〈�̃�+𝑔−1, �̃�2 − 𝜄(�̃�2)〉 = −1,

Ψ(𝐹3)𝑔−1,𝑔−1 = 〈�̃�+𝑔−1, �̃�3 − 𝜄(�̃�3)〉 = 1.

Therefore, Ψ maps the two cells 𝐶 (𝐹) and 𝐶 (𝐹3) to the half-space 𝑀+ and the two cells
𝐶 (𝐹1) and 𝐶 (𝐹2) to the half-space 𝑀−, all with the same determinant 2𝑟−1. Hence, Ψ is
harmonic.

The endpoints of 𝑓𝑎 lie on different connected components of 𝐺\𝐹. We assume without loss of
generality that 𝑣 = 𝑠( 𝑓𝑎) lies on 𝐺0 and that 𝑢 = 𝑡 ( 𝑓𝑎) lies on 𝐺1. Furthermore, we assume that 𝑓𝑎 lies in
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Figure 10. The cycle �̃�+1 in Case (1).

the spanning tree𝑇𝑐 , and the ordering convention then implies that 𝑓𝑎 = 𝑓1 and �̃�𝑎 = �̃�1. Since the matrix
Ψ(𝐹) is lower triangular, we see that 𝑀+ = Ψ(𝐻+) = {𝑦 : 𝑦1 ≥ 0} and 𝑀− = Ψ(𝐻−) = {𝑦 : 𝑦1 ≤ 0}.

Let �̃� ′ be an edge at �̃� and let 𝐹 ′ = { �̃� ′, �̃�2, . . . , �̃�𝑔−1} define a cell𝐶 (𝐹 ′) adjacent to𝐶 (𝐹) via𝐶 ′. The
matrix Ψ(𝐹 ′) is obtained from the matrix Ψ(𝐹) by replacing the first column, so we are only interested
in the new entry Ψ(𝐹 ′)11 = 〈�̃�+1 , �̃�

′ − 𝜄( �̃� ′)〉 in the top left: if it is zero, then 𝑝(𝐹 ′) is not an odd genus
1 decomposition, and if it is nonzero, then its sign determines whether Ψ maps 𝐶 (𝐹 ′) to 𝑀+ or 𝑀−.

The edge 𝑓1 is a bridge edge of the graph 𝐺0 ∪ 𝐺1 ∪ { 𝑓1}. We need to consider two possibilities:

(1) The vertex 𝑣 = 𝑠( 𝑓1) does not lie on the unique cycle 𝛾(𝐺0) of the graph 𝐺0. There is a unique edge
𝑔1 at v pointing in the direction of 𝛾(𝐺0) and the graph 𝐺0 ∪ 𝐺1 ∪ { 𝑓1}\{𝑔1} has two connected
components of genus 1, namely, 𝐺0\{𝑔1} and 𝐺1. Therefore, 𝐹1 = {𝑔1, 𝑓2, . . . , 𝑓𝑔−1} is an odd
genus 1 decomposition of the same length r as F. Any other edge 𝑓 ′ at v supports a tree rooted
at v; hence, removing 𝑓 ′ from 𝐺0 ∪ 𝐺1 ∪ { 𝑓 } separates a genus 0 connected component and the
corresponding decomposition is not genus 1 (see Figure 10).

Let �̃�1 denote the lift of 𝑔1 at �̃� and denote 𝐹1 = {�̃�1, �̃�2, . . . , �̃�𝑔−1}. To show that Ψ is harmonic,
it remains to show that Ψ maps the cell 𝐶 (𝐹1) to the opposite side 𝑀−; in other words, we need to
show that the diagonal entry Ψ(𝐹1)11 = 〈�̃�+1 , �̃�1 − 𝜄(�̃�1)〉 is negative.

We have chosen an edge 𝑒1 lying on the unique cycle 𝛾(𝐺1) of 𝐺1 and a lift �̃� +
1 lying on the

unique cycle of 𝑝−1 (𝐺1), with the property that the path from �̃� = 𝑡 ( �̃� ) to 𝜄(�̃�) that passes through
�̃� +

1 has the same orientation as �̃� +
1 . Hence, the path �̃�+1 is constructed as follows: it starts at �̃�,

proceeds via �̃�1 to �̃� and then via the aforementioned path to 𝜄(�̃�), then to 𝜄(�̃�) via −𝜄( �̃�1) and then
from 𝜄(�̃�) to �̃� via the unique path in 𝑝−1 (𝐺0) containing the edge �̃� +

0 . This path begins with 𝜄(�̃�1)
and ends with −�̃�1; hence,

Ψ(𝐹1)11 = 〈�̃�+1 , �̃�1 − 𝜄(�̃�1)〉 = −2.

Therefore, Ψ maps 𝐶 (𝐹) and 𝐶 (𝐹1) to different sides of 𝐶 with the same determinant, so Ψ is
harmonic.

(2) The vertex 𝑣 = 𝑠( 𝑓1) lies on the unique cycle 𝛾(𝐺0) of 𝐺0. It is easy to see that this case is in fact a
relabelling of Case 2b described above. Indeed, let 𝑔′1 and 𝑔′2 be the two edges at v lying on 𝛾(𝐺0).
Replacing 𝑓1, 𝑔′1 and 𝑔′2 with respectively 𝑔1, 𝑓𝑔−1 and 𝑔2, we obtain the same picture as in Case 2b
(see Figure 11).

This completes the proof of Proposition 5.2. �

Example 5.5. We now illustrate Theorem 5.1, the structure of the Abel–Prym map, as well as Con-
structions A, B and C, using the free double cover 𝜋 : Γ̃ → Γ shown in Figure 12. We note that 𝑔 = 3;
hence, the Abel–Prym map

Ψ : Sym2 (Γ̃) → Prym(Γ̃/Γ)
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Figure 11. The configuration in Case (2).

Figure 12. Free double cover with 𝑔 = 3.

maps to the identity connected component of the Prym variety. The graph Γ̃ has no loops, so it is
sufficient to use the minimal model 𝑝 : 𝐺 → 𝐺, which is obtained by not subdividing any edges.

We begin by using Construction C to define a basis �̃�1, �̃�2 for Ker 𝑝∗ : 𝐻1 (𝐺,Z) → 𝐻1 (𝐺,Z). This
basis defines a coordinate system on Prym(Γ̃/Γ). We will write down the matrix of Ψ with respect
to this coordinate system on each noncontracted cell of Sym2(Γ̃). First, we need to choose two edges
�̃�1, �̃�2 ∈ 𝐸 (𝐺) mapping to distinct edges of G. It is convenient to set �̃�1 = ℎ̃+3 and �̃�2 = ℎ̃−6 . Removing
𝑓1 = ℎ3 and 𝑓2 = ℎ6 decomposes G into three connected components, which we denote as follows:

𝐺0 = {ℎ4, ℎ5}, 𝐺1 = {ℎ1}, 𝐺2 = {ℎ7}.

For 𝐺0 we choose the spanning tree 𝑇0 = {ℎ5}, while 𝐺1 and 𝐺2 have trivial spanning trees. The
corresponding spanning tree T of G is

𝑇 = {ℎ3, ℎ5, ℎ6}.

To construct a spanning tree 𝑇 for 𝐺, we join the two lifts 𝑇± of T with one of the lifts of ℎ4. We choose
�̃� +

0 = ℎ̃+4 , so that

𝑇 = 𝑇+ ∪ 𝑇− ∪ {�̃� +
0 } = {ℎ̃±3 , ℎ̃

+
4 , ℎ̃

±
5 , ℎ̃

±
6 }.

In order to agree with the notation of Constructions A-C, we denote 𝑒0 = ℎ4, 𝑒1 = ℎ1, 𝑒2 = ℎ7, �̃� +
1 = ℎ̃+1

and �̃� +
2 = ℎ̃+7 (recall that we require 𝑡 ( �̃�𝑘 ) = 𝑠(�̃�𝑘 )).

https://doi.org/10.1017/fms.2021.75 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.75


Forum of Mathematics, Sigma 43

According to Construction B, the cycles �̃�+1 and �̃�+2 are the unique cycles of𝐺 containing the spanning
tree 𝑇 and the edges �̃� +

1 = ℎ̃+1 and �̃� +
2 = ℎ̃+7 , respectively. In other words,

�̃�+1 = ℎ̃+1 − ℎ̃−3 − ℎ̃+4 − ℎ̃+5 + ℎ̃+3 , �̃�+2 = ℎ̃+7 − ℎ̃+6 + ℎ̃+4 + ℎ̃−5 + ℎ̃−6 .

The cycles �̃�+1 − 𝜄∗(�̃�+1 ) and �̃�+2 − 𝜄∗(�̃�+2 ) form a basis for Ker 𝑝∗.
We now determine the matrix of the linear map Ψ on each noncontracted cell of Sym2(Γ̃). There are

15 two-element subsets of 𝐸 (𝐺), and all of them are odd genus 1 decompositions except for {ℎ1, ℎ3}
and {ℎ6, ℎ7}. Therefore, there are 52 cells of Sym2 (Γ̃) on which Ψ has maximal rank, corresponding to
the 13 odd genus 1 decompositions. The matrix of Ψ on a cell ℎ̃+𝑖 × ℎ̃+𝑗 is the 2×2 matrix whose columns
are obtained by respectively intersecting ℎ̃+𝑖 − ℎ̃−𝑖 and ℎ̃+𝑗 − ℎ̃−𝑗 with the cycles �̃�+1 and �̃�+2 , and the matrix
of Ψ on the other three cells ℎ̃±𝑖 × ℎ̃±𝑗 is obtained by appropriately changing the signs of the columns.

Table 1 lists the 13 odd genus 1 decompositions of the graph G. For each odd genus 1 decomposition
𝐹 = {ℎ𝑖 , ℎ 𝑗 }, we provide the rank 𝑟 (𝐹) (the number of connected components of 𝐺\𝐹), the local degree
degΨ = 2𝑟 (𝐹 )−1 on each cell of Sym2(Γ̃) corresponding to the odd genus 1 decomposition and the
matrix of Ψ on the cell ℎ̃+𝑖 × ℎ̃−𝑖 (the absolute value of its determinant is degΨ). We also assign a colour
to each odd genus 1 decomposition.

Table 1. The 13 odd genus 1 decompositions of the graph G..
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We now explain how to construct the Abel–Prym map Ψ : Sym2(Γ̃) → Prym(Γ̃/Γ). We first choose
a starting cell; it is convenient to begin with the cell �̃�1 × �̃�2 = ℎ̃+3 × ℎ̃−6 . According to our calculations,
the matrix of Ψ on this cell is

Ψ|ℎ̃+3×ℎ̃−6 =

[
2 0
0 2

]
;

note that this matrix is lower-triangular with 𝑟 ({ℎ3, ℎ6)}) − 1 = 2 diagonal entries equal to 2, in
accordance with Corollary 4.2. Viewing ℎ̃+3 × ℎ̃−6 as the rectangle [0, ℓ(ℎ3)] × [0, ℓ(ℎ6)] in R2, we see
that Ψ( ℎ̃+3× ℎ̃

−
6 ) is a rectangle with sides 2ℓ(ℎ3) and 2ℓ(ℎ6) in Prym(Γ̃/Γ) (with respect to the coordinate

system defined by �̃�1 and �̃�2). We note that since degΨ = 4 on the cell ℎ̃+3 × ℎ̃−6 , the Abel–Prym map is
one-to-one over the interior of the cell; in other words, there are no other cells of Sym2(Γ̃) lying over
Ψ( ℎ̃+3 × ℎ̃−6 ).

We now look at the graph to locate the cells in Sym2(Γ̃) that are adjacent to ℎ̃+3 × ℎ̃−6 , by changing one
of the two edges to an adjacent edge. We then use Table 1 to determine their images in Prym(Γ̃/Γ). For
example, the terminal vertex of ℎ̃+3 is the starting vertex of ℎ̃+1 and the terminal vertex of ℎ̃−1 . Therefore,
the images of the two cells ℎ̃+1 × ℎ̃−6 and ℎ̃−1 × ℎ̃−6 are glued to the right side of the rectangle Ψ( ℎ̃+3 × ℎ̃−6 ).
According to the table, each of the images Ψ( ℎ̃+1 × ℎ̃−6 ) and Ψ( ℎ̃+1 × ℎ̃−6 ) is a rectangle with sides ℓ(ℎ1) and
2ℓ(ℎ6); this implies that these images coincide. Similarly, along the top edge of the rectangle Ψ( ℎ̃+3 × ℎ̃−6 )
we glue two identical rectangles Ψ( ℎ̃+3 × ℎ̃+7) and Ψ( ℎ̃+3 × ℎ̃−7 ). On the other hand, the two cells that are
glued along the left side of the rectangle Ψ( ℎ̃+3 × ℎ̃−6 ) are the noncongruent parallelograms Ψ( ℎ̃+5 × ℎ̃−6 )
and Ψ( ℎ̃−4 × ℎ̃−6 ) and, similarly, there are two noncongruent parallelograpms along the bottom side of
Ψ( ℎ̃+3 × ℎ̃−6 ).

We then proceed in the same way for all noncontracted cells. For example, the right sides of the
two identical rectangles Ψ( ℎ̃+3 × ℎ̃+7) and Ψ( ℎ̃+3 × ℎ̃−7 ) are attached to the left side of the rectangle
Ψ( ℎ̃−3 × ℎ̃−6 ) and so on. The result is a collection of overlapping parallelograms Ψ( ℎ̃±𝑖 × ℎ̃±𝑗 ) tiling the
torus Prym(Γ̃/Γ). Each parallelogram tile comes equipped with the degree of Ψ (equal to 1, 2 or 4) and
the total degree of all tiles above each point is equal to 4, so any point not lying on the boundary of a
tile lies in anywhere between one and four tiles. The structure of the overlaps strongly depends on the
exact values of the edge lengths ℓ(ℎ𝑖).

The result, for a specific choice of edge lengths, is shown in Figure 13. The top part is an exploded
view of the noncontracted cells of Sym2(Γ̃). Each cell ℎ̃±𝑖 × ℎ̃±𝑗 is represented by a parallelogram and
is coloured according to the corresponding odd genus 1 decomposition {ℎ𝑖 , ℎ 𝑗 } (see Table 1). The
cells are arranged in several horizontal layers and are oriented and aligned according to their images
in Prym(Γ̃/Γ). For example, the four large dark grey cells in the middle layer represent the four cells
ℎ̃±3 × ℎ̃±6 , which are the only cells of degree 4. No attempt has been made to show the incidence relations
between the cells in Sym2(Γ̃), since this complex is not embeddable in R3 and the numerous cells that
are contracted by Ψ are not shown.

The multicoloured parallelogram on the bottom layer is Prym(Γ̃/Γ) with the induced cellular de-
composition, obtained by intersecting all of the tiles. A cell corresponding to a single parallelogram
has the same colour, while if parallelograms of different colours intersect, we blend the corresponding
colours. The central point of the parallelogram is the identity element of Prym(Γ̃/Γ).

A. The algebraic Abel–Prym map (by Sebastian Casalaina-Martin)

Let 𝜋 : 𝐶 → 𝐶 be a connected étale double cover of a smooth projective curve C of genus 𝑔 ≥ 2 over
an algebraically closed field k of characteristic not equal to 2, let 𝜄 : 𝐶 → 𝐶 be the associated involution
and denote by Nm : 𝐽 (𝐶) → 𝐽 (𝐶) the norm map for 𝜋, where for a smooth projective curve X over k
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Figure 13. The structure of the Abel–Prym map Ψ : Sym2(Γ̃) → Prym(Γ̃/Γ) of the cover shown
in Figure 12. The tesselated parallelogram on the bottom is Prym(Γ̃/Γ) with the cell decomposition
induced by Ψ. The top and middle parts are an exploded view of the noncontracted cells of Sym2 (Γ̃).
Cells of Sym2(Γ̃) are coloured according to the type of the odd genus 1 decomposition; these colours
are mixed in cells of Prym(Γ̃/Γ). Edge lengths are ℓ(ℎ1) = 2.4, ℓ(ℎ3) = 0.8, ℓ(ℎ4) = 1, ℓ(ℎ5) = 1.4,
ℓ(ℎ6) = 1.1, ℓ(ℎ7) = 1.4.

we denote by 𝐽 (𝑋) = Pic0
𝑋/𝑘 the Jacobian of X. For any natural number d the Abel–Prym map in degree

d is defined to be the map

𝛿𝑑 : 𝐶 (𝑑) −→ ker Nm ⊆ 𝐽 (𝐶),

𝐷 ↦→ O𝐶 (𝐷 − 𝜄𝐷),

where 𝐶 (𝑑) is the d-fold symmetric product of the curve. The kernel of the norm map has two connected
components, namely, the Prym variety 𝑃 = 𝑃(𝐶/𝐶) := (ker Nm)◦, the connected component of the
identity and the remaining component, which we will denote by 𝑃′; P admits a principal polarisation
Ξ with the property that if Θ𝐶 is the canonical principal polarisation on 𝐽 (𝐶), then Θ𝐶 |𝑃 = 2 · Ξ (e.g.,
[Mum74, §6]). The image of 𝛿𝑑 is contained in P if d is even and contained in 𝑃′ if d is odd (e.g.,
[Bea77, Lem. 3.3, and p. 159]).

The Abel–Prym map in degree 1 has been studied quite extensively, and we recall this case in
Subsection A.1. In particular, the map 𝛿1 is a closed embedding if and only if 𝐶 is not hyperelliptic and
has degree 2 otherwise. The purpose of this appendix is to provide a proof of some basic facts regarding
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the Abel–Prym map for 𝑑 > 1. We expect that these are well known but are not aware of a reference in
the literature.

Proposition A.1 (Corollary A.9, Corollary A.13 and Proposition A.14). The Abel–Prym map 𝛿𝑑 is
generically finite if and only if 𝑑 ≤ 𝑔 − 1 and surjects onto P (respectively 𝑃′) if and only if 𝑑 ≥ 𝑔 − 1
and d is even (respectively d is odd). Moreover, deg 𝛿𝑔−1 = 2𝑔−1, and if char(𝑘) = 0, then for 𝑑 ≤ 𝑔 − 2
we have deg 𝛿𝑑 = 2𝑛 ≤ 2𝑑 for some integer 𝑛 ≤ 𝑑, with equality holding if 𝐶 is hyperelliptic.

Remark A.2 (Degree bound in positive characteristic). If char(𝑘) = 𝑝 > 0, then for 𝑑 ≤ 𝑔 − 2 we show
that deg 𝛿𝑑 = 𝑝𝑚2𝑛 for some integers m and n with 𝑛 ≤ 𝑑. The reason for the uncontrolled power of p in
the formula is that we compute the degree via a cohomology class computation in ℓ-adic cohomology,
with ℓ ≠ 𝑝. A similar computation in crystalline cohomology allows one to remove the powers of p.

For general covers one has the following.

Proposition A.3 (Corollary A.15). Let 𝐶/𝐶 be a general cover. Then deg 𝛿𝑑 = 1 for 𝑑 < 𝑔/2.

While 𝛿1 is finite, in contrast, for all 𝑑 ≥ 2 there exist positive dimensional fibres of 𝛿𝑑 . Indeed, it
suffices to show this for d even since for all d, fibres of 𝛿𝑑 can be included in fibres of 𝛿𝑑+1 using the
observation that if 𝛿𝑑 (𝐷) = 𝛿𝑑 (𝐷 ′), then 𝛿𝑑+1 (𝐷 + 𝑝) = 𝛿𝑑+1 (𝐷 ′ + 𝑝) for any 𝑝 ∈ 𝐶. For d even, we
note that the composition 𝐶 (𝑑/2) 𝜋∗

→ 𝐶 (𝑑) 𝛿𝑑→ 𝑃 ⊆ 𝐽 (𝐶) has image O𝐶 .
Sometimes in the presentation it will be convenient to fix a divisor 𝐷0 ∈ 𝐶 (𝑑) and then consider the

associated pointed Abel–Prym map

𝛿𝑑,�̃�0
: 𝐶 (𝑑) −→ 𝑃 ⊆ 𝐽 (𝐶)

𝐷 ↦→ O𝐶 (𝐷 − 𝜄𝐷) ⊗ O𝐶 (𝜄𝐷0 − 𝐷0),

which simply differs from the canonical Abel–Prym map 𝛿𝑑 by translation by O𝐶 (𝜄𝐷0 − 𝐷0) and has
image contained in the Prym variety. We emphasise for clarity that the Abel–Prym map and pointed
Abel–Prym map defined here are different from the map obtained by restricting the Abel map in degree
d to a chosen translate of the Prym variety (e.g., [Bea82, SV01]).

A.1. The Abel–Prym map in degree 1

We recall the following well-known result.

Proposition A.4. For any prime number ℓ ≠ char(𝑘) and any point 𝑝0 ∈ 𝐶, the class of the pushforward
of 𝐶 by the pointed Abel–Prym map is

(𝛿1, �̃�0)∗ [𝐶] = 2 · [Ξ]𝜌−1

(𝜌 − 1)! ∈ 𝐻2𝜌−2(𝑃,Zℓ (𝜌 − 1)), (32)

where 𝜌 = dim 𝑃 = 𝑔 − 1. In addition, if 𝐶 is not hyperelliptic, then the Abel–Prym map 𝛿1 is an
embedding, so that [𝛿1, �̃�0 (𝐶)] = 2 · [Ξ]𝜌−1

(𝜌−1)! . If 𝐶 is hyperelliptic, then 𝛿1 has degree 2 and the image
Σ := 𝛿1 (𝐶) ⊆ 𝑃′ is a smooth hyperelliptic curve of genus 𝑔 − 1 so that setting Σ �̃�0 := 𝛿1, �̃�0 (𝐶) ⊆ 𝑃, we
have [Σ �̃�0] =

[Ξ]𝜌−1

(𝜌−1)! and (𝑃,Ξ) is isomorphic to the principally polarised Jacobian (𝐽 (Σ),ΘΣ).

Proof. Computing the degree of 𝛿1 is a basic computation from the definition; the details can be found in
[BL04, Prop. 12.5.2] where the arguments are made over C but which hold over any algebraically closed
field of characteristic not equal to 2. The statements regarding the differential of 𝛿1 can be found in [BL04,
Cor. 12.5.5–7] over C; those arguments also hold over any algebraically closed field of characteristic not
equal to 2, and we also review this in Subsection A.2.1. As the map 𝛿1 is finite, computing the class of
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(𝛿1, �̃�0 )∗ [𝐶] is a standard argument using the fact that 𝐻2𝜌−2(𝑃,Zℓ) =
∧2𝜌−2 𝐻1(𝑃,Zℓ) and facts about

first Chern classes of symmetric polarisations on abelian varieties. This is essentially the same argument
that is used to prove Poincaré’s formula in [ACGH85, p. 25], and the arguments there are easily adapted
to the Abel–Prym map and the positive characteristic case (see [Mas76, Lem. 3.2] over C).

The fact that Σ is smooth and that (𝑃,Ξ) is isomorphic to the principally polarised Jacobian
(𝐽 (Σ),ΘΣ) follows from the fact that [Σ �̃�0] = [Ξ]𝜌−1

(𝜌−1)! and the criterion of Matsusaka–Ran [Col84].
One can conclude that Σ is hyperelliptic by considering the image of the 𝑔1

2 on 𝐶 under the norm map
for 𝐶 → Σ. �

Remark A.5. If 𝐶 is hyperellptic, then C is hyperelliptic as well (consider the image of the 𝑔1
2 on 𝐶

under the norm map for 𝜋). Thus, the conclusion in Proposition A.4 that if 𝐶 is hyperelliptic then (𝑃,Ξ)
is a hyperelliptic Jacobian is a special case of a result of Mumford, which states that for any 𝜋 : 𝐶 → 𝐶
with C hyperelliptic, the Prym variety is a product of hyperelliptic Jacobians [Mum74, p. 346].

Remark A.6. In the case where 𝐶 is hyperelliptic, we can say more. From the definition, we have that
𝛿1 (𝑝) = 𝛿1 (𝑝′) for distinct points 𝑝, 𝑝′ ∈ 𝐶 if and only if 𝑝 + 𝜄(𝑝′) is in the (unique) 𝑔1

2 on 𝐶. By
Riemann–Hurwitz, 𝛿1 is ramified at four points. The ramification points 𝑟 ∈ 𝐶 of 𝛿1 are distinguished
by the fact that the 2-torsion line bundle 𝜂 determining the cover 𝜋 satisfies 𝜂 = O𝐶 (𝜋(𝑟) − 𝑝) for some
𝑝 ∈ 𝐶. Note that this forces 𝜋(𝑟) and p to be branch points for the hyperelliptic involution on C. In
summary, if 𝐶 is hyperelliptic, then 𝜂 � O𝐶 (𝑝′ − 𝑝) for some distinct ramification points 𝑝, 𝑝′ ∈ 𝐶 for
the 𝑔1

2 on C and the four ramification points of 𝛿1 are the points 𝜋−1 ({𝑝, 𝑝′}). The details can be found
in [BL04, §12.5], where again the arguments hold in positive characterstic, as well; see also Subsection
A.2.1.

A.2. The differential of the Abel–Prym map

We next show that the Abel–Prym map is generically finite for 𝑑 ≤ 𝑔−1 by showing that the differential
is generically injective in that range.

Proposition A.7. For 𝑑 ≤ 𝑔 − 1, the differential of 𝛿𝑑 is generically injective. For all d the differential
generically has rank equal to min(𝑑, 𝑔 − 1). The differential of 𝛿𝑑 is injective if and only if 𝑑 = 1 and 𝐶
is not hyperelliptic.

More precisely, the differential 𝛿𝑑 is injective at 𝐷 ∈ 𝐶 (𝑑) if and only if the support of 𝐷 satisfies
Supp(𝐷) ∩ Supp(𝜄𝐷) = ∅ and, setting 𝐷 = Nm 𝐷, there does not exist an effective divisor 𝐸 ∈ 𝐶 (𝑑)

such that 𝜂 = O𝐶 (𝐷 − 𝐸), where 𝜂 is the 2-torsion line bundle determining the cover 𝐶/𝐶.

Proof. The case 𝑑 = 1 is handled in Proposition A.4. Since there exist positive dimensional fibres of 𝛿𝑑
for all 𝑑 ≥ 2, the differential cannot be injective for 𝑑 ≥ 2. For the statements on the generic rank, once
we have shown that the differential of 𝛿𝑔−1 is generically injective, by a dimension count it is generically
surjective and one can easily check that this implies that 𝛿𝑑 surjects onto P or 𝑃′ for all 𝑑 ≥ 𝑔−1. Thus,
for the generic rank of the differential of 𝛿𝑑 , it only remains to show that for 𝑑 ≤ 𝑔 − 1, the differential
of 𝛿𝑑 is generically injective.

For this, we factor 𝛿𝑑 as follows:

𝐶 (𝑑) 1× 𝜄 �� 𝐶 (𝑑) × 𝐶 (𝑑) 𝛼𝑑×𝛼𝑑 �� Pic𝑑
𝐶/𝑘

×Pic𝑑
𝐶/𝑘

− �� Pic0
𝐶/𝑘

where 𝛼𝑑 : 𝐶 (𝑑) → Pic𝑑
𝐶/𝑘

is the Abel map 𝐷 ↦→ O𝐶 (𝐷). Then at the level of the differential, at a

divisor 𝐷 ∈ 𝐶 (𝑑) , these are given by the maps

𝐻0(O�̃� (𝐷)) 1× 𝜄 �� 𝐻0(O�̃� (𝐷)) × 𝐻0(O 𝜄�̃� (𝜄𝐷))𝑇 𝛼𝑑×𝑇 𝛼𝑑�� 𝐻1(O𝐶 ) × 𝐻1(O𝐶 )
− �� 𝐻1(O𝐶 ).
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The composition of the maps above agrees with the composition of the maps

𝐻0 (O�̃� (𝐷))
1×(− 𝜄) �� 𝐻0 (O�̃� (𝐷)) × 𝐻0 (O 𝜄�̃� (𝜄𝐷))𝑇 𝛼𝑑×𝑇 𝛼𝑑�� 𝐻1(O𝐶 ) × 𝐻1(O𝐶 )

+ �� 𝐻1(O𝐶 )
(33)

which in turn factors as

𝐻0(O�̃� (𝐷))
1×(− 𝜄) �� 𝐻0(O�̃� (𝐷)) × 𝐻0(O 𝜄�̃� (𝜄𝐷))𝑇 𝛼𝑑×𝑇 𝛼𝑑��

+
��

𝐻1 (O𝐶 ) × 𝐻1 (O𝐶 )
+ �� 𝐻1(O𝐶 )

𝐻0(O�̃� (𝐷))
𝛽𝑑 �� 𝐻0 (O�̃�+ 𝜄�̃� (𝐷 + 𝜄𝐷)) 𝑇 𝛼2𝑑 �� 𝐻1(O𝐶 )

(34)

where we denote by + : 𝐻0(O�̃� (𝐷)) × 𝐻0(O 𝜄�̃� (𝜄𝐷)) → 𝐻0(O�̃�+ 𝜄�̃� (𝐷 + 𝜄𝐷)) the differential of the
map + : 𝐶 (𝑑) × 𝐶 (𝑑) → 𝐶 (2𝑑) at the point (𝐷, 𝜄𝐷), we set 𝛽𝑑 := + ◦ (1 × (−𝜄)) and 𝑇𝛼2𝑑 is the
differential of the Abel map 𝛼2𝑑 : 𝐶 (2𝑑) → Pic2𝑑

𝐶/𝑘
at the point 𝐷 + 𝜄𝐷. Recall that 𝑇𝛼2𝑑 is identified

with the coboundary map

𝜕�̃�+ 𝜄�̃� : 𝐻0(O�̃�+ 𝜄�̃� (𝐷 + 𝜄𝐷)) �� 𝐻1(O𝐶 ) (35)

from the long exact sequence associated to the short exact sequence

0 → O𝐶 → O𝐶 (𝐷 + 𝜄𝐷) → O�̃�+ 𝜄�̃� (𝐷 + 𝜄𝐷) → 0. (36)

Returning now to showing that the differential of 𝛿𝑑 is generically injective, note that 𝛽𝑑 in (34) is
injective if and only if Supp(𝐷)∩Supp(𝜄𝐷) = ∅. Thus, under the assumption Supp(𝐷)∩Supp(𝜄𝐷) = ∅,
it suffices to show that the coboundary map 𝜕�̃�+ 𝜄�̃� in (35) is injective for general 𝐷 of degree 𝑑 ≤ 𝑔−1.
From the long exact sequence in cohomology, it is enough to show that ℎ0 (𝐶,O𝐶 (𝐷 + 𝜄𝐷)) = 1. For
this, set 𝐷 = Nm(𝐷) so that we have 𝐷 + 𝜄𝐷 = 𝜋∗𝐷. Then using that 𝜋∗O𝐶 = O𝐶 ⊕ 𝜂, where 𝜂⊗2 � O𝐶

is the 2-torsion line bundle defining the cover and the projection formula, we have ℎ0 (𝐶,O𝐶 (𝐷+ 𝜄𝐷)) =
ℎ0 (𝐶,O𝐶 (𝐷)) + ℎ0 (𝐶, 𝜂(𝐷)). Thus, it suffices to show that ℎ0 (𝐶,O𝐶 (𝐷)) = 1 and ℎ0 (𝐶, 𝜂(𝐷)) = 0,
if D is general of degree 𝑑 ≤ 𝑔 − 1 (since if 𝐷 is generic, then D will be, too). By Riemann–Roch, this
is equivalent to showing that ℎ0(𝐶, 𝐾𝐶 (−𝐷)) = 𝑔 − 𝑑 and ℎ0 (𝐶, 𝐾𝐶 (−𝐷) ⊗ 𝜂) = (𝑔 − 1) − 𝑑; if D
is general of degree 𝑑 ≤ 𝑔 − 1, then these conditions are satisfied. This completes the proof regarding
generic injectivity of the differential.

For the final statement of the proposition, still under the assumption Supp(𝐷) ∩ Supp(𝜄𝐷) = ∅, we
observe that the coboundary map (35) is identified with the direct sum of the coboundary maps

𝐻0 (O𝐶 (𝐷) |𝐷) ⊕ 𝐻0(𝜂(𝐷)) |𝐷)
𝜕𝐷 ⊕𝜕𝜂 (𝐷)�� 𝐻1(O𝐶 ) ⊕ 𝐻1 (𝜂)

associated to the short exact sequence 0 → O𝐶 → O𝐶 (𝐷) → O𝐶 (𝐷) |𝐷 → 0 and the short exact
sequence obtained by tensoring with 𝜂. For this, apply 𝜋∗ to (36) and use 𝑅1𝜋∗O𝐶 = 0 and the
projection formula to obtain the direct sum of the short exact sequences together with the identification
𝜋∗O�̃�+ 𝜄�̃� (𝐷 + 𝜄𝐷) = O𝐶 (𝐷) |𝐷 ⊕ 𝜂(𝐷) |𝐷 . Since the image of 𝛽𝑑 in (34) is equal to the anti-invariant
part of the target, which is in turn identified with 𝐻0 (𝜂(𝐷)) |𝐷), one is reduced to checking the injectivity
of 𝜕𝜂 (𝐷) . From the long exact sequence in cohomology, this coboundary map is injective if and only
if 0 = ℎ0(𝐶, 𝜂) = ℎ0 (𝐶, 𝜂(𝐷)). This fails if and only if 𝜂 � O𝐶 (𝐷 − 𝐸) for some effective divisor
𝐸 ∈ 𝐶 (𝑑) , completing the proof. �

https://doi.org/10.1017/fms.2021.75 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.75


Forum of Mathematics, Sigma 49

Remark A.8. It is elementary to see from the definition of the Abel–Prym map, or from (33), that if
ℎ0 (𝐶,O𝐶 (𝐷)) ≥ 2, then the differential of 𝛿𝑑 fails to be injective at 𝐷. Therefore, Proposition A.7
implies that if Supp(𝐷) ∩ Supp(𝜄𝐷) = ∅ and ℎ0 (𝐶,O𝐶 (𝐷)) ≥ 2, then ℎ0 (𝐶, 𝜂(𝐷)) > 0. Here we give
an elementary proof of this fact. Indeed, let �̃� ∈ 𝐻0(𝐶,O𝐶 (𝐷)) be such that its divisor of zeros is
(�̃�)0 = 𝐷. Then for general �̃�′ ∈ 𝐻0(𝐶,O𝐶 (𝐷)), with divisor of zeros (�̃�′)0 = 𝐷 ′, we have that the
section �̃� · 𝜄�̃�′ ∈ 𝐻0 (𝐶,O𝐶 (𝐷 + 𝜄𝐷)), with divisor of zeros (�̃� · 𝜄�̃�′)0 = 𝐷 + 𝜄𝐷 ′, has support that
is not equal to the support of 𝜄𝐷 + 𝐷 ′; here we are using that Supp(𝐷) ∩ Supp(𝜄𝐷) = ∅. Therefore,
�̃� · 𝜄�̃�′ ≠ �̃�′ · 𝜄�̃�, since their associated divisors have different supports. Consequently, �̃� · 𝜄�̃�′−�̃�′ · 𝜄�̃� ≠ 0
gives a nontrivial element of 𝐻0 (𝐶,O𝐶 (𝐷 + 𝜄𝐷))− = 𝐻0(𝐶, 𝜂(𝐷)).

Corollary A.9. The Abel–Prym map 𝛿𝑑 is generically finite if and only if 𝑑 ≤ 𝑔 − 1 and surjects onto
P (respectively 𝑃′) if and only if 𝑑 ≥ 𝑔 − 1 and d is even (respectively d is odd).

Corollary A.10. Suppose that 𝜂 is not in the image of the difference map 𝐶 (𝑑) × 𝐶 (𝑑) → 𝐽 (𝐶), which
requires 𝑑 < 𝑔/2 and holds if in addition 𝐶/𝐶 is general. Then the exceptional locus of 𝛿𝑑 is exactly
the locus of 𝐷 ∈ 𝐶 (𝑑) such that Supp(𝐷) ∩ Supp(𝜄𝐷) ≠ ∅.

Proof. First, we explain that if 𝐶/𝐶 is general and 𝑑 < 𝑔/2, then 𝜂 is not in the image of the difference
map 𝐶 (𝑑) ×𝐶 (𝑑) → 𝐽 (𝐶). Indeed, if 𝜂 = O𝐶 (𝐷−𝐸) for some effective divisors D and E of degree d on
C, then since 𝜋∗𝜂 � O𝐶 (e.g., [Mum74, Lem. p.332]), we would have 𝜋∗𝐷 ∼ 𝜋∗𝐸 , so that in this case
𝐶 would have a 𝑔1

2𝑑 , which is not possible due to [AF12, Thm. 1.4], which states that for a general cover
𝐶/𝐶, there is no 𝑔1

𝑒 on 𝐶 for 𝑒 < 𝑔 (in positive characteristic combine the proof of [AF12, Thm. 1.4]
given in [AF12, Prop. 3.1] with [Oss14, Thm. 1.1]).

Now assuming that 𝜂 is not in the image of the difference map 𝐶 (𝑑) × 𝐶 (𝑑) → 𝐽 (𝐶), which implies
that 𝑑 < 𝑔/2 ≤ 𝑔 − 1 (e.g., [ACGH85, Ex. D-1, p.223]; the argument holds in positive characteristic,
as well), then Proposition A.7 implies that the exceptional locus is contained in the locus of 𝐷 ∈ 𝐶 (𝑑)

such that Supp(𝐷) ∩ Supp(𝜄𝐷) ≠ ∅. On the other hand, it is easy to see that the exceptional locus
of 𝛿𝑑 contains the locus of 𝐷 ∈ 𝐶 (𝑑) such that Supp(𝐷) ∩ Supp(𝜄𝐷) ≠ ∅. Indeed, suppose that
𝐷 = 𝑝 + 𝜄𝑝 + 𝐸 = 𝜋∗𝑝 + 𝐸 for some 𝑝 ∈ 𝐶, 𝑝 ∈ 𝐶 and 𝐸 ∈ 𝐶 (𝑑−2) . Then for all 𝑝′ ∈ 𝐶 set
𝐷 𝑝′ = 𝜋∗𝑝′ + 𝐸 and we have 𝛿𝑑 (𝐷 𝑝′ ) = 𝛿𝑑 (𝐷). �

A.2.1. Geometric interpretation of the differential of the Abel–Prym map
The projectivised differential of 𝛿1 factors as

𝐶 = P𝑇𝐶

𝜋

��

P𝑇 𝛿1 ������� P𝑇𝑃 = 𝑃 × P𝑇0𝑃

��
𝐶

𝜙𝐾𝐶⊗𝜂 ������ P𝐻0 (𝐶, 𝐾𝐶 ⊗ 𝜂)∨ = P𝑇0𝑃

where 𝜂 is the 2-torsion line bundle on C determining the cover 𝜋; the bottom row is the Prym canonical
map, given by the linear system |𝐾𝐶 ⊗ 𝜂 |; and the right vertical map is the projection onto the second
factor. Moreover, P𝑇𝛿1 is defined at 𝑝 ∈ 𝐶 if and only if 𝜙𝐾𝐶 ⊗𝜂 is defined at 𝑝 = 𝜋(𝑝); that is, p is not
a base point of |𝐾𝐶 ⊗ 𝜂 |. One can find all of this in [BL04, Prop. 12.5.2] over C; the arguments hold in
positive characteristic as well. Indeed, factoring 𝛿1 as 𝐶

𝛼1→ Pic1
𝐶/𝑘

1− 𝜄→ 𝑃′ ⊆ 𝐽 (𝐶) where 𝛼1 is the Abel

map and taking the differential at a point 𝑝 ∈ 𝐶, one obtains the maps 𝐻0(O �̃� (𝑝))
𝑇 𝛼1→ 𝐻1(O𝐶 )

1− 𝜄→
𝐻1 (O𝐶 )

− ⊆ 𝐻1(O𝐶 ). Identifying 𝐻1 (𝐶,O𝐶 ) = 𝐻0(𝐶, 𝐾𝐶 )
∨ and 𝐻1(𝐶,O𝐶 )

− = 𝐻0(𝐶, 𝐾𝐶 ⊗ 𝜂)∨,
one uses the fact that the projectivised differential of the Abel map is the canonical map 𝜙𝐾𝐶 on 𝐶.

A Riemann–Roch computation gives that |𝐾𝐶 ⊗ 𝜂 | has a base point if and only if 𝜂 = O𝐶 (𝑝′ − 𝑝)
for some 𝑝, 𝑝′ ∈ 𝐶, in which case C is hyperelliptic and p and 𝑝′ are the base points of |𝐾𝐶 ⊗ 𝜂 |
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(e.g., [CDCK19, Lem. 2.1(i)]). Note that 𝜋∗𝑝′ ∼ 𝜋∗𝑝 gives a 𝑔1
2 on 𝐶. In particular, this recovers the

statements about the differential of 𝛿1 in Proposition A.4 and Remark A.6.
As a consequence, if 𝐾𝐶 ⊗ 𝜂 is very ample, then given 𝐷 ∈ 𝐶 (𝑑) and setting 𝐷 = Nm 𝐷, the

projectivisation of (𝑇�̃�𝛿𝑑) (𝑇�̃�𝐶 (𝑑) ) is identified with the span of the scheme 𝜙𝐾𝐶 ⊗𝜂 (𝐷) inP𝐻0 (𝐶, 𝐾𝐶⊗
𝜂)∨. The same result holds more generally as long as the Prym canonical map is defined at the support
of D and the Prym canonical model of C is smooth at the image of the support of D. Note that another
Riemann–Roch computation gives that if |𝐾𝐶 ⊗ 𝜂 | is base point free, then 𝐾𝐶 ⊗ 𝜂 fails to be very ample
if and only if 𝜂 � O𝐶 (𝑝 + 𝑞 − 𝑝′ − 𝑞′) for some 𝑝, 𝑞, 𝑝′, 𝑞′ ∈ 𝐶, in which case C is tetragonal, and p
and q are not separated by |𝐾𝐶 ⊗ 𝜂 |; as usual, when 𝑝 = 𝑞, we mean the differential drops rank at 𝑝 = 𝑞
(e.g., [CDCK19, Lem. 2.1(ii)]).

A.3. Pushforward of the fundamental class under the Abel–Prym map

The main result of this subsection is the following proposition.

Proposition A.11. Let ℓ be a prime number not equal to char(𝑘). For 𝑑 ≤ 𝑔 − 1 and taking 𝐷0 ∈ 𝐶 (𝑑) ,
the class of the pushforward of the symmetric product under the pointed Abel–Prym map 𝛿𝑑,�̃�0

is given
by

(𝛿𝑑,�̃�0
)∗ [𝐶 (𝑑) ] = 2𝑑

[Ξ]𝜌−𝑑
(𝜌 − 𝑑)! ∈ 𝐻2𝜌−2𝑑 (𝑃,Zℓ (𝜌 − 𝑑)),

where 𝜌 = 𝑔 − 1 = dim 𝑃.

While Proposition A.11 can be proven exactly as in the 𝑑 = 1 case (i.e., as in the proof of (32) in
Proposition A.4), that computation is somewhat laborious, and we prefer to give an alternate proof using
(32) as the starting point. Similar computations can be found in [Bea82, §1] and [Smi89].

For this, we take a brief detour. If 𝑋,𝑌 ⊆ 𝐴 are subvarieties of an abelian variety and the map
𝑎 : 𝑋 × 𝑌 → 𝑋 + 𝑌 ⊆ 𝐴 given by addition is generically finite, then it essentially follows from the
definition of the Pontryagin product that in the Chow ring or in the cohomology ring,

[𝑋] ★ [𝑌 ] = 𝑎∗ [𝑋 × 𝑌 ] = deg(𝑎) [𝑋 + 𝑌 ] .

We will want a slight generalisation. If we suppose that 𝑓𝑋 : 𝑋 ′ → 𝑋 ⊆ 𝐴 and 𝑓𝑌 : 𝑌 ′ → 𝑌 ⊆ 𝐴 are
generically finite surjective morphisms and we set 𝑎′ = 𝑎 ◦ ( 𝑓𝑋 × 𝑓𝑌 ) to be the composition

𝑎′ : 𝑋 ′ × 𝑌 ′ 𝑓𝑋× 𝑓𝑌 �� 𝑋 × 𝑌
𝑎

+
�� 𝑋 + 𝑌 ⊆ 𝐴,

then, still under the assumption that a is generically finite, we have

𝑓𝑋,∗ [𝑋 ′] ★ 𝑓𝑌 ,∗ [𝑌 ′] = 𝑎′∗ [𝑋 ′ × 𝑌 ′] = deg(𝑎′) [𝑋 + 𝑌 ] . (37)

Indeed, we have the following string of equalities:

𝑎′∗ [𝑋 ′ × 𝑌 ′] = (deg 𝑎′) [𝑋 + 𝑌 ] = (deg( 𝑓𝑋 × 𝑓𝑌 )) (deg 𝑎) [𝑋 + 𝑌 ] = (deg 𝑓𝑋 ) (deg 𝑓𝑌 ) (deg 𝑎) [𝑋 + 𝑌 ]
= (deg 𝑓𝑋 ) (deg 𝑓𝑌 ) [𝑋] ★ [𝑌 ] = ((deg 𝑓𝑋 ) [𝑋 ′]) ★ ((deg 𝑓𝑌 ) [𝑌 ′]) = 𝑓𝑋,∗ [𝑋 ′] ★ 𝑓𝑌 ,∗ [𝑌 ′] .

Finally, we will want to use the standard result that for a principally polarised abelian variety (𝐴,Θ)
of dimension g, in the Chow ring we have

[Θ]𝑔−𝑎
(𝑔 − 𝑎)! ★

[Θ]𝑔−𝑏
(𝑔 − 𝑏)! =

(
𝑎 + 𝑏

𝑎

)
[Θ]𝑔−(𝑎+𝑏)

(𝑔 − (𝑎 + 𝑏))! , (38)
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which we will use in the form (
[Θ]𝑔−1

(𝑔 − 1)!

)★𝑑
= 𝑑!

[Θ]𝑔−𝑑
(𝑔 − 𝑑)! . (39)

A reference for (38) over C is [BL04, Cor. 16.5.8, p.538], which uses as its starting point [Bea86, Thm.,
p.647], also proven over C. However, [DM91, Thm. 2.19] shows that Beauville’s result holds over any
algebraically closed field and, consequently, the arguments for [BL04, Cor. 16.5.8, p.538] go through in
positive characteristic as well. Of course, (38) is elementary to prove in ℓ-adic cohomology and this is,
in fact, all we need.

Proof of Proposition A.11. Let 𝑝0 ∈ 𝐶 and set 𝐷0 = 𝑑𝑝0. From Corollary A.9 we know that 𝛿𝑑 is

generically finite; therefore, if we factor the composition 𝛿×
𝑑,�̃�0

: 𝐶𝑑 Sym
→ 𝐶 (𝑑)

𝛿𝑑,𝐷0→ 𝑃 as

𝛿×
𝑑,�̃�0

: 𝐶𝑑
𝛿𝑑1, �̃�0 �� 𝑃×𝑑 + �� 𝑃,

then from the left-hand side of (37), (32) and (39), we have

(𝛿×
𝑑,�̃�0

)∗ [𝐶𝑑] =
(
(𝛿1, �̃�0 )∗ [𝐶]

)★𝑑
=

(
2
[Ξ]𝜌−1

(𝜌 − 1)!

)★𝑑
= 2𝑑𝑑!

[Ξ]𝜌−𝑑
(𝜌 − 𝑑)! .

On the other hand, we have

(𝛿×
𝑑,�̃�0

)∗ [𝐶𝑑] = (𝛿𝑑,�̃�0
)∗ Sym∗ [𝐶𝑑] = 𝑑!(𝛿𝑑,�̃�0

)∗ [𝐶 (𝑑) ],

completing the proof. �

A.4. The degree of the Abel–Prym map

We start with the following consequence of Proposition A.11.

Corollary A.12. Let ℓ be a prime number not equal to char(𝑘). For 𝑑 ≤ 𝑔−1 and taking 𝐷0 ∈ 𝐶 (𝑑) , the
class [Im 𝛿𝑑,�̃�0

] of the image of the pointed Abel–Prym map 𝛿𝑑,�̃�0
(as a set or, rather, as an irreducible

scheme, with the reduced induced scheme structure) is

[Im 𝛿𝑑,�̃�0
] = 2𝑑

deg 𝛿𝑑,�̃�0

[Ξ]𝜌−𝑑
(𝜌 − 𝑑)! ∈ 𝐻2𝜌−2𝑑 (𝑃,Zℓ (𝜌 − 𝑑)),

where 𝜌 = 𝑔 − 1 = dim 𝑃.

Proof. This follows from Proposition A.11 using the fact that 𝛿𝑑 is generically finite (Corollary A.9) so
that (𝛿𝑑,�̃�0

)∗ [𝐶 (𝑑) ] = deg(𝛿𝑑,�̃�0
) [Im 𝛿𝑑,�̃�0

]. �

This gives the following corollary.

Corollary A.13. We have deg 𝛿𝑔−1 = 2𝑔−1, and if char(𝑘) = 0, then for 𝑑 ≤ 𝑔 − 2 we have deg 𝛿𝑑 =
2𝑛 ≤ 2𝑑 for some integer 𝑛 ≤ 𝑑. If char(𝑘) = 𝑝 > 0, then for 𝑑 ≤ 𝑔 − 2 we have deg 𝛿𝑑 = 𝑝𝑚2𝑛 for
some integers m and n with 𝑛 ≤ 𝑑.

Proof. In the case where 𝑑 = 𝑔 − 1, we know, in addition, the class of the image Im(𝛿𝑔−1,�̃�0
); indeed,

𝛿𝑔−1,�̃�0
surjects onto P (Corollary A.9), so that Im(𝛿𝑔−1,�̃�0

) = 𝑃. The fact that deg 𝛿𝑔−1 = 2𝑔−1 then
follows immediately from Corollary A.12, completing the proof.
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The case where 𝑑 ≤ 𝑔 − 2 follows from the fact that [Ξ]𝜌−𝑑
(𝜌−𝑑)! ∈ 𝐻2𝜌−2𝑑 (𝑃,Zℓ (𝜌 − 𝑑)) is a minimal

cohomology class (i.e., it is not divisible by ℓ), so that Corollary A.12 (considered for all primes
ℓ ≠ char(𝑘)) implies that deg 𝛿𝑑 must be a power of the characteristic exponent of k times a power of 2
that is at most 2𝑑 . �

A.5. The Abel–Prym map for hyperelliptic covers

We now discuss the degree of the Abel–Prym map in the case where 𝐶 is hyperelliptic.

Proposition A.14. Assume that 𝐶 is hyperelliptic. Then for 𝑑 ≤ 𝑔 − 1, we have deg 𝛿𝑑 = 2𝑑 .

Proof. From Corollary A.13 we only need to show that deg 𝛿𝑑 ≥ 2𝑑 . So fix 𝐷 = 𝑝1 + · · · + 𝑝𝑑 ∈ 𝐶 (𝑑) to
be general; in particular, such that the fibre of 𝛿𝑑 over 𝛿𝑑 (𝐷) is finite. For 𝐷 ′ = 𝑝′1 + · · · + 𝑝′𝑑 ∈ 𝐶 (𝑑) we
have 𝛿𝑑 (𝐷 ′) = 𝛿𝑑 (𝐷) if and only if 𝑝1 − 𝜄𝑝1 + · · · + 𝑝𝑑 − 𝜄𝑝𝑑 ∼ 𝑝′1 − 𝜄𝑝′1 + · · · + 𝑝′𝑑 − 𝜄𝑝′𝑑 or, equivalently,

𝑝1 + 𝜄𝑝′1 + · · · + 𝑝𝑑 + 𝜄𝑝′𝑑 ∼ 𝑝′1 + 𝜄𝑝1 + · · · + 𝑝′𝑑 + 𝜄𝑝𝑑 .

Denoting by h the hyperelliptic involution on 𝐶, the assumption that 𝐷 is general means that we can
assume that the 𝑝𝑖 and 𝜄ℎ(𝑝 𝑗 ) are all distinct. Therefore, there are 2𝑑 distinct choices of 𝐷 ′ such that
𝛿𝑑 (𝐷 ′) = 𝛿𝑑 (𝐷), determined by the 2𝑑 choices of taking 𝑝′𝑖 either equal to 𝑝𝑖 or to 𝜄ℎ(𝑝𝑖); note that
since the 𝑔1

2 on 𝐶 is unique, 𝑝 + ℎ(𝑝) is in the 𝑔1
2 if and only if 𝜄𝑝 + 𝜄ℎ(𝑝) is in the 𝑔1

2. �

A.6. The Abel–Prym map for general covers

We now prove that for a general cover 𝐶/𝐶, the degree of the Abel–Prym map is 1 for 𝑑 < 𝑔/2.

Corollary A.15 (The Abel–Prym map for general covers). Let𝐶/𝐶 be a general cover. Then deg 𝛿𝑑 = 1
for 𝑑 < 𝑔/2.

Proof. Let 𝐷 ∈ 𝐶 (𝑑) be a general point; in particular, assume that 𝐷 is reduced and Supp(𝐷) ∩
Supp(𝜄𝐷) = ∅. Now suppose that 𝐷 ′ ∈ 𝐶 (𝑑) and 𝛿𝑑 (𝐷) = 𝛿𝑑 (𝐷 ′). Then we have 𝐷 + 𝜄𝐷 ′ ∼ 𝐷 ′ + 𝜄𝐷. If
𝐷 + 𝜄𝐷 ′ = 𝐷 ′ + 𝜄𝐷, then considering the supports of the divisors, we must have that 𝐷 ′ = 𝐷. Otherwise,
𝐶 admits a 𝑔1

2𝑑 . However, by [AF12, Thm. 1.4], for a general cover 𝐶/𝐶, there is no 𝑔1
𝑒 on 𝐶 for 𝑒 < 𝑔.

Thus, if 𝑑 < 𝑔/2, then 𝐶 does not admit a 𝑔1
2𝑑 , and so 𝛿𝑑 is generically injective. �

Remark A.16. The Donagi–Smith [DS81, §3] approach to computing the degree of a generically finite
morphism by computing the local degree along a fibre, together with the general position theorem (e.g.,
[ACGH85, p.109] or [EH92, Thm. 3.1]) allows one to compute deg 𝛿𝑑 = 1 in characteristic 0 for 𝐶/𝐶
general and 𝑑 ≤ 𝑔 − 2.
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