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1. Introduction. The theorem of Borsuk-Ulam states that n odd
functions on the n-dimensional sphere always have a common zero. We
have tried to obtain a similar theorem by '"slightly" changing the conditions
for the functions, but it turned out that only a very weak analogue can be
expected in our case. Here we want to prove a few results and mention
some of the questions which have remained unanswered.

2. Results. Let Sr1 denote the unit sphere in euclidian (n+1)-

space, that is, the set of points x = (Xo’ v xn
n 2 . o 1
Z)o Xm = 1. For each integer n > 2 denote by k(n) (resp. k (n), k' (n))

the greatest integer k for which the following is true: Given k continuous

(resp. continuous even, continuous odd) functions fi: s > R (1 < i< k)
n

and k isometries w, st > s (1 < i< k) there always exists a point

X € Sn such that the equations fi(x) = fi(wix) hold simultaneously for

all i,1 < i < k. Of course we have 1 < k(n) < min {ko(n), ki(n)} .
The theorem of Borsuk-Ulam corresponds to Proposition 1.

PROPOSITION 1. k1(n) = n.

Proof. Let fi (1 < i< n) be n odd functions and w. n isometries.
Setting hi(x) = fi(x) - fi(wix) we define n odd functions hi for which
the theorem of Borsuk-Ulam guarantees the existence of a common zero
X € Sn . Obviously this implies fi(x) = fi(wix), and we have k1 (n) > n.
On the other hand consider the functions fi(x) = x (0 < i< n) and the

isometries w, = 0, where o is the antipodal map. If there were a
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a point x ¢ s" such that fi(x) = fi(wix) for all i, we would find

x, = 0 for each coordinate Xi’ which cannot be true. This shows
k (n) < n.
The situation changes completely if the functions need not be odd.

PROPOSITION 2. k(n) = 1.

Proof. Set f(x) = 22 mxfn and g(x) = X s and consider the

following isometries u,v :

= 0 < -1), = ;
(ux)m X 1 ( m < n-1) (ux)n X
(vx) = -x , (vx) = x (1 <m< n).
o o m m - -
n -1
For each point x ¢ S with f(x) = f(ux) we find X = t(n+1) 2.
If we had also g(x) = g(vx), this would imply x = 0, a contradiction.

If the functions under consideration are periodical with respect to
the corresponding isometries, more precise statements about them can
be derived. Results of this kind have been established by J. Binz in
[1]. In the case of even functions we have found, as a partial answer to
our question, the next proposition.

PROPOSITION 3. k°(n) < 2.

Proof. Consider the functions f,g,h defined by

n 2 n 2
= X = =
f(x) o MmX . g(x) z mx ., h(x) X x

1 1

and the isometries

(ux)m= X (0 <m< n-1), (ux) = X 3
(vx) = %, (vx) x 4 (M<m<n-1), (vx)_ = x;
(WX)O= -x s kwx) o= ox (1 <m < n).
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n
If there were a point x ¢ S satisfying

(1) f(x) = f(ux);
(2) g(x) = glvx);
(3) h(x) = h(wx);

the following equations would hold for its coordinates

21
(1 = = t (n+1)2;
2) x, =t (-3t
1 o) M
(3") x X, = 0.

This system of equations however has no solution.

We do not know whether ko(n) = 1 or ko(n) = 2 even in the
case n = 2. The only value of k° which we have been able to determine
o
is k (3) = 1, which may be verified by the following example. Consider

3
the two even functions on S ,

2 2 2 2.2 2
f(x) = (Xo R + x3) + 8(xox)1 - x2x3) ,

g(x) = x X, + X)X,

and the two isometries u,v : 83 - S3 defined by

(ux), = (xg - oxp =%, - xg)/2, (ux)y = (kg b oxy - ox) +xg)/2

(wx)y = G, +xp +x, - x)/2, (ux)y = (x) - %) +x) +x,)/2

(vx), = mxge (vx)y = oxp 0 vx), = ok, (ve)y = ox
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We verify

+ 8(x0x2 + x, x )2

f(ux) 133

n

xgxy - %)

n

g(vx) x3 ).

-(xox‘2 + x1

With regard to

+xx)‘2

2 2 2 2.2
- - +
(xo %y x, x3) + 4(xox 2 153

2
4 " x2x3) + 4(xox

2 2 2 2.2
—(xo+x1+x2+x3) =1

2
we derive from f(x) = f(ux) the relation 12(x0xZ + x1x3) = 1. It
is not possible to have at the same time g(x) = g(vx), since this would
imply X X, + X%, = 0, a contradiction to the result above.

3. Some related questions. If we add further restrictions to the
functions under consideration, our problem turns into a more geometric

one. Let £(n) and Zo(n) be defined similarly to k(n) and ko(n), with
the additional assumption that all the functions f, : s" > R shall be
equal to one single function, say f. By p(n) and po(n) we denote the

numbers which arise if we further require that f(x) (x ¢ Sn) is the
length of the segment Rx M F, where R_ = {\x : )\ > 0} denotes
- 2

the ray issuing from the origin and containing x, and F is a convex
compact subset of E , which contains the origin in its interior. Of

course we have k(n) < £(n) < p(n) and ko(n) < ﬁo(n) < po(n) . There
are easy examples which show p(n) = 1, for all n. In the case of even
functions we know much less. There exist upper bounds for lo(n)

which lie around in, and 10(3) equals 1. But so far we do not know

s s o .
any non-trivial lower bounds, not even for p , and our simplest open
question is, as described in [2] : "Are there three congruent convex

. . 3 . . L .
bodies in E, symmetric with respect to the origin, such that the
intersection of their boundaries is empty?"
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