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1. Introduction

In this paper we are concerned with linear systems of the following kind:

ẋ(t) = Ax(t),

y(t) = Cx(t),

}
t � 0. (1.1)

Here x(t) ∈ H, where H is a Hilbert space, is the state of the system at time t � 0 and
y ∈ L2(0,∞; Y ) is the output of the system. Y is another Hilbert space. The space H is
called the state space, and the space Y is called the output space. In (1.1), both A and
C are possibly unbounded operators. A is the infinitesimal generator of a C0-semigroup
T (t) on H and C is assumed to be a linear bounded operator from D(A), the domain
of A, to Y . However, in general C will not be a bounded operator from H to Y . By a
solution of ẋ(t) = Ax(t) with initial condition x(0) = x0 ∈ H we mean the continuous
function

x(t) = T (t)x0, t � 0.

These assumptions are not sufficient to guarantee that the output of the system is in
L2(0,∞; Y ). In order to guarantee this an additional assumption is needed. Following
Weiss [12] we introduce admissible observation operators for T (t). Let X and Y be
normed spaces; by L(X, Y ) we denote the set of bounded linear operators from X to Y .
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Definition 1.1. Let C ∈ L(D(A), Y ). Then C is called an (infinite-time) admissible
observation operator for T (t), if there is some K > 0 such that

‖CT (·)x‖L2(0,∞;Y ) � K‖x‖, x ∈ D(A).

Let C ∈ L(D(A), Y ). Then it is easy to show that Condition 1 implies Condition 2,
where

1. C is an infinite-time admissible observation operator for T (t);

2. for every φ ∈ Y ′ we have that φC is an infinite-time admissible observation operator
for T (t).

We refer to Condition 2 as weak admissibility. Clearly, it is the same as admissibility
if Y is finite dimensional.

Weiss [13] conjectured that Condition 2 implies Condition 1, and he proved this impli-
cation in that case that T (t) is merely right invertible and exponentially stable. Moreover,
in Hansen and Weiss [6] it is shown that Condition 2 implies Condition 1 if T (t) is expo-
nentially stable, normal and analytic. Further technical results concerning the implication
from Condition 2 to Condition 1 can be found in Hansen and Weiss [7]. Quite recently
Zwart, Jacob and Staffans [15] constructed an example showing that this implication
does not hold in general. In their example the operators A and C are bounded and T (t)
generates a strongly stable semigroup.

In this note we present another example showing that this implication is in general
not true. The C0-semigroup we choose in our example is even a contraction semigroup,
namely, the right shift on H2(C+, H), where H is an infinite-dimensional Hilbert space.
Infinite-time admissibility also implies the following resolvent condition.

3. There exists a constant m > 0 such that

‖C(sI − A)−1‖ � m√
Re s

, s ∈ C+.

Our example shows that Condition 3 is not sufficient for the admissibility of C, that
is, Condition 3 does in general not imply Condition 1 even if we restrict ourselves to
contraction semigroups. This answers another question posed by Weiss [13], see also
Weiss [14]. Note that Weiss showed that Condition 3 implies Condition 1 if T (t) is
exponentially stable and right invertible. Moreover, Partington and Weiss [11] showed
that this implication holds for the right shift on H2(C+) and finite-dimensional output
spaces, and in Jacob and Partington [8] their techniques were generalized to contraction
semigroups using the Sz.-Nagy–Foiaş model theory. Again, Zwart, Jacob and Staffans [15]
showed that this implication even fails if we restrict ourselves to bounded operators A

and C, and quite recently Jacob and Zwart [9] showed that this implication does not
hold for analytic C0-semigroups in the case that Y is finite dimensional.
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2. Presentation of the example

Throughout this section we assume the following: H is an infinite-dimensional Hilbert
space,

Z := H2(C+, H),

(Ax)(s) := −sx(s), x ∈ D(A), s ∈ C+,

D(A) := {x ∈ Z | iωx(iω) ∈ Z},

(T (t)x)(s) := e−stx(s), t � 0, x ∈ Z, s ∈ C+.

T (t) is the right shift semigroup on Z with infinitesimal generator A. Here C+ denotes
the right half-plane {s ∈ C | Re s > 0}, and H2(C+, H) denotes the Hardy space of H-
valued functions on the right half-plane, which is a closed subspace of L2(iR, H). By C−
we denote the set {s ∈ C | Re s < 0}, and H2(C−, H) is the corresponding Hardy space.
Moreover, P+ denotes the orthogonal projection from L2(iR, H) onto H2(C+, H), P−
denotes the orthogonal projection onto H2(C−, H), and J : H2(C+, H) → H2(C−, H) is
given by

(Jx)(s) := x(−s).

We will freely identify any locally integrable scalar- or vector-valued function f on iR
with its Poisson extension to the right (respectively, left) half-plane (provided it exists),
and we will denote the Poisson extension in z ∈ C+ (respectively, C−) by f(z). We call
f analytic, if its Poisson extension to C+ is analytic.

The following theorem will be crucial.

Theorem 2.1. There exists an analytic operator-valued function B : iR → L(H) such
that

(i) B(s)∗h/(1 + s) ∈ L2(iR, H) for every h ∈ H, and there exists a constant M > 0
such that ‖B(s)∗h/(1 + s)‖L2(iR,H) � M‖h‖ for all h ∈ H;

(ii) the Hankel operator

ΓB : {x ∈ H2(C+, H) | B(Jx) ∈ L2(iR, H)} → H2(C+, H)

defined by
ΓBx := P+(B(Jx)), x ∈ H2(C+, H),

cannot be extended to a bounded operator on H2(C+, H);

(iii) there exists a constant m > 0 such that

‖(ΓB)∗(fzh)‖ � m‖h‖, for every z ∈ C+, h ∈ H,

where fz ∈ H2(C+), z ∈ C+, is given by

fz(s) :=
√

Re z

s + z
, z, s ∈ C+.
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Remarks. This can be formulated as saying that Bonsall’s Theorem is not valid in
infinite dimensions, in the sense that the boundedness of the adjoint Hankel operator
(ΓB)∗ (or equivalently, the boundedness of the Hankel operator ΓB̃ with operator symbol
B̃(s) = B∗(−s)) on the normalized Szegö kernels fzh, z ∈ C+, h ∈ H, ‖h‖ = 1 does not
imply the boundedness of (ΓB)∗ (or ΓB̃).

A stronger result has been proved in [5] for the case of the unit circle: even the bound-
edness of both ΓB and (ΓB)∗ on the normalized Szegö kernels does not imply the bound-
edness of ΓB . It is also not difficult to derive a counterexample from the ‘dyadic case’
treated in [10].

However, it is easier to show that boundedness of ΓB and (ΓB)∗ on the normalized
Szegö kernels are not equivalent. We will do that here, presenting an elementary self-
contained counterexample. The boundedness of ΓB and of (ΓB)∗ on the normalized Szegö
kernels have interpretations as natural BMO conditions on the operator function B (see,
for example, [5]).

It remains to ask whether, similar to the boundedness of (ΓB)∗ on the normalized Szegö
kernels reflecting weak admissibility, the boundedness of ΓB on the normalized Szegö
kernels also reflects an interesting property of the associated linear system, and whether
the above-mentioned counterexample from [5] therefore contains interesting information
about linear systems.

Proof of Theorem 2.1. We consider operator functions of the form B = b⊗ ē, where
b is a locally integrable H-valued function on iR, e is a fixed unit vector in H, and the
bar stands for componentwise complex conjugation (relative to some fixed orthonormal
basis of H). By an imitation of the well-known calculation of Bonsall (see [3], p. 290–291,
eqns (1)–(5)), we have

‖(ΓB)∗fzh‖2 = 〈BB∗(z)h, h〉 − 〈B(z)B∗(z)h, h〉
= ‖〈b, h〉‖2(z) − ‖〈b(z), h〉‖2 for h ∈ H, ‖h‖ = 1, z ∈ C+. (2.1)

Taking a fixed h ∈ H, the supremum of the above expression over all z ∈ C+ is just
(up to equivalence) the square of the BMO-norm of the scalar-valued function 〈b, h〉 (see,
for example, [4], p. 234, Corollary VI.2.4).

So asking for uniform boundedness of expression (2.1) means that we require the
vector-valued function b to be weakly BMO in the sense that 〈b, h〉 is in scalar-valued
BMO uniformly for all h ∈ H, ‖h‖ = 1. We call the space of those functions WBMO(H)
and equip it with the norm

sup
h∈H,
‖h‖=1

sup
I⊂iR interval

1
|I|

(∫
I

|〈b(t), h〉 − 〈mIb, h〉|2 dt

)1/2

,

which is equivalent to the square root of the supremum of expressions in (2.1).
On the other hand,

sup
h∈H,
‖h‖=1

‖ΓBfzh‖2 = sup
h∈H,
‖h‖=1

〈B∗B(z)h, h〉 − 〈B(z)∗B(z)h, h〉
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= sup
h∈H,
‖h‖=1

‖b‖2(z)|〈e, h〉|2 − ‖b(z)〈e, h〉‖2

= ‖b‖2(z) − ‖b(z)‖2 for z ∈ C+. (2.2)

The supremum over all z ∈ C+ is equivalent to the (strong) vector BMO norm of b,
namely

sup
I⊂iR interval

1
|I|

(∫
I

‖b(t) − mIb‖2 dt

)1/2

.

We denote the space of all H-valued functions for which this expression is finite by
BMO(H).

We now compare the weak and the strong BMO norm of H-valued functions in the
above sense. The following lemma seems to be known, although the authors are not aware
of it appearing in the literature. Note that, by taking an orthonormal basis of H, we may
(for each N � 1) regard CN as being isometrically embedded as a subspace of H.

Lemma 2.2. Let H be an infinite-dimensional separable Hilbert space. Then

BMO(H) � WBMO(H).

Moreover, there exists a constant c > 0 such that for each positive integer N , there exists
a CN -valued function bN on iR with

‖bN‖WBMO(H) � c
1

N1/2 ‖bN‖BMO(H). (2.3)

Proof. Let D denote the standard system of dyadic subintervals of R, with [0, 1] ∈ D.
For I, J ∈ D, I � J , let sgn(I, J) = 1, if I is contained in the left half of J , and
sgn(I, J) = −1, if I is contained in the right half of J . Similarly, for each I ∈ D, let
sgn(I) equal 1 (respectively, −1) if I is contained in the left (respectively, right) half of
its dyadic mother interval.

Let e1, . . . , eN denote the standard basis of CN , and let eI := ek for |I| = 2−k and
eI = 0 for |I| � 1 or |I| < 2−N . For I ∈ D, define bI = sgn(I)|I|1/2eI .

We now define b by
b(it) =

∑
I∈D

bIhI(t),

where hI denotes the Haar function |I|−1/2(χI+ −χI−) and I+ (respectively, I−) denotes
the left (respectively, right) half of I.

We obtain∫
[0,1]

‖b(it) − mi[0,1]b‖2 dt =
∑
I∈D,

I�[0,1]

‖bI‖2 =
∑
I∈D,

I�[0,1],
2−N �|I|<1

|I|‖eI‖2 = N,

thus ‖b‖BMO(H) � N1/2.
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On the other hand, for any J ∈ D and h ∈ H with ‖h‖ = 1, we have∫
J

|〈b(it) − miJb, h〉|2 dt =
∑
I�J

|〈bI , h〉|2

=
∑
I�J

‖bI‖2|〈eI , h〉|2 =
∑
I�J

|I||〈eI , h〉|2 � |J |.

To check the WBMO condition for b, it is now sufficient to compare 〈miIb, h〉 and
〈miI′b, h〉 for neighbouring dyadic intervals I, I ′ of the same length (see [4], p. 274).

Let Ĩ be the smallest dyadic interval containing both I and I ′. Then

〈miIb, h〉 − 〈miI′b, h〉

=
∑

J∈D,J�I

sgn(I, J)
1

|J |1/2 〈bJ , h〉 −
∑

J′∈D,J ′�I′

sgn(I ′, J ′)
1

|J ′|1/2 〈bJ′ , h〉.

It is not difficult to see that the contributions from all J , J ′ in the above sum apart
from J = J ′ = Ĩ cancel out, and we are left with

2 sgn(I, Ĩ)
1

|Ĩ|1/2
〈bĨ , h〉.

Thus |〈miIb, h〉 − 〈miI′b, e〉| � 2. Using a standard argument about the comparison of
BMO and dyadic BMO (see, for example, [4], p. 274 again), we obtain that ‖b‖WBMO(H) �
c with a constant c > 0 independent of N . Setting bN = b finishes the proof of the
lemma. �

Note that also∥∥∥∥ 1
1 + t

〈bN , h〉
∥∥∥∥

L2(iR,dt)
�

(
2 + 2

∞∑
n=1

1
n2

)
‖〈bN , h〉‖L2(i[0,1],dt) �

(
2 + 2

∞∑
n=1

1
n2

)
(2.4)

for all h ∈ H, ‖h‖ = 1 and all positive integers N . But∥∥∥∥ (bN ⊗ ē)∗

1 + t
h

∥∥∥∥
L2(iR,dt)

=
∥∥∥∥ 1

1 + t
〈bN , h〉

∥∥∥∥
L2(iR,dt)

, (2.5)

which gives the estimate in property (i) of Theorem 2.1.
We still require B to be analytic, i.e. b has to be analytic. But since the Riesz projection

P+ : L2(iR, H) → H2(C+, H) extends to a bounded linear operator on both WBMO(H)
and BMO(H) (this follows from the boundedness of the Hilbert transform on scalar BMO
and also on BMO(H); see, for example, [2]), we have

c1‖b‖WBMO(H) � ‖P+b‖WBMO(H) + ‖P−b‖WBMO(H) � c2‖b‖WBMO(H)

and
c1‖b‖BMO(H) � ‖P+b‖BMO(H) + ‖P−b‖BMO(H) � c2‖b‖BMO(H)
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with constants c1, c2 > 0 independent of b and N . So, replacing each bN in the lemma
above by either P+bN or JP−bN , we obtain the statement of the lemma also for analytic
CN -valued functions. These modified functions still satisfy estimates (2.3) and (2.4) (up
to a constant) and equation (2.5).

Altogether, we have the following.

Lemma 2.3. There exist constants M, m, c > 0 such that for each positive integer N ,
there is an analytic function bN : iR → CN with

(i) ‖bN‖WBMO(H) � m,

(ii) ‖bN‖BMO(H) � N1/2/c,

(iii)
∣∣∣∣
〈

1
1 + s

bN , h

〉∣∣∣∣
L2(iR)

� M for all h ∈ H, ‖h‖ = 1.

In particular, ‖(bN (s) ⊗ ē)∗h/(1 + s)‖L2(iR,H) � M for h ∈ H, ‖h‖ = 1.

Letting N → ∞ and using the Banach Open Mapping Theorem now finishes the proof
of Theorem 2.1. �

We can now prove the main result of this paper.

Theorem 2.4. There exists an operator C : D(A) → H such that

(i) C ∈ L(D(A), H);

(ii) C is not an admissible observation operator for T (t);

(iii) there exists a constant m > 0 such that

‖C(zI − A)−1‖ � m√
Re z

(z ∈ C+);

(iv) for every φ ∈ H ′ we have that φC is an admissible observation operator, that is, C

is weakly admissible.

Proof. We define the operator C : D(A) → H by

〈Cx, h〉 =
∫ ∞

−∞
〈B(−iω)x(iω), h〉 dω, x ∈ D(A), h ∈ H, (2.6)

where B is as in Theorem 2.1. Then C satisfies properties (i)–(iv) as follows.
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(i) Let x ∈ D(A), h ∈ H, ‖h‖ = 1, and define x0 ∈ H2(C+, H) by x0 = (I − A)x.
Then we have

|〈Cx, h〉|2 =
∣∣∣∣
∫ ∞

−∞
〈B(−iω)(I − A)−1x0(iω), h〉 dω

∣∣∣∣
2

=
∣∣∣∣
∫ ∞

−∞

〈
B(−iω)
1 + iω

x0(iω), h
〉

dω

∣∣∣∣
2

=
∣∣∣∣
∫ ∞

−∞

〈
x0(iω),

B∗(−iω)
1 − iω

h

〉
dω

∣∣∣∣
2

�
∫ ∞

−∞
‖x0(iω)‖2 dω

∫ ∞

−∞

∥∥∥∥B∗(−iω)
1 − iω

h

∥∥∥∥
2

dω

� M‖x0‖2 � M(‖x‖ + ‖Ax‖)2,

where M > 0 is independent of x ∈ D(A).

(ii) Since the Hankel operator ΓB in Theorem 2.1 has no bounded extension to
H2(C+, H), we see that, given any M > 0, there is an x ∈ H2(C+, H) of norm 1
such that B(Jx) ∈ L2(iR, H) and ‖P+B(Jx)‖ > M . By considering the function
s 	→ x(s)/(1 + εs) for sufficiently small ε > 0, we may assume in addition that
(1+ s)x(s) and (1+ s)B(Jx)(s) both lie in L2(iR, H). In particular, x ∈ D(A) and
B(Jx) ∈ L1(iR, H).

Now for any t � 0 and any h ∈ H, we obtain

〈CT (t)x, h〉 =
∫ ∞

−∞
〈B(−iω)(e−iωtx(iω)), h〉 dω

=
∫ ∞

−∞
〈e−iωtB(−iω)x(iω), h〉 dω

=
∫ ∞

−∞
〈eiωtB(iω)x(−iω), h〉 dω

= 2π〈L−1
b (B(Jx))(t), h〉,

where Lb : L2(R, H) → L2(iR, H) denotes the bilateral Laplace transform. That
is, CT (t)x is the inverse Laplace transform of 2πP+(B(Jx)). Thus we get

(∫ ∞

0
‖CT (t)x‖2 dt

)1/2

= 2π‖P+(B(Jx))‖ � M2π‖x‖,

which proves that C is not an admissible observation operator for T (t).
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(iii) For z ∈ C+, x ∈ H2(C+, H) and h ∈ H we have

〈h, C(zI − A)−1x〉 =
∫ ∞

−∞

〈
h, B(−iω)

x(iω)
z + iω

dω

〉

=
∫ ∞

−∞

〈
B(−iω)∗h

z − iω
, x(iω)

〉
dω

=
∫ ∞

−∞

〈
B(iω)∗h

z + iω
, (Jx)(iω)

〉
dω

=
1√
Re z

∫ ∞

−∞

〈
JB(iω)∗

√
Re z

z + iω
h, x(iω)

〉
dω

=
1√
Re z

〈(ΓB)∗fzh, x〉

and so
‖C(zI − A)−1‖ � m

1√
Re z

by part (iii) of Theorem 2.1.

(iv) Let φ ∈ H ′. Then part (iii) implies

‖φC(zI − A)−1‖ � m√
Re z

‖φ‖ for every z ∈ C+.

Using the fact that A generates a contraction semigroup, the main result of Jacob
and Partington [8] shows that φC is an admissible observation operator for T (t).
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While this paper was being refereed, O. Blasco pointed out to us that the inequality
of BMO(H) and WBMO(H) in Lemma 2.2 can also be deduced from Corollaries 1 and
2 in [1].
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