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POSITIVE SOLUTIONS OF A CLASS OF BIOLOGICAL MODELS
IN A HETEROGENEOUS ENVIRONMENT

AFSHIN GHOREISHI AND ROGER LOGAN

In this paper we discuss existence of positive solutions to a general nonlinear elliptic
system of reaction-diffusion equations representing a predator-prey or competition
model of interaction between two species, in a heterogeneous environment. We
also consider homogeneous Dirichlet and/or Robin boundary conditions. In the
predator-prey case we give necessary and sufficient conditions for the existence of
positive solutions, while in the competition case we give sufficient conditions. We
use index theory in a positive cone to attack our problem and characterise our
results by the sign of the first eigenvalues of certain Schrodinger type operators.

1. INTRODUCTION

Recently, there has been a great deal of study done on the reaction-diffusion sys-
tems used to model interaction between two species. An important problem is to study
whether there exist positive time independent solutions of such models. A large number
of these studies [3, 4, 5, 6, 8, 9, 10, 12, 13, 18] consider systems of Lotka-Volterra
type. But, of course, it is natural to consider general nonlinear reaction rate terms, as
in [7, 4, 12, 14, 16, 17].

A common feature of all of the above studies is the spatial homogeneity of the
reaction term; that is, their lack of dependence on the spatial variable. A general
elliptic system which reflects a heterogeneous environment is the following

—Au =«M(i ,u 1 i ) )

—Av =vN(x,u,v), in 17,

where Q is a bounded open region in R n with smooth boundary 80.. In [19, 21] such
models for the competition and symbiotic interaction are studied. They both utilise a
monotone iteration scheme which requires the existence of upper and lower solutions.
It is usually very difficult to show the existence of upper and lower solutions for each
specific model. Keller and Lui [11] employ a variational approach for the predator-prey
model under homogeneous Neumann boundary conditions. Another feature common
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80 A. Ghoreishi and R. Logan [2]

to most of the above studies is that they work either with homogeneous Dirichlet or

Neumann boundary conditions.

Here we study existence of positive solutions of system (1.1) in both predator-

prey and competition models under the following homogeneous mixed (homogeneous

Dirichlet and/or Robin) boundary conditions.

du
Biu =ai —- + biu - 0

On

B2v =02-5—\- b2v = 0, on dfi
on

where a; ^ 0 and bi > 0, for i = 1,2.

We will characterise our results using the sign of the principal eigenvalue of cer-
tain operators, which are sharper results than those obtained by monotone schemes.
This will be clear in the predator-prey case, for which we give necessary and sufficient
conditions for the existence of positive solutions.

2.PRELIMINARIES

In this section we set up the notation, state some known lemmas, and give some

new results, which we will use throughtout this paper.

Let Ai > 0 and <f>\ > 0 denote the first (principal) eigenpair of the eigenvalue

problem

—Au = Xu, in f2

tt = 0, on dil.

Let X[ > 0 denote the first eigenvalue of the eigenvalue problem

—Aw = Au, in fl

Biu = 0, on dCl,

for i = l ,2 .

Let E denote any ordered Banach space with its usual positive cone P. For a linear

operator T:E -» E, let r(T) denote its spectral radius. For i = 1,2, and q £ L°°(Q),

let AJ(A + q) denote the principal eigenvalue of the eigenvalue problem

(A + q)u = Xu, in Q

Biu = 0, on dCl.

Also let Ai(A -|- q) denote the first eigenvalue of the above eigenvalue problem with
boundary condition Bu := a(du/dn) -f- fru = 0 on 9f2 with a ^ 0 and b > 0. We say
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an ordered pair (u,t>) is positive if u > 0 and v > 0. Finally, let a be a positive fixed
constant less than one.

The proofs provided in Li [14] will also work for the following three lemmas.

LEMMA 2 . 1 . Assume q € L°°(Q). Let u ^ 0 in SI with Bu = 0 on dft.
(i) If0 £ (A + q{x))u > 0, then Ai (A + ?(*)) > 0.

(ii) If 0 ̂  (A + q(x))u < 0, then A^A + q(x)) > 0.
(iii) U 0 £ (A + g(a;))u = 0, then Aj(A + «(*)) = 0.

LEMMA 2 . 2 . Let T be a compact strongiy positive (maps P\{0} into IntP)
linear map on i?, and assume that u 6 IntP.

(i) tfTu>u, then r ( T ) > l .
(ii) IITu<u, then r(T) < 1.
(iii) HTu = u, then r(T) = 1.

LEMMA 2 . 3 . Suppose Ai(A + ?(z)) > , < , or = 0, where q £ Z°°(f2). Then
r[(—A +p)~1(g(z) +p)] > , < , or = 1 respectively, for appropriate p's>\\ q \\z,co .

Consider the following elliptic boundary value problem.

Au+uf(x,u) = 0, in fi

Bu = o, on an,

where f is C1 in u and C a in x.
A function UQ 6 C2(f2) D C1(O) is called an upper solution of (2.1) if A«o +

uof(x,uo) < 0 in fi, Bmo ^ 0 on dtt. A function v0 e C2(fi) H C 1 ^ is called a
lower solution of (2.1) if Auo +vof(x,vo) ^ 0 in fl, 5i«o ^ 0 on dil.

THEOREM 2 . 4 . Suppose vo ^ uo are lower and upper solutions of (2.1) respec-
tively. Then there exists a solutionu £ C ^ f ^ n C 1 ^ of (2.1) such that v0 < u ^ u0 .

The proof, see Sattinger [20], consists of constructing two monotone sequences
of upper and lower solutions starting with UQ and vo respectively, which converge to
solutions of (2.1). Denote the limit of the sequence started with uo by u and the other
by v. It turns out that v ^ u. Using the construction of the Theorem 2.4, it is easily
shown that:

THEOREM 2 . 5 . u and v are, respectively, maximal and minimal solutions, in
the sense that if u is any other solution of (2.1) with VQ ̂  u ^ uo, then v ^ u ^ u.

The following lemma is due to Beretyski and Lion [2].

LEMMA 2 . 6 . Let f be a strictly decreasing function with /(c<>) < 0 for some
c0 > 0. If /(0) > Ai, then the problem

Au + uf(u) = 0, in f]

u = 0, on dtl
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has a unique positive solution < c0. If /(0) ^ Aj, 0 is the only nonnegative solution
of this problem.

We generalise and extend this lemma as follows.

LEMMA 2 . 7 . Consider problem (2.1). Suppose fu< 0 for u > 0, and f(x,c0) <
0 for some Co > 0 and all x G SI.
(i) If Ai(A + /(x,0)) ^ 0, then 0 is the only nonnegative solution of (2.1).

(ii) If Ai(A + /(a;,0)) > 0, then (2.1) has a unique positive solution u < CQ .
(Hi) 0 is the only solution to the Iinea.ris3.tion problem of (2.1) at this unique positive

solution u, if it exists.

PROOF: (i) If u is a positive solution of (2.1), then A^A +/(a;,0)) >
Ai(A+ /(*,«)) = 0.
(ii) By the strong maximum principle every nonnegative solution of (2.1) is < Co-
Now Co is an upper solution of (2.1) while e^i > 0, for small enough e > 0, is a
lower solution, where tpi > 0 is the first eigenfunction of the operator A + /(a;,0) with
Bipi = 0 on dCl. Therefore, by Theorem 2.1, boundary value problem (2.1) has a
positive solution.

Let u be the maximal solution obtained through the monotone scheme. Then if u
is any other nonnegative solution, u ^ u and if it ^ u by the strong maximum principle
u < u in Cl. Let v = u — u. Now 0 = Av +uf(x,u) - uf(x,u) < Au +uf(x,u) —
uf(x,u) = Av + vf(x,u). Thus Aj(A + f(x,u)) > 0, which is a contradiction. Hence
u = u.
(iii) The linearisation of (2.1) at u is

Au; + w(f(x,u) + ufu(x,u)) — 0, in fi

dw
a— h ho = 0, on flfl.

On

Since the spectrum of the operator A + (/(z,u) +ufu(x,u)) lies in
(—oo, Ai(A + f(x,u) +ufu(x,u))] C (—oo,0), this problem cannot have a nonzero so-
lution.

Let F C C(n x R + ) denote the collection of all functions f{x,u): fi x R + -» R
satisfying:
(i) / is C1 in u and Ca in x;

(ii) /„ < 0 and f(x,co) < 0 for all x £ Q and some positive constant CQ independent
of/;

(iii) | /u | ̂  / in SI X [O,co] for some positive constant I independent of / .

For each / e F, let uf be the positive solution of (2.1) , when Ai (A + f(x, 0)) > 0.
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Define the map T:F -> C 1 (ft) via

{ Uf, if A!(A + / (x ,0) ) > 0

0, otherwise.

D
Following the method in Blat and Brown [3], we prove the following.

THEOREM 2 . 8 . T is continuous and if fi, f2 G F with / i ^ f2 then either
Tfi > Tf2 or Tfx = Tf2 = 0, in n .

PROOF: Let /„ -» / in C ( f i x R + ) . First suppose that Tf ^ 0, that is,
Ai(A + f(x,0)) > 0. By the variational property of the principal eigenvalue we can
see that Ai(A + /n(z,0)) > 0 for sufficiently large n, so Tfn = u/n > 0 in $7 for such
n. Also for large enough n, there is a e > 0, independent of n, such that etjii is a lower
solution to Au + ufn(x,u) = 0 in Q, u = 0on 9fi, while c<> is an upper solution and
ufn < co i a n ( i ^i is as defined in the proof of Lemma 2.7.

Thus by the uniqueness ofw/n 's and Theorem 2.4 we have that Ufn ^ e^i f°r

large enough n. That is, no subsequence of{u/n} converges to 0. If {w/n} does not
converge to Uf, then we can find a subsequence of {«/„}, which we again denote by
{u/n}> lying outside a C1-neighbourhood of u / . Since for all p ^ 2, by the Agmon,
Douglis, and Nirenberg inequality,

II «/» IIW'.P < c(ll «/„ Ik" + II «/„/(*,«/„) Ik") < constant < oo

for all n and some positive constant c depending on p. Then, by the Sobolev imbedding
theorem, {**/„} is also bounded in C1|a-norm. Hence {«/„} is also bounded in C2'"-
norm, since

for some positive costant c depending on a, by the Schauder estimate.

Therefore {«/„}, {Dufn}, and {D2Ufn} are all equicontinuous, where D and D2

denote first and second derivatives respectively. The Arzela- Ascoli Theorem implies that
there is an subsequence of {ufn} which converges, together with its first and second
derivatives, uniformly to a positive function w £ C2(fi) n C1 (fi). Moreover, w is a
solution of (2.1), so by uniqueness of u / , w = Uf. A contradiction, hence Ufn —* «/ .

Now, suppose that Tf = 0. Assume that {«/„} does not converge to zero; then
a subsequence of {«/„}, which again we denote it by {«/„}, lies outside a C1 neigh-
bourhood of 0. Since ujn < CQ , by using the same argument as above we see that
{u/n} has a subsequence which converges to a positive solution, say w, of (2.1). Then
Ai(A + f(x,0)) > Ai(A + f(x,w)) = 0. A contradiction, hence Ufn -+ 0.
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Finally, suppose that f2 ^ /i ^ /2. First suppose that Tfi = 0; then Tf2 ^
Tfi in f2. If Tf2 ^ 0, strong maximum principle implies that Tf2 > Tfi in ft,
otherwise Tf2 = Tfi = 0 in SI. Second suppose that Tfi = u/j > 0 in ft, that is,
Ai(A + /i(*,0)) > 0. Since Aj(A + f2{x,0)) > \i(A + fi(x,0)) > 0, then Tf2 =
Uf3 > 0 in ft. Now Au/j +Uf1f2(x,Ufl) ^ Au/t + ujlfi(x,Ufl) = 0 implies that ujt

is a lower solution to Ait + uf2(x,u) = 0 in $7, B\u = 0 on 9ft. Since Co is an upper
solution, by the uniquness of u/, and Theorem 2.5, u^ ^ «/, . Hence again by the
strong maximum principle Uft < u/7 . D

Lemmas 2.7 and 2.8, above, are given in [15] for homogeneous Dirichlet boundary
conditions. The following theorem and lemma can be found in Amann [1].

THEOREM 2 . 9 . Let Int P be nonempty. Suppose that y <C y (y <C y if and
only if y — y € Int P), and let f: [y,y\ —* E be an increasing, compact map such
that f(y) = y and f{y) ^ y. Moreover, suppose that f has a strongly positive right
derivative at y, f+(y), such that r(f+(y)j > 1. Tien / has a maximal fixed point
x ^> y, and x is the limit of the decreasing sequence {fk{y)} •

LEMMA 2 . 1 0 . Let f:~Pp := cl{u € P :|| u \\< p} -^ P be a compact map such
that /(0) = 0. Suppose that f has a right derivative /+(0) at zero such that 1 is not
an eigenvalue of /+(0) corresponding to a positive eigenfunction. Then there exists a
constant <TQ G (0,p] such that for every a £ (0,o"o], i(f,Pa) = 0 if/+(0) .has a positive
eigenfunction corresponding to an eigenvalue greater than one.

3. PREDATOR-PREY MODEL

In this section we give necessary and sufficient conditions for the existence of posi-
tive solutions of (1.1) in the predator-prey case, under mixed boundary conditions. We
will also give a sufficient condition for the uniqueness of this positive solution.

Consider system (1.1) with the following boundary conditions

= a\ ——f- b\U = 0,
(3.1) %

B2v = a2-x—h b2v — 0, on d£l,
on

where 01,02 ^ 0 and 61, b2 > 0. We will work under the following hypotheses.

(H3.1) M and N are C1 in u and v, and Ca in x.
(H3.2) Mu, Mv, and Nv < 0, Nu > 0 for (x,u,v) G Q x R+ x R+.
(H3.3) There exists positive constants c\, c2, and cj such that M(x,ci,0),

N(x,0,c2), and N(x,ci,c3) < 0 for all x G ft.
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. If Aj(A + M(x,0,0)) > 0, then by Lemma 2.7 the problem

A« + UM(I ,B ,0 )=0 , infi

= 0, on dfi

has a unique positive solution. Denote this positive solution by «o • Similarily, let «o
be the unique positive solution of

Av + vN(x,0,v) = 0, infi

B2v = 0, on 0fi,

when Af(A + JV(a;,0)0))>0.

THEOREM 3 . 1 . Consider system (1.1), (3.1) with hypotheses (H3.1)-(H3.3).

(i) Any nonnegative solution (u,v)of it has a priori bounds; 0 ^ u < c\,
0 < v < cs.

(ii) If Aj(A + M(a:,0,0)) ^ 0, it has no positive solution and if
Aj(A + N(x,0,0)) ^ 0 also, then it has no nonnegative nonzero solu-
tion.

(iii) If AJ(A + N(x,0,0)) ^ 0, then it has a positive solution if and only if
Aj(A + M(a:,0,0))>0 and A*(A + N(x,u0,0)) > 0.

(iv) If AJ(A + N(x,0,0)) > 0, then it has a positive solution if and only if

We will prove these in a series of short lemmas.

LEMMA 3 . 2 . Nonnegative solutions of — Au = uM(x,u,v) in fi, B\u = 0 on
dCl, are uniformly bounded from above by c\ with respect to 0 ^ v £ C1 (?2) .

PROOF: Let u be a nonnegative solution with v = v. Then if u ^ 0, 0 =
\{(A + M(x,u,v)) < A}(A + M(z,0,0)). Also, Au+wM(a;,iZ)0) ^ Au+uM(x,u,v) =
0. Hence u is a lower solution to — Au = vJlf(z,ti,0) in fi, Biu = 0 on 3fi, which
allows for arbitrary large upper solutions and has a unique solution «o < ci. Therefore
0 ^ u < u0 < ci. D

LEMMA 3 . 3 . Nonnegative solutions of —Av = vN(x,u,v) in fi, B^v = 0 on
9fi, are uniformly bounded from above by cs with respect to 0 ^ u ^ c\, u € C1 (fi) .

PROOF: Let v be a nonnegative solution with u = u. Then if v ^ 0, 0 =
Xl(A + N(x,u,v))<X2

1(A + N(x,c1,0)). Also, Av+vN(x,d,0) ^ Au+viV^.u.i;) =
0. Hence v is a lower solution to — Av = vN(x,ci,0) in fi, B^v = 0 on dil, which
allows for arbitrary large upper solutions and has a unique positive solution < cj.
Therefore 0 < v < c3. •
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LEMMA 3 . 4 . If A?(A + lV(z,0,0)) > 0, then any positive solution of -Av =

vN(x,u,v) in fi, Biv = 0 on 8Q, is uniformly bounded from below by vo with

respect to 0 ^ u ^ ci, u € C1 (fi) .

PROOF: Let v be a positive solution with v. = u. If u = 0, then v = vo . Theorem
2.8 implies that v0 < v for u £ 0. D

LEMMA 3 . 5 . If our system has a positive solution when A| (A + M(x, 0,0)) > 0

and Xl(A + N(x,0,0)) ^ 0, then AX(A + N(x,uo,0)) > 0.

PROOF: Let («,w) be such a positive solution. Now 0 ^ u ^ Uo and i; > 0. Also

-Av = vN(x,u,v) <vN(x,uQ,0). Thus A?(A + JV(I ,U O ) 0 ) ) > 0. D

LEMMA 3 . 6 . If our system has a positive solution when Aj(A + M(x, 0,0)) > 0

and A?(A + W(a;,0,0))>0, then Aj(A + M(x,0,t;o)) > 0.

PROOF: Let (u,v) be such a positive solution. Now 0 < u ^ UQ and vo ^ v. Also

-Au = uM(x,u,v) < uM(x,u,v0) <uM(x,0,v0). Thus Aj(A + M(x,0,vo)) > 0. D

LEMMA 3 . 7 . If Aj( A + M(z, 0,0)) < 0, then there is no positive solution to our
system. If A (̂A + iV(x,0,0)) ^ 0 also, then there is no nonnegative nonzero solution

to our system.

PROOF: Suppose (u,v) is a positive solution. Now u ^ 0 and (A + M[x,u,v))u =

0. So AJ(A + M(x,0,0)) > AJ(A + M(x,u,v)) = 0. Suppose (u,v) is a nonnegative
nonzero solution. If u f£ 0, then Aj(A + M(z,0,0)) > 0. Otherwise v ^ 0 and
(A + N(x,0,v))v=0. So Af(A + JV(x,0,0))> Aj(A + iV(x,O,tJ)) = O. D

LEMMA 3 . 8 . Suppose our system has a positive solution. Then

\\(A + N(x,u0,0)) > 0 and also A}(A + M(z,O,i;o)) > 0, if A?(A + N(x,0,0)) > 0.

PROOF: Let (u,v) be a positive solutfon to our system. Since u < u0 and v >

0, \l(A + N(x,u0l0)) > A?(A + N(x,u,v)) = 0. Also since vo ^ v and u > 0,

AJ(A + M(a;,O,vo)) > A}(A + M{x,u,v)) = 0. D

LEMMA 3 . 9 . If AJ(A + M(z,0,0)), X\(A +N{x,uo,0)) > 0, and

Af (A + lV(s;,0,0)) < 0, then our system has a positive solution.

PROOF: Let E = C 1 (n) . Every nonnegative solution of

—Av — vN(x,u,v), in fi

B2V = o, on an

is bounded from above by c3 for all 0 < u < clt u £ C1(fi). For such u's and all
p ^ 2 nonnegative solutions of 3.2, by the Agmon, Doughs, and Nirenberg inequality,
also satisfy

|| v \[Wi,v < c(|| v ||LP + || vN(x,u,v) \\LP) < constant < oo,
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for some positive constant c depending on p . Thus, by the Sobolev imbedding theorem,

these solutions are also bounded in C l i a -norm, say by p\ > c s . Let p = p\ + 1.

For every v £ E, —An = uM(x,u,v) in n , B\u = 0 on dCt, has a unique

positive solution uv < c i , if and only if A} (A + M(aj,0,v)) > 0. Define operator

T: ~PP -> C 1 (n) via

Tv = < X

[ 0, otherwise.

T is a continuous operator and Tv = uv > 0 in il if and only if » £ {» € P,, :

AJ(A + M(x,0,v)) > 0} . Also, if vi < v2 , then either T«i > Tu2 or Tvx = Tv2 = 0.

Define operator .4.: P p —* P via

where p is chosen so large that N(x,0,p) + p > 0 for all x 6 O, and p is not an
eigenvalue of the EVP — A^ = A^ in Cl, B24> — 0 on dQ. Since the operator v —»
viV(x,Tw,u) + p« from P^, into P is bounded and the ope ra to r (—A+p) - 1 from P

into P is compact, then A is a compact operator. If v ^ 0 is a fixed point of A, then
(T«,u) is a nonnegative nonzero solution to our system.

For A G [0,1], define operator Ay. Pp —> P via

Ax = (-A + Py\XvN(x,Tv,v)+pv).

Suppose v is a fixed point of A\. Now v must attain its maximum in Q, since otherwise
dv/dn < 0 at the point on dCl where its maximum is attained, contradicting maximality
of v. Then by the maximum principle v < c$, and as in the first part of this proof
we can show that || v \\ci.<* < P- Therefore, by homotopy invariance and normalisation
properties of the index, we have that i(A, Pp) — 1.

Let Hi > 0 , rj>i > 0 be the first eigenpair of the operator A + N(x,ua,0).
Then from Lemma 2.3, (A + N(x,uo,O))il)i = /x^i > 0 implies that r(A'(0)) =
T((-A + P)~1(N(X,U0,0)+P)) > 1. By the Krein-Rutman Theorem, A'(0) has a
positive eigenfunction corresponding to its spectral radius. Furthermore, 1 is not an
eigenvalue of A'(0) corresponding to a positive eigenfunction, for if this were the case
then Af(A + N(x,uo,0)) = 0. Thus, by Lemma 2.11 and excision property of the index,
i(A,0) = 0.

Therefore by excision and solution properties of the index, A has a nonzero fixed

point, v, and by the strong maximum principle v > 0 in fi. Also u :— Tv > 0, for

if otherwise Tv = 0 and so 0 = Af(A + N(x,0,v)) < Af (A + JV(z,0,0)) < 0. Hence

(u,v) is a positive solution to our system. D
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LEMMA 3 . 1 0 . If Aj(A + M(s,0,0)), Xl(A +N(x,0,0)),and \\{A + M{x,0,v0))
> 0, then our system has a positive solution.

PROOF: AS in the proof of Lemma 3.9, we get a positive fixed point, v, of A.
Again u := Tv > 0, for if otherwise Tv = 0 and so by the uniqueness of VQ , v = vo •
But then Tv - Tv0 > 0 since Aj(A + M(x,0,vo)) > 0. Hence (u,v) is a positive
solution to our system. D

THEOREM 3 . 1 1 . IfuMv(x,u,v) =-vNu(x,u,v) forall(x,v.,v) e fixR+xR+,
then the positive solution of our system, if it exists, is unique.

PROOF: For any nonnegative solution (u,v) of (1.1), u < C\ , v < cs,

and || u | | c i(n)< Pi . II « llci(n)< Pi f o r s o m e £i . c> < ft' Set p = pi +1.

Let E = [C1^]2. Define operator A:~Pp-> P by

A(u,v) = (—A +p)~1(uM(x,u,v) +pu,vN(x,u,v) +pv),

where p is chosen so large that

-ciMax{| Mu(x,u,v) | :£ fl, 0 < « < ci, 0 < v < c3}

-Max{| M(x,C!,c3) | :iefi}+p>0

and —csMax{| Nv(x,u,v) \ : x £ Cl, 0 ^ u < c i , 0 < u < c3}

-Max{| N(x,0,c3) \ :xeQ}+p>0,

and p is not an eigenvalue of the EVP —A<f> — \<j> in Cl, Bi<f> = 0 on 9fi, for i = 1,2.
Each coordinate of A is a compact operator so A itself is a compact operator. Here
(u, v) is a nonnegative solution of (1.2) if and only if it is a fixed point of A.

Let (u, v), with u, v > 0 in f2, be a positive fixed point of A, and suppose

1 ^ A, (£i,£2) is an eigenpair of A'(u,v). Then

(A - p)6 + j(M(x,u,v) +p + wMu(x,«,iJ))6 + -uMv{x,u,v)i2 = 0

(A - p ) 6 + jvNu(x,u,v)^ + j(N(x,u,v) +p + vNv(x,u,v))t2 = 0.

Multiply the first equation by £1 and the second one by £2, integrate both over Q and

add them to get:

(3.3)
J [(A -p)6 + j(M(x,u,v) + p + 5Jlfll(«,«,t0)fc] 6 +

J [(A - p)6 + \(N(x,u,v) +p + vNv(x,u,v))hj 6 = 0.
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But \\[(A-p)+l/\(M(x,u,v)+p + uMu(x,u,v))} < X\[A+M(x,u,v)+uMu(x,u,v)]
< Aj(A + M(x,u,v)) = 0, and similarity Aj[(A - p)+l/X{N(x,u,v) + p + vNv(x,u,v))}
< 0 .

Hence by the variational property of the first eigenvalues and the fact that the first
eigenvalue of operator A + q{x), q £ L°°(fi), under homogeneous Dirichlet boundary
condition is less than or equal to the one under homogeneous mixed boundary condition,
we see that actually the LHS of (3.3) is less than zero.

Therefore J4'(IZ,IJ) has no eigenvalue greater than or equal to 1; hence i(A, (u,v)) —
1. But, by an application of Lemma 2.10, as in the proof of Lemma 3.9, we can show
that i(A, Pp) = 1. Therefore (u, v) must be the only positive solution to our system. D

REMARKS. Using Lemma 2.7, we can easily provide biological explanations for our
hypotheses. A* (A + M(x, 0,0)) ^ 0 if and only if prey does not exist, regardless of the
density of the predator. Conditions Aj(A + M(z,0,0)) > 0 and Aj(A + N(x,uo,0)) >
0 are both quite natural. Indeed, one expects that prey does exist when the predator is
absent; this happens exactly when AJ(A + M(s:,0,0)) > 0. When the prey density is at
its maximum carrying capacity of the environment, uo) one would expect that predator
also exists. This is equivalent to Aj(A + N(x,uo,Q)) > 0.

Now Aj(A + N(x,0,0)) > 0 means that the predator can live in the absence of
the prey; for example, when alternative food sources are available for the predator.
While, Af(A + iV(z,0,0)) ^ 0 represents the case at which predator can not survive
without the prey. Finally, Aj(A + JV(z,0,0)) and Aj(A + Af(z,0,v0)) > 0 is simply
equivalent to the expectation that prey can exist in the presence of the predator, when
the predator is at its lowest population density.

4. COMPETITION MODEL

In this section we give sufficient conditions for the existence of positive solutions
of (1.1), (1-2) in the competition case. We will work under the following hypotheses.

(H4.1) M and N are C1 in u and v and Ca in x.
(H4.2) Mu, Mv, Nu, and Nv < 0 for (x,u,v) G fi x R+ x R+.
(H4.3) There exist positive constants c\ and C2 such that M(z,ci,0), iV(x,0jC2) <

0 for all x e fi.

Here u and v are in competition. Denote the nonnegative nonzero solutions of our
system, if they exist, when one of the species is absent by («o>0) and (0,u0).

THEOREM 4 . 1 . Consider system (1.1), (1.2) with hypotheses (H4.1)-(H4.3).

(i) Any nonnegative solution of it has a priori bounds; u < Ci, v < c2 .
(ii) If AJ(A + M(x,0,0)) ^ 0 or A?(A + N(x,0,0)) < 0, it has no positive

solution, and if both hold true, it has no nonnegative solution.
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(iii) Suppose A|(A + M(x,0,0)) and A*(A + N(x,0,0)) are both positive,
zero, or negative; then it has a positive solution.

PROOF: Parts (i) and (ii) can be proven just as in the predator-prey case. Let
(u,v) be a positive solution to our system. Again, as in the proof for the predator-prey
case, u ^ «o < Ci and v ^ v<> < c2. Moreover, there exists p\ > c\, c2 such that
INIc1 ."^) ' IMIcl>°(n) < Pi- Set p = pi + 1. We will prove part (iii) through the
following lemmas. D

LEMMA 4 . 2 . Suppose Aj(A + M(z,0,0)) > 0 and A*(A + N(x,0,0)) > 0. It
Aj(A + M(x,0,vo)) > 0 and Aj(A + N(x,uo,O)) > 0, then our system has a positive
solution.

PROOF: Let E = (^(H). For every v G E, -Au+uM(x,u,v) = 0 in ft, Biu = 0
on dil, has a unique positive solution uv < C\ if and only if Aj(A + M(x,0,v)) > 0.
The operator T : [0,c2] -* E denned by

/ «., ifA1(A + M(x,0,V))>0
Tv = <

[ 0, otherwise

is continuous and if Vi ^ «2, then Tvi ^ Tv2 • Also, Tw = uv if and only if v £ {v G
[0,ca]: Ai(A + M(x ,0 ) V ) )>0} .

Define a compact increasing operator A : [0, c2] —• i1 via

for appropriate p and so large that —(1 + c2)Max{|iV(a;,ci,C2)| : x G ft} + p > 0.
If w ^ 0 is a fixed point of A, then (Ti;,i;) is a nonnegative nonzero solution

of our system. .40 = 0, and since N(c,Tc2,C2) < 0 we have that Ac2 ^ c2.
^4'(0) = (—A+p)~ (N(x,uo,O) + p) is strongly positive compact and r[j4'(0)] > 1,
since AJ(A + N(x,uo,0)) > 0. Thus by Lemma 2.9, A has a positive maximal fixed
point v. Define u := Tv. Then u > 0. For if Tv — 0 then v = VQ, by uniqueness of
w0) and hence 0 < Aj(A + M(x,0,v0)) - AJ(A + M(x,0,v)) < 0. Therefore (u,v)
is a positive solution to our system.

After the following discussion, we will prove the remaining parts of (iii). Let
E = [C1(n)]2, and let K be the usual positive cone of C1(n) . Define a compact
positive operator A : Pp —» P via

A{u,v) •.= (-A + p)~1(uM{x,v,,v) + pu, vN(x,u,v)+pv),

for appropriate p and so large that M&x{\M(x,p,p)\, \N(x,p,p)\} + (p — 1) > 0. Then
(u, v) is a positive solution to our system if and only if it is a positive fixed point of A.
For A G [0,1], define an operator A\ : Pp-* P via

A\v := (—A + p)~*(\v.M(x,u,v) + pu,XvN(x,u,v) +pv).
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If (w, v) is a fixed point of A\, we can show that u < c^, v < c2, and also ||u||ci.«(n) <
P> ll^llcl'a(n) < P- Therefore, by homotopy invariance and normalisation properties of
the index, we have that i(A, Pp) = 1.

Suppose our system has no positive fixed points, when Aj(A + M(x,0,vo)) and
Aj( A + N(X,UQ,0)) are either both zero or negative. Then the only nonzero nonnegative
fixed points of A are (uo,O) and (0,vo). Clearly, these are isolated in P. Hence the
fixed-point index i(A, (uo»0)) and i(A, (O,«o)) are well-defined. We will show that the
sum of the fixed-point index of all nonnegative nonpositive fixed points of A is not
equal to 1. Then, by the excision and solution properties of the index, A must have a
positive fixed point. A contradiction, hence we will be done. U

LEMMA 4 . 3 . U \\{A + M(x,0,0)) > 0 and A*(A + N(x,0,0)) > 0, then
i(ii,(0,0)) = 0.

PROOF: It is easy to see that (0, 0) is an isolated fixed point of A. Set

One can verify that 1 is not an eigenvalue of L corresponding to a positive (in
P\{(0,0)}) eigenfuction; for, if not, either Aj(A + M(x,0,0)) or X](A +N(x,0,0))
would be equal to zero. Since AJ(A + M(x,0,0)) > 0 we have
r[(-A + p)~a(M(x,0,0)+p)] > 1. Hence it follows that r(L) > 1. Let Vi be the
positive eigenfunction of (—A + p)~1(M(z,0,0) + p) corresponding to its spectral ra-
dius (Krein-Rutman Theorem guarantees existence of V>i )• Then (V>i>0) is a positive
(in -P\{(0,0)}) eigenfunction of L corresponding to an eigenvalue greater than one.
Therefore, by Lemma 2.1 and the excision property of the index, i(A, (0,0)) = 0. U

LEMMA 4 . 4 . Suppose Aj(A + M(x,0,0)) and \l(A + N{x,0,0)) > 0. If
AJ(A + M{x,0,vo)) and Af(A + N(x,uQ,0)) < 0, then i{A,(uo,O)) = i(A,(0,vo)) = 1.

PROOF: Since the proofs are virtually the same, we will only show that

»(i4,(tto,0)) = l .

As in the discussion prior to Lemma 4.3 (uojO) is an isolated (in P) fixed point of A;

hence i(A, (uo,O)) is well-defined. Set

.-A'(..,O):=(-A+prL 0 N(uo,O)+P\-

Let A ^ 1 and (£1,^2) be an eigenpair of L. Then

(-A +pr1(tf(x)UO)0)+p)6=A6, in
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If £2 ^ 0, r [(-A + p)~1(N(x,u0l0)+p)] ^ 1, which due to Lemma 2.3 is im-
possible since Af(A + N(x,uo,O)) < 0. Thus £2 = 0. In turn this implies that
r[(-A +p)~1(M(x,uo,0) + uoMu(x,uo,0)+p)] ^ 1. Again, since

Aj(A + M(x,uo,O) + u0Mu(x,u0,0)) < Aj(A + M(x,uo,O)) < 0,

this is impossible. Hence L has no eigenvalue greater than or equal to 1. Therefore
i(A,(«o,0)) = l . D

LEMMA 4 . 5 . Suppose Aj(A + M(z,0,0)) > 0 and \\(A +N(x,0,0)) > 0. If
Aj(A+M(x,O,t;o)) = 0 and A?(A + N(x,u0,0)) = 0, then i(A,(uo,O)) = i(A,{0,vQ)) =
1.

PROOF: Again, since the proofs are virtually the same, we will only show that

Let L = A'(u0,0). In this case 1 is an eigenvalue of L. Hence we cannot directly
calculate the index at («o,O) and (0,t>o)- We proceed as follows. Define a homotopy
B : Tp x [0,1] -» P via

B((u,v),t):=(-A +P)-\uM{x,u,v)+pu, v(N(x,u,v) - t) + pv).

Clearly, (uo,O) is a fixed point of B for all t ^ 0. One can verify that if ((u,w),I) is
a fixed point of B, then u < clt v < c2, and ||«||ci(jy)» ll^llcifn) < Pi + 1 < P- Thus
B has no fixed points on S~£ x [0,1]. Set

.-1 \M(x,uo,O)+uoMu(x,uo,O)+p u0Mv(x,u0,Q)
1 PM 0 N(x,u0,0)-t

Fix t > 0 and suppose A ^ 1, (6,^2) is an eigenpair of Lt. Then

If ^2 ^ 0 , then r[(-A + p)~1(iV(x,w0,0)+ p)] > 1, which due to Lemma 2.3 is im-
possible since Af(A + N(x,u0,0)) = 0. Thus £2 = 0. In turn, this implies that

r[(-A +p)

Again, since

AJ(A + M(x, u0, 0)) + w0Mu(x, u0, 0) < Aj(A + M(x, wo,0)) = 0,

this is impossible. Hence Lt has no eigenvalue greater than or equal to 1. Therefore
i(B, (w0,0)) = 1, for t > 0, whence by the homotopy invariance property on the index,
we have that i(A,(u0,0)) = 1. D
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REMARKS. AS in the predator-prey case there is a biological explanation for the con-
ditions, \\(A + M(x,0,0)) > 0, X\(A + M(x,0,vo)) > 0, A*(A + N{x,0,0)) > 0,
and Af(A + N(x,uo,O)) > 0. But we have not observed a biological explanation when
AJ(A + M(x,0,t;o)) and Aj(A + N(x,uo,O)) are either both zero or both negative.
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