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Abstract. The proposed method allows the detection and the measurement, in the sense of metrology,
of smooth elongated curvilinear shapes. Such measurements are required in many fields of physics, for
example: mechanical engineering, biology or medicine (deflection of beams, fibers or filaments), fluid me-
chanics or chemistry (detection of fronts). Contrary to actual methods, the result is given in an analytical
form of class C*° (and not a finite set of locations or pixels) thus curvatures and slopes, often of great
interest in science, are given with good confidence. The proposed Virtual Image Correlation (VIC) method
uses a virtual beam, an image which consists in a lateral expansion of the curve with a bell-shaped gray
level. This figure is deformed until it fits the best the physical image with a method issued from the Digi-
tal Image Correlation method in use in solid mechanics. The precision of the identification is studied in a
benchmark and successfully compared to two state-of-the-art methods. Three practical examples are given:
a bar bending under its own weight, a thin fiber transported by a flow within a fracture and a thermal
front. The first allows a comparison with theoretical solution, the second shows the ability of the method

to deal with complex shapes and crossings and the third deals with ill-defined image.

1 Introduction

The precise and accurate determination of the shape and
position of elongated objects such as hair [1], pulp fibers
[2], needles [3], biological filaments [4,5] or abiological ob-
jects [6,7] is of interest in various scientific and technical
domains. According to the beam theory [8], the curvature
is of importance as it is related to the bending moment. In
fluid mechanics [9-12], or chemistry, the line to be identi-
fied can be a front (temperature, concentration, etc.). In
this case, the knowledge of the normal vectors, related to
the angles of tangents, can be needed for a flux computa-
tion. In fracture mechanics, it may be useful to determine
the equation of the decohesion front [13]. In image process-
ing, angles and curvatures are parameters permitting to

compare different shapes [14].

Such analysis can already be done with various meth-
ods. The main objective of the ridge detection methods
used in the image processing field is the ability to detect
curves in a noisy image. Our method is more focused on
the accuracy of the detection of a unique curve. Ridge
enhancing filters [15-17], as well as efficient phase congru-
ency methods [18], emphasize pixels belonging to a ridge.
Such methods require a sorting and a filtering that influ-
ence the final result. In a similar way, beamlet theories
[19] results consist in a collection of segments which still
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requires filtering in order to obtain the derivatives. We re-
tained the two methods giving the best accuracy for com-
parison with ours. The first is Steger’s method [20] which
uses the Hessian of the Gaussian filtered image [21,22].
The second is the Fast Marching Algorithm [23], one of
the Minimal Path methods [24-26].

The proposed VIC method computes the equation of
the shape (thus simultaneously local angles and curva-
tures), with a sub-pixel precision and without filtering.
The elongated object shape, from now referred to as “phys-
ical beam”, is identified by its correlation with a “virtual
beam” (the word “beam” refers to the theory of Beam
Mechanics [8] and denotes here a curvilinear thick line).
The virtual beam mean line is defined from a truncated se-
ries expansion of its curvatures whose coefficients are iter-
atively varied until the virtual beam best fits the physical
one. For a light physical beam over a dark background, the
virtual beam has a smooth symmetric gray level distrib-
ution decreasing from white at the mean line (the middle
of the virtual beam) to black at the borders. As a con-
sequence it consists of a regular and smooth image with
an analytical expression. The optimal coefficients are given
by the minimization of the quadratic distance between
physical and virtual beam images. This optimization step
is similar to the one used by Hild and Roux [27] in
their version of the Digital Image Correlation method
(DIC). The DIC [28-31] allows the measurement of
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a displacement field from two images of a solid body: one
in the unstrained state and the other in the strained state.
The problem we address is different as only one image
is available and the body is unidimensional (the DIC re-
quires a textured image impossible to realize in our cases
where the physical beam width may be close to the pixel

size).

Section 2 presents the unidimensional version of the
VIC method. Key points of the method are introduced.
The minimization algorithm requires an initialization de-
tailed in Section 3. It consists of a segment by segment
identification which provides a set of equidistant points ly-
ing, already with a sub-pixel precision, onto the mean line
of the physical beam. The core of the method is explained
in Section 4: first, the virtual beam parameterization is
detailed; then the optimization method is presented, both
from analytical and numerical points of view. Section 5
is devoted to the quantitative validation of the method.
A reference image is built from an analytical spiral, dis-
cretized with different bit depths and levels of noise. The
positions, angles and curvatures are compared to exact
values. Section 6 shows three practical examples. The first
one, a bar bending under its own weight, allows the vali-
dation of the method on a real experiment by comparison
to the theoretical result. The second one consists of the
extraction from a noisy image of a fiber flowing in a rough
fracture. The last example considers the analysis of a dis-
continuous, scattered and very low contrasted isothermal

front.

2 The unidimensional case

We consider a 1D image F' obtained from the discretiza-
tion of a continuous 1D image f. The latter has a sym-
metry axis (which corresponds to the mean line in the 2D
case): the objective is to recover this axis from the knowl-

edge of F.

In Figure la, f is depicted by a half-cosine function
f(z) = cos(z —xy) if (v —xs) € [-7/2,7/2] and f(z) =0
elsewhere. This distribution qualitatively represents the
gray level distribution along one cross-section of the phys-
ical beam images presented in Section 6.1 or 6.2. The cor-
responding digital image F' is computed as the average of
f over each pixel (of width 1). Due to the chosen shift
s = 2.4, noninteger nor half-integer, F' has no symmetry

axis.

The estimation 2 (of the symmetry axis x5) is ob-
tained from the correlation of F' and the virtual image g

defined as:

s =5 (14 ()0 rel-r L

in which r = z — 4, 2R is the virtual image width and x;
is the trial value. Like f, the function g has a symmetry
axis but is only roughly of the same width and shape as
f. It is displayed in Figure 1b for R = m (the width of ¢

is then twice the width of f) and for z; = 2.
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Fig. 1. Example of the method in the unidimensional case.

The correlation function ¢ is the mean square devia-
tion between g and f:

R
o) = g7 [ Gen-go)? @

and the measure consists of zp = arg min(¢(x,)).

This expression is computed by using a thin mesh
(three times finer than the pixel size in Fig. 1b) associ-
ated to g. Due to its analytical expression (Eq. (1)), g is
easily digitalized into G on the fine mesh and F', defined
on the pixel grid, is interpolated on the fine mesh as Fg
thanks to a cubic interpolation (tested to present a good
compromise between accuracy and CPU time) (Fig. 1c).
The minimum of ¢(x;) is computed here by a standard
Matlab minimization procedure.

In the example (Fig. 1), one finds zp = 2.394 pixels
for x5 = 2.4. The identification is clearly sub-pixel while
F has only four significant pixels. Such precision is also
obtained when changing the shape of f (triangle, rectan-
gle), its contrast, luminosity or width (data not shown).
Figure 1d shows that ¢ is convex only in the vicinity of
xp: this justifies, in 1 or 2D, the computation of an ap-
proximate solution before the analytical determination.

3 Preliminary segment by segment
identification of the beam shape

Before the precise identification using the continuous an-
alytical virtual beam, the mean line is identified “segment
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Fig. 2. Virtual straight segment. (a) Gray levels.

(b) Parameterization and discretization.

by segment”. At each step, a segment is identified by cor-
relation between the digital image and a virtual segment
(a small straight virtual beam).

The virtual image g consists here of an extrusion of
the 1D virtual image used in Section 2. The coordinates
(s € [0, AL],r € [-R, R]) of its points are referred to the
local frame (Ay, Ty, v,) (Fig. 2). The gray level decays
from the mean line to the edges:

g(r,s) = % (1 + cos (%)) . (3)

The segment is positioned by Ap and the angle 0, =
(e1,Tx), where (O,e,ey) is the reference frame of the
physical image. We refer to g(; Ax) as the virtual image
after translation OAj and rotation of angle 6 (Fig. 2a).
The initial point Ay is set as the center of the previous
segment and 0 = argmin(¢) corresponds to the best fit
(similarly to Eq. (2)) between f and g:

o0 = spap [, U o040 as

where Dy is the definition domain of g and d.S is the sur-
face element. The initial value for the minimization is set
to #;_1 so that, for examples that present beam crossing
points (Fig. 14), this strategy chooses preferentially the
straightest (lowest curvature) path.

As in Section 2, the virtual image ¢ is discretized in
G over a mesh, thinner than the pixel size, constituted of
equally spaced points of R/p < 1 along 7 and AL/q < 1
along v (see Fig. 2b). The user selects the origin point of
the first segment A, the width 2R of the virtual beam
sections (slightly larger than the width of the physical
beam) and the aspect ratio AL/2R (generally set to 3). At
each trial value of 6, ¢ is computed using G and Fg (where
F¢ is the cubic interpolation of F' on the fine mesh of G).
As this computation concerns only (2p + 1)(¢ + 1) points
(126 in Fig. 2), the computation time remains very small.
The algorithm stops at the end of the beam where the
correlation is lost (¢(6y) increases suddenly). The result
of this identification is a collection of equally spaced points
Ay, (with 1 < k < K) which approximates the mean line of
the beam by a polygonal line (see, for example, Fig. 6b).

(4)
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A f +virtual
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Fig. 3. Virtual beam. (a) Gray levels. (b) Parameterization
and discretization.

4 Analytical shape determination

This section details the second and main step of the VIC
method: the analytical identification of the mean line of
the beam. The virtual segments collection considered in
the previous procedure is replaced by a unique and con-
tinuous curvilinear virtual beam.

4.1 Parameterization of the virtual image

The curvature field v(s) (where s is the curvilinear ab-
scissa) of the mean line of the virtual beam is given by a
truncated series:

N
n=0

where § = s/L € [0,1] is the reduced abscissa, L is the
beam length, and P, are the N 4 1 dimensionless basis
functions. In order to guarantee the uniqueness of the co-
efficients, Legendre or Fourier orthogonal basis is chosen.
The angle 0(s) between the e; axis and the unit tangent
vector 7(s) = cos(f)e; + sin(f)es (see Fig. 3) is given by
the integration of the previous relation:

N
0(s) =00+ LY A,Qn(3)

n=0

(6)

with

S
@)= [ Pu@aé, ™)
0
which, for Legendre or Fourier series, has an analytical
expression. The integration constant 6y = 6(0) is the angle
at the origin of the beam. A current point of the mean line
X is given by:

X = X0+ / (o), (®)
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where xg is the origin of the mean line. The virtual beam
points X are at the distance r € [—-R, R] to the corre-

sponding point x of the mean line:

X=x+rV,

where v is the normal unit vector. Points X are uniquely

defined since the non-overlapping condition

lv|R < 1

is fulfilled (else the curvature radius is smaller than R and
cross-sections locally intersect). Similarly to the previous

sections, the gray level of the virtual beam is:

g(r,s) = % (1 -+ cos (%)) )

Fully defined by the constants R,L and the set V =
{x0,00,A,} of N 4 4 variables, the virtual image is now

referred to as g(V).

4.2 Correlation between physical and virtual
beam images

The mean square deviation between virtual and physical

beam images is:

V)= amz [, U —otviPas

in which 2RL is the surface of the virtual beam, dS =
(1 — ~vr)drds the differential surface element, D, the de-
finition domain of g, r € [-R,R] and s € [0,L]. This
expression requires that D, is fully contained in Dy, the
definition domain of f (in other words the virtual image
does not exceed the physical one). When @ is minimum,
the condition 0¢/9V = 0 is fulfilled. Naming V;,, the mth
term of V and considering dg/dV,, = grad(g) - 0X/0V;,,

one obtains:

0X
75 (F = 9P oo

—2/ (f —g)grad(g) - 8—dS—O

OVin

where 0D, is the external boundary of the virtual beam,
dl its differential line element and n its outer normal vec-
tor. We show in Appendix A that the first boundary term
is negligible as soon as 0D, lies in the background of the

beam image. Hence, the problem reduces to:

// (f — g)grad(g) - aa—XdS—O

This problem is solved iteratively with a Newton scheme.
We call AV the increment of the current set of parameters
V. The Taylor expansion of g, up to the first order, is:

0X

g(V+ AV) = g(V) + grad(g) - W

AV},
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where j is a summed index. Supposing that equation (14)
is fulfilled for g(V + AV) gives:

AV //Dg <grad(g) : gg) (grad(g) : g‘),i) ds

-/ g (radte) 7o) (7 = s (16)

This equation can be rewritten in a matrix form:

MnLjAV} = Bma (17)

which represents a simple linear square matrix problem
whose solution AV is used to update the shape of the
virtual beam. The term grad(g) - 9X/0V,, is involved in
both the expressions of M,,; and B,,. From equation (11)
and the beam geometry follows:

dg

grad(y) = 7

v, (18)

and, from equation (9):

oxX  ox o0
v, ov.. ov. (19)

The second term, orthogonal to grad(g), does not need
to be calculated. The derivatives of 9x/dV,, are obtained
using equations (8) and (6):

ox ox
= el —_—
001 T Oz0,2

)

ox s 0x s
o= | e gr-r[ Qa0

where (29,1, z02) are the components of xq. The displace-
ment of the virtual beam between two steps is close to
(0X/0Vy,) AV, where the fields 0X/0V,,, can be seen as
the unitary displacement fields (see Fig. 4) used in the
DIC method as developed by Hild and Roux [27]. The
beam ends detection is not directly included in the ana-
lytical method. As a consequence, the initial point xq is
fixed along the initial beam tangent 7(0) in order for the
virtual beam not to “slide” along the physical one during
the optimization. For this reason, the optimization vector
is reduced to V = {x¢,,,00, A}, where z¢, denotes the
remaining normal free component of xg.

= €y,

4.3 Numerical aspects

The virtual beam ¢ is discretized (and then referred to,
as in Sects. 2 and 3, as () over a fine mesh obtained
from the discretization of the curvilinear frame (s, ), each
AL = L/q along s and AR = R/p along r (see Fig. 3).
Again, this mesh of (2p + 1)(¢ + 1) points is chosen finer
than the pixel size. The digital image F is projected (with
a bi-dimensional cubic interpolation) onto it, giving Fg
which is used for the computation of equation (16). The it-
erative process is repeated until the value of @ decreases by
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Fig. 4. (Color online) Examples of unitary displacement fields.
From left to right: 0x/0x0,2 (vertical translation), 9x/d6q
(rotation) and 9x/0Ag (uniform increase of the curvature).

less than a prescribed amount (107%) between two steps.
It converges generally in less than 10 iterations.

Initial parameters VO = {x§,03, 4%} are computed
from the data {Ag, 6} given by the segment by segment
identification (Sect. 3). The length of the beam L = KAL
is kept. For the other terms, we consider the following
equation, which consists of an extension of equation (6),
supplemented by A_; = 6y/L and Q_1(5) = 1:

0(s) i
T - Z A71Qn(s)~

n=-—1

(21)

Ideally, it applies for each couple (0k,sk), where s =
kAL, given by the segment by segment analysis. In gen-
eral, N <« K and the matrix system that corresponds
to this equation is overdefined. Consequently, initial para-
meters A% are given by the numerical minimization of the
least square deviation =(A,):

5 ( S a0, (2) - i’“) S @
k=1

n=—1

4]

(An)

5 Performance evaluation

In this section, the precision and the robustness of the
method is tested with respect to bit depth and noise level.
An image of a beam is generated from an analytical spiral,
a curve involving large curvature variations. The method
is applied to digitalized images of this beam, with various
bit depths and added noise. Positions, angles, curvatures
and series coefficients given by the method are compared
to the exact ones.

5.1 The reference synthetic image

The mean line of the synthetic beam consists of a loga-
rithmic spiral whose equation is p* = ab¥ in polar coor-
dinates (p*, ). The values used for Figure 5 are a = 8,
In(b) = 1/tan(11n/24) and 0 < ¢ < 77. The choice of this
shape is motivated by the existence of an analytical ex-
pression of radius, angle and curvature and the wide range
of curvature variation (1/146 < v* < 1/8 pixel ™! here).

Fig. 5. Synthetic 401 x 401 pixels 8-bit noiseless image.

The analytical expression of the spiral curvature v* allows
the computation of the exact values of the series parame-
ters A% given by (using Eq. (5) and the orthogonality of
the basis):

1 1
A% / P2(3)ds = / v*(5) P, (5)ds. (23)
0 0
The synthetic beam image, built from this mean line, has
a thickness 2R* = 2 pixels. Its luminance is assumed to
follow a half-cosine distribution I*(r, s) = cos(nr/2R*) for
r € [-R*, R*]. As in the unidimensional example (Sect. 2)
this distribution differs from that of the virtual beam. This
image is discretized in space in a 401 x 401 pixels digital
image F. The resulting image is discretized in 1, 8 (see
Fig. 5) or 16 bits. A close-up of the 8-bit image is shown
in Figure 6a at the pixel scale.

The evaluation of the methods consists in comparing
exact (starred) and measured values of the radius, angles
(from the horizontal axis to the tangent) and curvatures,
respectively by Ap = p*—p, A0 = 6" —0 and Ay = v* —~,
with respect to their evolution along the polar angle V.
Moreover, a visual information is given by Figures 6, 8
and 9 in which the exact spiral is the thick black line (of
1 pixel width) and the measured shape is the thin light
one.

5.2 Tests on 8-bit noiseless image

At first, the segment by segment identification is applied
to the image. The parameter R is set to 1 pixel and the
mesh of the virtual segment is chosen three times finer
than the pixel size. Figure 6b shows that the segments are
already well positioned with respect to the exact spiral
location. Figure Ta shows that the precision is sub-pixel.
More precisely, the mean square distance between exact
and measured points is o(Ap) = 0.100 pixel. The discrep-
ancy increases in high-curvature regions where straight
segments are less adapted.

At second, the analytical identification is proceeded.
Legendre series with orders N = [6,7,8,9,10,12,15, 20]
are used. The virtual beam mesh is three times finer than
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Z )

Fig. 6. (Color online) Noiseless 8-bit spiral image close-up.
(a) Original image. (b) Segment by segment detection. (¢) VIC
method, N = 12. (d) VIC method, N = 20. (e) Fast Marching
Algorithm. (f) Steger’s method.

the pixel grid. The identified curve begins to match the
whole spiral at N = 7. At N = 12 the theoretical spiral
shape is almost perfectly recovered (Fig. 6¢) and o(Ap) =
0.029 pixel. At N = 20 the two curves are undistinguish-
able (Fig. 6d) and o(Ap) = 0.009 pixel. Figure 7a shows
that the precision of the identification continuously in-
creases with the order IV of the series. However, orders too
high must be avoided because they allow high frequency
tortuosity thus the identification may be influenced by the
pixel grid. Various trials have shown the weak influence of
the user-defined radius R of the virtual beam. Figures 7b
and 7c illustrate the ability of the method to measure
angles and curvatures with confidence. The exact series
coefficients A} are also successfully compared to the A,
obtained by the analytical identification, at order N = 20
in Figure 7d. Moreover, it has been verified that each A,
varies smoothly and reversibly when the order N of the
series is changed.

The VIC method is compared to the retained refer-
ence ones (see Sect. 1). The Fast Marching Algorithm
(FMA) [32] (the Matlab toolbox of [33] is used) gives at
best a precision o(Ap) = 0.370 pixel (Fig. 6e) when set-
ting the mean square deviation of the Gaussian filter at
oc = 0.5 pixel. Steger’s method gives at best a precision

- 7.912
1 100 15
§ _ s
) 2 o
ht 50 '
a4 <
» Y/ LA IRt
76 54 3 2 1 0(@1007 6 5 4 3 2 1 0 (b)
. 79
_ f 6 =8/ 10
T J — A
e [JINE oo A
a. s n
70 74
=) “N20
=) 001
=
4
_ Wip/m| L 0 n
765 43 2 1 0 (c) 0 10 20 (d)

Fig. 7. (Color online) Identification error. (a) Distance,
(b) angle and (c) curvature. Thin dotted line: segment by
segment identification, thick lines: analytical identification.
(d) Series coefficients comparison.

of o(Ap) = 0.083 pixel (Fig. 6f) when setting o = 2 pix-
els, better than the FMA but approximatively 10 times
worse than the VIC.

5.3 Noise and bit depth influences

An uncorrelated Gaussian noise image Gy, with a stan-
dard deviation oy = 1, is generated. Working images are
defined as F'+onyGpn with 0 < oy < 1, off limits data are
truncated and the image is digitalized in 8 bits.

For on = 30% (Fig. 8a) the segment by segment iden-
tification succeeds to follow the spiral from the outer to
the center point and, despite the added noise, the mean
square distance between measured and identified radii is
still sub-pixel with o(Ap) = 0.128 pixels (Fig. 8b). From
this preliminary identification the analytical method is
proceeded successively with N = 12 and N = 20 (Fig. 8c
and d) and gives o(Ap) = 0.054 in that last case. These
results can successfully be compared to the one obtained
with the chosen reference methods. At the best we obtain
o(Ap) = 0.477 pixel with the Fast Marching Algorithm
(setting o = 1 pixel and a threshold at 75%) and o(Ap) =
0.212 pixel with Steger’s method (setting og = 2 pixels).

For o = 50% (Fig. 9a) (still an 8-bit image), the seg-
ment by segment method requires a preliminary Gaussian
filter with o = 2 in order to succeed to follow the spi-
ral and gives o(Ap) = 0.173 pixel. The analytical method
is performed after (using the unfiltered image) and still
gives a good precision: o(Ap) = 0.085 pixel for N = 20
(Fig. 9d). From this level of noise, we did not succeed in
performing the FMA and Steger’s methods.

Figure 10 summarizes the results obtained up to
ony = 50% and 8-bit depth. The VIC method demon-
strates its precision compared to other tested methods and
its robustness with respect to noise.

At very high noise levels o > 60% the segment by
segment method does not succeed even after a Gaussian
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/ () / (d)

Fig. 8. (Color online) Thirty percent noise 8-bit spiral image
close-up. (a) Original image. (b) Segment by segment detec-
tion. (¢) VIC method, N = 12. (d) VIC method, N = 20.

filtering. Indeed, as one can think that methods dedicated
to the ridge identification [18,34,35] may succeed in fol-
lowing the spiral, we perform in these cases the analytical
method by using the segment by segment identification of
Section 5.2. Figure 11 shows that, in almost every case the
position is identified with a sub-pixel precision. It includes
also the results for 1-bit images: the bit depth increases
as expected based on the precision of the method. Other
alterations have been tested (not presented): a contrast
reduction, associated or not with a luminosity variation
(which brightens the background), has the same effect as

the bit depth variation which it induces.

6 Examples of application

6.1 A cantilever beam

The objective of this test is to show the precision of
the method in a real experiment. A cantilever bar bend-
ing under its own weight has a theoretical solution [8]
which will be compared to the shape obtained by the VIC.
The 2R = 5 mm thick and L = 2.5 m long bar is clamped
in the chuck of a milling machine in front of a black curtain
and bends under its own weight. The 4288 x 2848 pixels
image (Fig. 12) has been taken with a Nikon D300 cam-
era. The VIC method is proceeded with a Legendre series
of order N = 3. The identified mean line differs by less
than 2 pixels (1.2 mm) from the theoretical curve com-
puted with standard physical properties of aluminum
(Young’s modulus E = 72 GPa and mass density
p = 2700 kg/m?). Even if the quality of the identification
decreases when the derivative order increases, the angles

and curvature remain of good quality (see Fig. 13).
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2o 2

Fig. 9. (Color online) Fifty percent noise 8-bit spiral image
close-up. (a) Original image. (b) Segment by segment detec-
tion. (¢) VIC method, N = 12. (d) VIC method, N = 20.

o(Ap) 08 B Fva
(pixel) 0,4 Steger
0,2 B vic

0
0% 10% 20% 30% 40% 50% ON

Fig. 10. Error for different noise level and methods (Fast
Marching Algorithm, Steger’s method and proposed VIC).

1-bit 1 8-bit
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[ seg. [ seg.
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Fig. 11. Precision  of  the identification, for
1- and 8-bit depth and 11 noise levels. Mean: middle of
the segments. Bar length: twice the standard deviation.

6.2 Fiber transported by a fluid flow in a fracture

This experiment [36] considers the motion and deforma-
tion of fibers (diameter 0.28 mm) transported by a fluid
within a transparent fracture of mean aperture 0.65 mm.
Figure 14 shows an example of observation; the informa-
tion that are sought are, for this example, the fiber po-
sition, local angle and curvature. The latter has a ma-
jor importance as, according to the beam theory [8], it is
proportional to the bending moment generated here by
the action of the hydrodynamic forces. The low quality
and definition of the image are due to the experimental
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aluminium bar

Fig. 12. (Color online) Aluminum bar bending under its own

weight.
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Fig. 13. Comparison between the beam theory (solid line) and
the VIC method (circles). (a) Angles (rad). (b) Curvatures.

50 pixels
10 pixels (b) 10 pixels (©)

Fig. 14. Fiber transported by a fluid flow in a fracture.
(a) Physical image and identified mean line (dotted line), for
N =50. (b) Detail view. (¢) Detail view and identification.

conditions: the high speed of the fiber imposes a short
exposure time and the roughness of the fracture walls in-
duces low contrast and lots of artifacts. The apparent fiber

diameter is close to 1 pixel.

The full VIC (segment by segment followed by analyti-
cal measurements) method is applied to this picture, with
R = 1 pixel and using Legendre series. Figure 14 shows
that, despite the small radius of the object and the high
noise level, the central line collapses onto the fiber along
the full length. Wide meanders as well as small deviations
from the straight line are perfectly followed and even the

crossing does not perturb the identification.
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Fig. 15. (a) Image of the thermal plume (left, courtesy of
A. Davaille and J. Vatteville). The exterior curve corresponds
to the temperature 23.6 = 0.2°C. (b) Identification with the
VIC method (right). (¢) Angles (rad).

6.3 Thermal plume

Figure 15a shows an image (inverted and with enhanced
contrast) of a laminar thermal plume. This experimental
study was designed to better understand convection in the
Earth’s mantle [10,37]. The experiment consists of a tank
filled with sugar syrup and containing a heating cylinder
device at its bottom. The thermal plume is materialized
with thermochromic liquid crystal (TLC) slurries added to
the fluid illuminated by a green laser sheet. Three kinds
of crystals have been used here, each one reflecting light
at a different temperature. Highly scattered dark curves
correspond to three different isotherms. The computation
of thermal fluxes from this image requires both the ac-
curate position and normal vectors (related to angles) of
such isothermal curves.

This image is analyzed with the VIC method, using a
Fourier series for R = 3 and N = 40. The identification is
successful (Fig. 15b) despite the noise and the discontinu-
ity of the physical line. The angles distribution (Fig. 15¢)
is smooth as expected in such physical phenomenon.

7 Conclusion

The Virtual Image Correlation method allows one to
identify precisely the shape (mean line) of a smooth curve
embedded in an image, with a sub-pixel precision.

Other generic shape descriptions such as powerful
Bézier curves or splines (used in Computer-Aided Design)
will be soon added to the method. If available, the shape
descriptor may also be an analytical solution of the phys-
ical problem [38], allowing the direct evaluation of the
physical parameters which act as shape parameters (for
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2.
Fig. 16. Virtual beam boundary differential element. 3
example in Sect. 6.1 one may use the semi-analytical res- 4
olution and identify the parameter E/p).
The method can be extended to 3D and time sequences.  °
In the latter case, the smoothness hypothesis would be
extended to time, allowing the loop formation tracking.
With a slight modification of the virtual beam luminance 6
definition (step shaped), the method can also be used for 7
edge detection problems.
Authors gratefully thank J.P. Hulin and A. Anning for their 8
help.
9
A Boundary term 10.
We show that the first term of equation (13) vanishes un- 11
der some reasonable conditions. A necessary hypothesis
is that the border D, of the virtual image lies in the 12
background of the physical image f (this assumption jus-
tifies the preliminary segment by segment identification). 13.
At first, a straightforward proof is given if one assumes
that the background is uniform: f = f,. As g(X) = 0 for 14.
X € 0Dy, the divergence theorem gives:
faDg(f 9)"n OV a YOV, ( D, dlv(X)dS) 16.
(24)
and, as div(X) = 2, the surface integral equals 4RL, and
its derivative with respect to V,, equals zero. Then, a 17
weaker hypothesis can give the same result. To a differ-
ential element of the upper boundary 8D;‘ corresponds 18.
another one on the lower part 0D . From geometrical 19.
considerations (shown in Fig. 16) and from equation (19)
comes (neglecting the small boundary parts at s =0 and o
s=1L):
21.
2 OX /L 2
f, 0ot g = [(Pem-an
*fQ(S,*R)(lJF’YR))V 23
0x
oV ds. (25)
This method is relevant for thin beams and low curva- ,,
tures: we suppose |y|R < 1. We denote by A. the corre- '
lation length of the noise, and A, a characteristic length o5
of 9x/0V,,. In case of correlated noise, if \. > R then
f(s,R) ~ f(s,—R). In case of uncorrelated noise, if 9.
1= Ae < A\, f2 appears as a high frequency noise and
the term f2(s, R) — f2(s, —R) vanishes statistically on a  27.
length AL such as A\, < AL < \,,. In both cases this 28.
integral is close to 0.
10701-p9
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