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ASYMPTOTIC BEHAVIOUR OF IDEALS RELATIVE TO
INJECTIVE MODULES OVER COMMUTATIVE

NOETHERIAN RINGS II

by H. ANSARI TOROGHY and R. Y. SHARP
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Let £ be an injective module over a commutative Noetherian ring A (with non-zero identity), and let a be an
ideal of A. The submodule (0:£a) of E has a secondary representation, and so we can form the finite set
Att.A(0:Ea) of its attached prime ideals. In [1, 3.1], we showed that the sequence of sets (Att/,(0.Eo"))BeM is
ultimately constant; in [2], we introduced the integral closure a*(£) of o relative to E, and showed that
(Att^(0:E(o")*(E)))neM is increasing and ultimately constant. In this paper, we prove that, if a contains an
element r such that rE = E, then (Att/,((0:£a")/(0:£(a°)*(£))))n6N is ultimately constant, and we obtain
information about its ultimate constant value.

1991 Mathematics subject classification: 13E10.

1. Introduction

Throughout this paper, A will denote a commutative Noetherian ring with non-zero
identity, and E will denote an injective X-module.

In [1, 2.2], we showed that, for each ideal a of A, the submodule (0 :E a) of E has a
secondary representation, and so we can form the finite set Att^(0:Eo) of its attached
prime ideals. (Accounts of the relevant theory of secondary representation of modules
and attached prime ideals are available in [5], [4] and [8], and we shall use the
terminology of [12] and [5] for these topics.) One of the main results of [1] is Theorem
3.1, which shows that the sequence of sets

is ultimately constant: we denote its ultimate constant value by At*(a, £). This result can
be viewed as a companion to [13, (3.1)(iii)], which shows that, for an ideal / in a
commutative ring R (with identity) and an Artinian /^-module N, the sequence of sets

is ultimately constant; and this result can, in turn, be viewed as dual to Brodmann's
result [3] that, for a Noetherian /1-module M, the sequence of sets

(Ass/1(M/aniW))neN
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is ultimately constant. In fact, our proof of Theorem 3.1 in [1] depended heavily on
Brodmann's work.

In [2], we introduced concepts of reduction and integral closure of a relative to the
injective /1-module E, and we showed that these concepts have properties which reflect
some of those of the classical concepts of reduction and integral closure introduced by
Northcott and Rees in [9].

We say that the ideal o of A is a reduction of the ideal b of A relative to E if a £ b and
there exists seN (we use Py (respectively No) to denote the set of positive (respectively
non-negative) integers) such that (0:£abs)=(0:£bs+1). An element x of A is said to be
integrally dependent on a relative to E if there exists neN such that

In fact, this is the case if and only if o is a reduction of a + Ax relative to E [2, 2.2];
moreover,

a*(£): = {y e A: y is integrally dependent on a relative to E]

is an ideal of A, called the integral closure of a relative to E, and is the largest ideal of A
which has a as a reduction relative to E. The main result of [2] is Theorem 3.2, which
shows that the sequence of sets

is increasing and ultimately constant; we denote its ultimate constant value by At*(a, E).
Our proof of this result used, among other things, the result of L. J. Ratliff [10, (2.4) and
(2.7)] that the sequence of sets (ass(a")~)n€N is increasing and ultimately constant, where
(a")" denotes the classical integral closure of the ideal a". (For a proper ideal c of A, we
use ass c to denote the set of associated prime ideals of c for primary decomposition. We
interpret ass A as 0.)

The above-mentioned results of Brodmann and Ratliff have led to a large body of
research: see, for example, McAdam's book [7]. Indeed, that research provides ideas for
possible directions in which the theory of asymptotic behaviour of ideals relative to
injective /4-modules might be pursued. For example, [7, 11.16] shows that, if the ideal a
of A contains a non-zerodivisor on A, then the sequence of sets

is ultimately constant; moreover, if we denote the ultimate constant value of the above
sequence by Cs*(a, A), and the ultimate constant values of the sequences

(assa")neN and (ass(a")-)neN
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by As*(a, A) and As*(a, A) respectively, then [7, 11.19] shows that (still assuming a
contains a non-zerodivisor), As*(a, <4) = As*(a, A)uCs*(a,A). These results raise
questions about asymptotic behaviour relative to £: under what conditions on a and E
can we show that the sequence of sets

is ultimately constant, and, when this is the case and Ct*(a, E) denotes the ultimate
constant value of the sequence, are we also able to show that

At*(a, E) = At*(o, E) u Ct*(a, £)?

These questions are the concern of this paper. It is an easy consequence of our methods
and results in [1] and [2] that the sequence is stable and the second question has an
affirmative answer when a contains a non-zerodivisor (and E is an arbitrary injective A-
module). However, it is more interesting and perhaps more appropriate to consider the
case where it is assumed only that there exists rea such that r£ = £: this is
automatically the case when a contains a non-zerodivisor on A, but can also occur
when a consists entirely of zerodivisors on A. The purpose of this paper is to prove
similar results for this more general situation.

2. Notation and previous results

Throughout the paper, a will denote an ideal of the commutative Noetherian ring A,
and E will denote an injective A-module.

Notation 2.1. (i) We shall use the notation Occ(£) of [12, Section 2] in connection
with our injective /1-module £: this is explained as follows. By well-known work of
Matlis and Gabriel, there is a family (pJaeA of prime ideals of A for which
£ = 0 a e A £( / l /p a ) (we use E(L) to denote the injective envelope of an 4-module L), and
the set {pa:aeA} is uniquely determined by £: we denote it by Occ(£) (or OccA(E)).

(ii) We shall use As*(a,A), As*(a,y4), At*(a,£) and At*(o,£) to denote the ultimate
constant values of the sequences of sets

(assa")neN, (ass(a")")«N, (AtU0:£a")),,6N and (AttA(0:E(an)*iE)))n£N

respectively: references for the results which show that these sequences are all ultimately
constant were given in the Introduction. In the case in which a contains a non-
zerodivisor, we shall use Cs*(a,A) to denote the eventual constant value of
(Ass/1((Q

n)7an))n6N:see[7,11.16].

(iii) We shall also use the notation a(^) of [2, 1.1] for a subset & of Spec(/1): this
denotes (a if a —A and), if a is proper, the intersection of those primary terms in a
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minimal primary decomposition of a which are contained in at least one member of 2P.
Note, in particular, that this assigns a meaning to a(Occ(£)).

We shall need the following results from [1] and [2].

Theorem 2.2 [1, 2.1]. Let M be a finitely generated A-module. Then the A-module
HomA(M, E) has a secondary representation, and, furthermore,

Att^4(Homj4(M, £)) = {p' e Ass^(M): p' £ p for some p e Occ(£)}.

Theorem 2.3 [1, 3.1].

At*(o, £) = {p' e As*(a, A): p' £ p far some p £ Occ(£)}.

Theorem 2.4 [2, 3.2].

At*(a, E) = {p' eAs*(a, A): p' £ p far some p e Occ(£)}.

Proof. This is immediate from the proof of [2, 3.2] and the results of Ratliff [10,
(2.4) and (2.7)] cited in the Introduction.

3. Consequences of results of McAdam

Remark 3.1. Let b be a second ideal of A for which a £ b. Then it follows easily from
application of the exact functor Hom^( ,E) to the canonical exact sequence

0->b/a->A/a->A/b-+0

that

(0:£Q)/(0:£b)sHom,(b/o,£).

Theorem 3.2. Suppose that a contains a non-zerodivisor on A.

(i) The sequence of sets

is ultimately constant. We denote its ultimate constant value by Ct*(a,£).

(ii) We have

Ct*(o, E) = {p' e Cs*(a, A): p' £ p for some p e Occ(£)}.

(iii) Consequently, At*(o,£) = At*(a,£)uCt*(a,£).
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Proof. First note that, by [2,2.6], we have (a")*(E)=(a")~(Occ(£)), and so, by [2,2.5(iii)],

(0:£(aT<£>)=(0:£(aT)

for each neN. Hence, by 3.1, for each neN,

(0 :E a")/(0 :£(a")*(£>) s Hom^o")"/a", £),

and it follows from 2.2 that

= {p'eAssy4((a")-/an):p'cp for some peOcc(£)}.

It is now easy to use [7, 11.16] to prove (i) and (ii).

(iii) By 2.4 and (ii) above,

Ct*(a,£) = {p'eAs*(a,/4)uCs*(a,/l):p'sp for some peOcc(£)}.

But As*(a,/l)uCs*(a,/l) = As*(a,/l), by [7, 11.19], and so, in view of 2.3 above,

At*(a, £) u Ct*(o, £) = {p' e As*(o, A): p' £ p for some p e Occ(£)}

= At*(a,£).

This completes the proof.

Theorem 3.2 above was proved under the hypothesis that the ideal a contains a
non-zerodivisor on A. However, in the context of secondary representation, it is, in our
view, more appropriate to work under the weaker condition that a contains an element
r for which r£ = £. (It should be noted that if a contains a non-zerodivisor r' on A, then
by [14, Proposition 2.6], r'E = E.) Thus we would like to obtain the results of 3.2(i) and
(iii) under the weaker hypothesis that a contains an element r such that r£ = £. We shall
achieve this in Section 4 below.

4. The result

Theorem 4.1. Suppose that a contains an element r such that rE = E.

(i) The sequence of sets

(AtU(0:Ea")/(0:£(aT(£))))ne*
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is ultimately constant. We denote its ultimate constant value by Ct*(ct, £).

(ii) We have At*(a, £) = At*(a, £) u Ct*(a, £).

Proof. First reason as in the proof of 3.2, using [2, 2.6], [2, 2.5(iii)], 3.1 and 2.2, to
see that, for each n e N,

Att/4((O:£a
n)/(O:£(a

n)*(£))) = {p'6Ass/4((an)7a"):p'cp for some peOcc(£)}.

Note that AssA({a")~/a")^AssA(A/a"), and recall from 2.3 and 2.4 that

At*(a, £) = {p' e As*(a, A): p' s p for some p £ Occ(£)}

and

At*(a,£) = {P'EAS*(O, A):p'zp for some PEOCC(£)}.

Let At*(a,£) = {q,,...,q,}, and, for each i=l,...,t, choose p,£Occ(£) such that
q.cpi. Set

i = i

and note that, since, for each i=l,...,t, E has a direct summand isomorphic to E(A/pt),
it follows that r£' = £'.

Suppose that heN is such that ass(an) = As*(a,A) for all n^h. It follows from the
equations displayed in the first paragraph of this jsroof (and the fact that
As*(a,/l)<=As*(a,/4)) that At*(a,£) = At*(a,£'), At*(a,£) = At*(a,£') and

It is therefore enough for us to prove the results under the additional assumption that
£ = ©j=i £(/4/p,). We shall make this assumption for the remainder of the proof. Note
that Occ(£) = {p!,...,p,} is a finite set. Clearly, we can assume that t^l.

By [12, 2.6] (and prime avoidance), Att£ = {p'£ Ass<4:p'£yj = 1 p j , and so it follows
that, if we use S to denote the multiplicatively closed subset /4\U{=1 p,, then r/1 eS~lA
is a non-zerodivisor in this ring of fractions. It therefore follows from [7, 11.16 and
11.19] that the sequence of sets

is ultimately constant, and that, if we denote its ultimate constant value by
1/*), then
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Thus the sequence of sets

i=l J/neN

is ultimately constant, that is (in view of the first four lines of this proof)

is ultimately constant; also, if we denote its ultimate constant value by Ct*(a,£), then
the preceding paragraph shows that

i4) :p ' sU p,luCt*(o,£).
• = i J

The result now follows from a further recourse to the first paragraph of this proof.

Acknowledgment. We are grateful to the referee for pointing out that our original
proof of Theorem 4.1 above could be shortened.
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