Short Communication

1-Phenyl-6,7-dihydroxy-isochroman suppresses lipopolysaccharide-induced pro-inflammatory mediator production in human monocytes

Giuliana Trefiletti1, Anna Rita Togna1, Valentina Latina1, Carolina Marra2, Marcella Guiso2 and Giuseppina I. Togna1*

1Department of Physiology and Pharmacology ‘Vittorio Erspamer’, ‘Sapienza’ University of Rome, P. le Aldo Moro 5, 00185, Rome, Italy
2Department of Chemistry, ‘Sapienza’ University of Rome, P. le Aldo Moro 5, 00185, Rome, Italy

(Received 27 July 2010 – Revised 8 December 2010 – Accepted 9 December 2010 – First published online 27 January 2011)

Abstract

Extra-virgin olive oil is an integral ingredient of the Mediterranean diet, and it has been suggested that its high consumption has beneficial effects on human health. Its protective effect, in particular against the development of CVD, has been related not only to the high content of oleic acid, but also to the antioxidant and anti-inflammatory properties of polyphenols. In order to verify the anti-inflammatory and anti-atherogenic properties of hydroxy-isochromans, a class of ortho-diphenols present in extra-virgin olive oil, we investigated the potential ability of 1-phenyl-6,7-dihydroxy-isochroman (L137) to modulate the production of key inflammatory mediators by human monocytes, by evaluating its in vitro effects on prostanoid (thromboxane A2 and PGE2) and cytokine (TNF-α) production. Its effect on the protein expression of the inducible form of cyclo-oxygenase-2 (COX-2), a pro-inflammatory enzyme responsible for elevated prostanoid levels, was also explored. The results showed that L137 significantly inhibited both prostanoid and TNF-α production in lipopolysaccharide-primed human monocytes in a dose-dependent manner, by inhibiting the COX activity of COX-2. We also demonstrated that the effects of the isochroman are mediated, at least partly, through the suppression of NF-κB activation leading to the down-regulation of the synthesis of COX-2.

Key words: Isochromans; Olive oil; Cyclo-oxygenase-2; Human monocytes

The beneficial effects of the Mediterranean diet are well recognised1–3. Olive oil is an integral ingredient of this diet, and it has been suggested that its regular consumption, as the main source of fat, exerts protective effects against the development of CVD2–5. Converging evidence suggests that the cardioprotective effects of extra-virgin olive oil are related not only to its high content of oleic acid, which exerts anti-atherosclerotic and anti-inflammatory effects6,7, but also to the presence of antioxidants, including phenols, in the non-saponifiable fraction8,9.

Recently, Bianco et al.10 have identified in extra-virgin olive oil a new class of ortho-diphenols, 6,7-dihydroxy-isochromans: 1-phenyl-6,7-dihydroxy-isochroman (encoded L137) and 1-(3-methoxy-4-hydroxy-phenyl)-6,7-dihydroxy-isochroman. It has also been demonstrated that these compounds are not present in fresh olive fruits11, but their synthesis may begin during the malaxation process and continue during the oil storage, in competition with the ortho-diphenol oxidative degradation, through the reaction between hydroxytyrosol and aldehydes and ketones, concurrently present in the olive oil12,13. The antioxidant power of the olive oil dihydroxy-isochromans and their ability to inhibit the human platelet response to agonists that induce reactive oxygen species-mediated platelet activation has been demonstrated in our previous study14.

On the basis of previous reports suggesting anti-atherogenic and anti-inflammatory properties of extra-virgin olive oil15–17, the present study aims to investigate the potential of L137 to modulate the production of key inflammatory mediators by human monocytes, by evaluating its in vitro effects on prostanoid (thromboxane A2 and PGE2) and TNF-α production induced by lipopolysaccharide (LPS).

Abbreviations: COX, cyclo-oxygenase; L137, 1-phenyl-6,7-dihydroxy-isochroman; LPS, lipopolysaccharide; TX, thromboxane.

* Corresponding author: G. I. Togna, fax +39 6 49912563, email giuseppina.togna@uniroma1.it
The effect of L137 on NF-κB-mediated expression of the inducible form of cyclo-oxygenase (COX-2), a pro-inflammatory enzyme responsible for elevated levels of prostanoids\(^{(18)}\), was also verified.

Methods

Preparation of human peripheral blood mononuclear cell cultures

Fresh EDTA-treated buffy coats from the blood of healthy volunteers were provided by the blood transfusion centre (‘Sapienza’ University of Rome). Peripheral blood mononuclear cells were isolated by centrifugation on a Ficoll–Metrizoate density gradient. The mononuclear cells at the interface were washed twice with Mg\(^{2+}/Ca^{2+}\)-free phosphate-buffered solution by re-suspension and centrifugation at 300\,g at room temperature. Cells (>90% monocytes, as determined by non-specific esterase staining) were subsequently tested for their viability by trypsin blue exclusion and resuspended in Roswell Park Memorial Institute (RPMI)-1640 medium, supplemented with 10% heat-inactivated fetal bovine serum, 4 mM-glutamine, penicillin (100 U/ml) and streptomycin (100 \(\mu\)g/ml). Approximately 10\(^7\) mononuclear cells were plated in twelve-well tissue culture plates, and monocytes were obtained by selective adherence (120 min, 37°C, 5% CO\(_2\)). Non-adherent cells were removed and discarded, while the adherent cells were washed carefully twice with pre-warmed medium. Complete medium was then added to the plates, and the cells were cultured for 24 h before treatments.

Experimental procedure

L137 synthesised in our laboratory by the reaction between hydroxytyrosol and benzaldehyde under very mild conditions\(^{(19)}\) was dissolved in Tris–HCl buffer solution (pH 7·8) and assayed at concentrations ranging from 0·5 to 100 \(\mu\)M. After 24 h incubation, the medium was removed, and prostanoid concentration (ng/mg protein) was determined by RIA.

Western blotting analysis of cyclo-oxygenase-2 and NF-κB expression

Proteins (30 \(\mu\)g) from each sample were denatured in boiling Laemmli buffer for 5 min and resolved by SDS-PAGE on a polyacrylamide gel consisting of a 4% stacking and a 10% resolving layer using a Mini-PROTEAN II apparatus (BioRad, Hercules, CA, USA). After electrophoresis, proteins were transferred to nitrocellulose membranes; the membranes were incubated with monoclonal antibodies specific for PGE\(_2\), TXB\(_2\), COX-1, COX-2, iNOS, and cyclooxygenase-2 as described above. Blots were subsequently incubated with horseradish peroxidase-conjugated secondary antibodies and revealed with the ECL kit (Amersham Pharma, UK) using an X-Omat AL film. Protein bands were quantified by densitometry.

Table 1. Inhibiting effect of 1-phenyl-6,7-dihydroxy-isochroman (L137) on prostanoid production induced by lipopolysaccharide (LPS) in human monocytes pre-treated or not with aspirin (ASA) (Mean values with their standard errors)\(\dagger\)

<table>
<thead>
<tr>
<th></th>
<th>TXB(_2)</th>
<th>PGE(_2)</th>
<th>TXB(_2)</th>
<th>PGE(_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean SE</td>
<td>Mean SE</td>
<td>Mean SE</td>
<td>Mean SE</td>
</tr>
<tr>
<td>Control</td>
<td>113.58</td>
<td>6.1</td>
<td>32.98</td>
<td>1.2</td>
</tr>
<tr>
<td>L137 (1 \mu)M</td>
<td>101.37</td>
<td>2.2</td>
<td>25.61*</td>
<td>0.5</td>
</tr>
<tr>
<td>L137 (10 \mu)M</td>
<td>69.50**</td>
<td>3.5</td>
<td>18.23**</td>
<td>1.1</td>
</tr>
<tr>
<td>L137 (100 \mu)M</td>
<td>14.12**</td>
<td>2.2</td>
<td>1.45**</td>
<td>0.2</td>
</tr>
<tr>
<td>+ ASA(\dagger)</td>
<td>78.26</td>
<td>5.8</td>
<td>28.02</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>50.78*</td>
<td>3.6</td>
<td>19.33*</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td>25.75**</td>
<td>1.9</td>
<td>8.58**</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>3.85**</td>
<td>0.5</td>
<td>0.65**</td>
<td>0.4</td>
</tr>
</tbody>
</table>

TX, thromboxane.

\(\dagger\) Mean values were significantly different from the control: *\(P<0.01\), **\(P<0.001\).

\(\dagger\) Monocytes were treated with L137 or buffer solution (control) 30 min before LPS (50 ng/ml).

\(\dagger\) Monocytes were pre-treated with ASA (0.05 \(\mu\)M) for 30 min, then washed twice and stimulated with LPS (50 ng/ml) in the presence or absence of indicated concentrations of L137.

\(\dagger\) After 24 h incubation, the medium was removed, and prostanoid concentration (ng/mg protein) was determined by RIA.
blocked for 1 h at room temperature in Tris-buffered saline–0.1% Tween 20 (supplemented with 1% fat-free dried milk and 1% bovine serum albumin) incubated with primary antibodies, with horseradish peroxidase-conjugated secondary antibodies, and then detected by the enhanced chemiluminescence detection system.

Statistical analysis

Data are presented as means with their standard errors. For statistical analysis, data were analysed by a one-way ANOVA, followed by Bonferroni’s post hoc test. A significant difference was defined as a \(P \) value <0.05.

Results and discussion

In the present study, the potential of L137 to inhibit pro-inflammatory mediator production was investigated *in vitro* by using LPS-stimulated adherent human monocytes. LPS treatment caused a strong increase in prostanoid production, and L137 significantly inhibited the production of PGE\(_2\) and TXA\(_2\) starting from 1 and 10 \(\mu \)M, respectively (Table 1). To confirm that the inhibiting effect of L137 is not due to cytotoxicity, we used lactate dehydrogenase and methylthiazoletrazolium tests. Results showed that at the employed concentrations, cell viability was not affected by L137 (data not shown).

As has been clearly described\(^{(23)}\), synthesis of some prostanoid products depends on different COX isoforms: monocyte TXA\(_2\) on both COX-1 and COX-2 and PGE\(_2\) mainly on COX-2 activity, respectively. In order to quantify the inhibitory potential of L137 on COX-2 activity, experiments were carried out on monocytes pre-treated with aspirin so as to block the prostanoid production derived from the constitutive isoform of COX (COX-1). Aspirin pre-treatment, in fact, followed by several washings is able to inhibit COX-1 activity, but does not significantly affect COX-2-derived PGE\(_2\) and TXB\(_2\) production induced by LPS\(^{(23)}\). As reported in Table 1, the inhibitory effect of L137 on COX-2-derived prostanoid production reached statistical significance even at the lowest concentration assayed (1 \(\mu \)M), suggesting that its inhibitory effect is mainly referred to COX-2 activity. Results obtained with NS-398, the specific inhibitor of COX-2 activity, confirmed this possibility: L137 did not modify the COX-1-derived TXB\(_2\) production (3.52 (SE 0.36) in control induced by LPS\(^{(21)}\). As reported in Table 1, the inhibitory effect of L137 at 10 and 50 \(\mu \)M decreased the TNF-\(\alpha\) produced over 24 h by LPS-stimulated, but untreated, cells was 0.8–5.2 ng/ml, and L137 treatment at 0.5, 10 and 100 \(\mu \)M decreased the TNF-\(\alpha\) production by about 30, 60 and 80%, respectively (\(P <0.01 \)).

The effect of L137 on LPS-induced COX-2 protein expression was examined by Western blotting. Furthermore, since COX-2 is a NF-\(\kappa\)B-regulated gene, we investigated whether L137 is able to suppress LPS-induced NF-\(\kappa\)B expression. As has been clearly described\(^{(23)}\), synthesis of some prostanoid products depends on different COX isoforms: monocyte TXA\(_2\) on both COX-1 and COX-2 and PGE\(_2\) mainly on COX-2 activity, respectively. In order to quantify the inhibitory potential of L137 on COX-2 activity, experiments were carried out on monocytes pre-treated with aspirin so as to block the prostanoid production derived from the constitutive isoform of COX (COX-1). Aspirin pre-treatment, in fact, followed by several washings is able to inhibit COX-1 activity, but does not significantly affect COX-2-derived PGE\(_2\) and TXB\(_2\) production induced by LPS\(^{(23)}\). As reported in Table 1, the inhibitory effect of L137 on COX-2-derived prostanoid production reached statistical significance even at the lowest concentration assayed (1 \(\mu \)M), suggesting that its inhibitory effect is mainly referred to COX-2 activity. Results obtained with NS-398, the specific inhibitor of COX-2 activity, confirmed this possibility: L137 did not modify the COX-1-derived TXB\(_2\) production (3.52 (SE 0.36) in control induced by LPS\(^{(21)}\). As reported in Table 1, the inhibitory effect of L137 at 10 and 50 \(\mu \)M decreased the TNF-\(\alpha\) produced over 24 h by LPS-stimulated, but untreated, cells was 0.8–5.2 ng/ml, and L137 treatment at 0.5, 10 and 100 \(\mu \)M decreased the TNF-\(\alpha\) production by about 30, 60 and 80%, respectively (\(P <0.01 \)).

The production of TNF-\(\alpha\), one of the major pro-inflammatory cytokines involved in the pathogenesis of chronic inflammatory diseases and modulated by oxidative stress\(^{(24)}\), was also impaired by L137. The amount of TNF-\(\alpha\) produced over 24 h by LPS-stimulated, but untreated, cells was 0.8–5.2 ng/ml, and L137 treatment at 0.5, 10 and 100 \(\mu \)M decreased the TNF-\(\alpha\) production by about 30, 60 and 80%, respectively (\(P <0.01 \)).

Fig. 1. Effect of 1-phenyl-6,7-dihydroxy-isochroman (L137) on cyclo-oxygenase-2 (COX-2) (A) and NF-\(\kappa\)B (B) protein expression in human monocytes stimulated with lipopolysaccharide (LPS; 50 ng/ml). The densitometric data were calculated as the fold decrease of the value for the LPS-stimulated group. Values are means from three different experiments, with standard errors represented by vertical bars. * Significant inhibition v. LPS-stimulated cells (\(P <0.001 \)). ** Mean values with unlike letters were significantly different (\(P <0.01 \)).
activation. Human monocytes both untreated and pre-treated with L137 were primed with LPS. Whole-cell extracts were prepared and analysed by Western blotting. As shown in Fig. 1(A), L137 only at 100 μM significantly decreased LPS-induced COX-2 expression through the suppression of NF-κB activation (Fig. 1(B)). Because the inhibitory effect on COX-2-mediated prostandoid release was recorded even at the lowest concentration (1 μM), whereas only at 100 μM, COX-2 expression was significantly reduced, the effect of L137 seems to depend mainly on a direct inhibition of the COX activity of COX-2 and to involve a decrease in COX-2 synthesis only at the highest concentration.

In conclusion, in the present study, we demonstrated that L137 suppresses LPS-induced pro-inflammatory mediator production and COX-2 expression by inhibiting the activation of the NF-κB signal transduction pathway. This effect, in addition to the reported antioxidant and anti-platelet activity,(14,25), indicates that the isochromane compounds may also contribute to the anti-atherogenic and anti-inflammatory properties of the extra-virgin olive oil.

Acknowledgements

We gratefully acknowledge Paola Patrignani for providing specific PGE₁ antiserum. The present study was partially supported by a grant to G. I. T. from the ‘Sapienza’ University of Rome. None of the authors has any conflicts of interest. The contribution of the authors was as follows: G. T., A. R. T. and G. I. T. designed the study; G. T., A. R. T. and V. L. contributed to the execution of the experimental work; M. G. and G. I. T. designed the study; G. T., A. R. T. and V. L. contributed to the execution of the experimental work; M. G. and C. M. synthesised, purified and characterised the isochroman. All authors contributed to and approved the final manuscript.

References