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1. Introduction. Let R be an integral domain with quotient field K. A fractional
ideal I of R is a v-ideal if I is the intersection of all the principal fractional ideals of R
which contain I. If I is an integral v -ideal, at first one is tempted to think that I is actually
just the intersection of the principal integral ideals which contain I. However, this is not
true. For example, if R is a Dedekind domain, then all integral ideals are v -ideals. Thus a
maximal ideal of R is an intersection of principal integral ideals if and only if it is actually
principal. Hence, if R is a Dedekind domain, each integral v-ideal is an intersection of
principal integral ideals precisely when R is a PID.

In this paper we study domains in which each integral v-ideal is an intersection of
principal integral ideals. We also study the weaker property that each integral v-ideal be
contained in a principal integral ideal. The relationship between these properties and the
PSP-property introduced by Arnold and Sheldon [1] is then investigated.

JR will always be an integral domain with quotient field K. For a fractional ideal I of
R, let 7"1 = R : I = {x e K | xl c R}. We will usually denote (I~1)"1 by Iv. Here Iv is just the
intersection of all the principal fractional ideals of R which contain I. If I = Iv, I is called a
divisorial or v -ideal. A v-ideal I is of finite type if I = JV for some finitely generated
fractional ideal J of R. Our general reference is Gilmer [6]. Also, c= will denote proper
inclusion.

2. Integral v -Ideals. For an integral ideal I of R, let Ip be the intersection of all the
principal integral ideals of R which contain I. Clearly Jv s Ip. We will say that R satisfies the
IP-property if Iv = Ip for all integral ideals I of R. Thus R satisfies the IP-property if and
only if each integral v -ideal of R is an intersection of principal integral ideals of R. One
is tempted to try to define a *-operation [6, p. 392] on the set F(R) of fractional ideals of
R by first defining the *-operation on the integral ideals of R by I* = IP, and then
extending this to F(R) [6, p. 393]. However, for any ""-operation, I* c rv [6, p. 417]. Thus
the p-operation defines a *-operation if and only if it corresponds with the v-operation;
that is, if and only if R satisfies the IP-property.

We will say that R satisfies the CP-property if each proper integral v-ideal of i? is
contained in a proper principal integral ideal of R. Clearly the IP-property implies the
CP-property. We recall that J? is a GCD-domain if each pair of nonzero elements of R
has a greatest common divisor. It is well known that R is a GCD-domain if and only if
each pair of nonzero elements of R has a least common multiple, or equivalently, the
intersection of two principal fractional ideals of R is principal. First we give easily proved
characterizations of these properties in terms of the intersection of two fractional ideals.

LEMMA 2.1. (1) Risa GCD-domain if and only ifRHxR is principal for each xeK.
(2) R satisfies the IP-property if and only if RDxR is an intersection of principal

integral ideals for each xeK.
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(3) R satisfies the CP-property if and only if whenever I = RC\xRc.R for some xeK
then I is contained in a proper principal integral ideal of R.

Lemma 2.1 shows that a GCD-domain satisfies the IP-property, and that the
IP-property implies the CP-property. However, we will see that none of these implications
is reversible. We next show that the GCD-, IP-, and CP-properties are all equivalent if R
satisfies the ascending chain condition on principal ideals. In fact, in this case the
properties are all equivalent for the trivial reason that all v-ideals of R are actually
principal. In particular, these properties are equivalent if R is either Noetherian or a Krull
domain.

PROPOSITION 2.2. If R satisfies the ascending chain condition on principal ideals the
following are equivalent.

(1) Risa UFD.
(2) Ris a GCD-domain.
(3) All v-ideals of R are principal.
(4) R satisfies the IP-property.
(5) R satisfies the CP-property.

Proof. It is well known that (1) and (2) are equivalent if R satisfies the ascending
chain condition on principal ideals. Clearly (2)^>(4), (3)=>(2), and (3)^>(4)4>(5) hold
without any chain conditions. For (5)=M3), let 7 be a proper integral v-ideal of JR. Let
c€ = {xR \IcxR<zR}. By (5), «?t 0 . Since <£ is bounded below, ^^ = {x'1 R \ xR e ^} is
bounded above. But R satisfies the ascending chain condition on principal ideals, so l^~1

has a maximal element y~\R. Hence <€ has a minimal element yR. If 7 c yR, then y-17 is
a proper integral v-ideal, and thus y - 1 7 s zR <= R for some zeR. But then 7 s yzR <= yR,
a contradiction.

In order to have a ready supply of non-trivial examples, we characterize when the
D+M construction yields rings which satisfy the IP- or CP-property. For more details on
the D + M construction see [2] or [6].

PROPOSITION 2.3. Let V be a nontrivial valuation ring of the form K + M, where K is a
field and M is the maximal ideal of V. Let R be the subring D + M, where D is a proper
subring of the field K.

(1) R satisfies the IP-property if and only if D satisfies the IP-property and D is not a
field.

(2) R satisfies the CP-property if and only if D satisfies the CP-property and D is not a
field.

Proof. We will prove (1); the proof of (2) is similar. Suppose that R satisfies the
IP-property. Since M is always a v-ideal of R [2, Theorem 4.1], if D is a field, then M is
a principal ideal of JR. But then D = K, a contradiction. Let I be an integral v-ideal of D.
Then I+M is an integral v-ideal of R [2, Theorem 4.1]. Since R satisfies the IP-
property, I+M=C\yaR for some yaeR. Each ya = xa + mo for some maeM and
0 # x a e D . But then I+M= f] yaR = f] xaR = fl xaD + M [2, Lemma 3.12], so 1 =
D xaD, and thus D satisfies the IP-property.
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Conversely, suppose that D satisfies the IP-property and is not a field. Let J be an
integral v-ideal of R. If /=>M, then J = I+M for some integral v-ideal I of D [2,
Theorems 2.1 and 4.1]. Since I is an intersection of principal integral ideals of D, just as
above, J = I+M is an intersection of principal integral ideals of R. If J = M, then
M = H {xR | O ^ J C G D } [2, Theorem 4.1]. Thus we may assume that J<=M [2, Theorem
2.1]. Let J- H zJR for some za in the quotient field of R. Since each Z ĴR compares with
V under inclusion [2, Theorem 3.1], we may assume that each za = xa + ma with xaeK
and maeM. If x a ^0 , then zaR = xaR = xaD + M=>M [2, Lemma 3.12]. Thus J =

EXAMPLE 2.4. Let V = R[[X]] = R+M, where M = XV. Then R=Z(2)+M satisfies
the IP-property by the previous proposition. But R is not a GCD-domain [2, Theorem
3.13].

EXAMPLE 2.5. (I would like to thank J. Matijevic for suggesting this example.) Let
D = QdX2, X3]] be the subring of Q[[X]] which consists of those power series with zero
linear term. Write D = Q + M, where M is the unique maximal ideal of D. Then let
R =Z( 2 )+M be the subring of D whose constant terms lie in Z(2). Clearly JR satisfies the
CP-property since JR is quasi-local with principal maximal ideal 2Z(2) + M = 2R. We will
show that JR does not satisfy the IP-property by showing that the v -ideal I = R HXR =
X3Q + X 4 Q + . . . is not an intersection of principal integral ideals. In fact,

Claim. Let J be the intersection of all the principal integral ideals of R that contain
I. Then J = M.

Proof. Clearly J s M , since M = f) 2nZ(2)+M. Suppose that I s y K c R , say y =
a0 + a2X* + . . . . Since all (l/n)X3el, aoj= 0. But then M£ yR because y is a unit in D.

Example 2.4 shows that neither the IP nor the CP-property is preserved by localiza-
tion. For if we let S = Z\{0}, then RS=Q + M does not satisfy the IP- or CP-property by
Proposition 2.3.

Example 2.4 may be easily modified to give an example of an integrally closed
domain which satisfies the IP-property, but it is not a GCD-domain. For example, we
could let V = K[[X]] = K+M where K = Q(S, T), and then JR=Q[S]+M is integrally
closed [2, Theorem 2.1], but not a GCD-domain [2, Theorem 3.13]. However, the above
examples are not completely integrally closed (recall that R is completely integrally closed
if for x e K, 0 f a e R, axn e R for all n > 1, then x e R). We do not know if a completely
integrally closed domain that satisfies the IP-property is necessarily a GCD-domain.
Probably it is not. The difficulty is that the D + M and similar constructions never yield
completely integrally closed domains. Also, one can use the Kaplansky-Krull-Jaffard-
Ohm Theorem [6, p. 215] to construct completely integrally closed domains, but these are
necessarily Bezout domains. However, if J? is completely integrally closed, the IP-
property and CP-property are equivalent.

PROPOSITION 2.6. If R is completely integrally closed, then R satisfies the IP-property if
and only if R satisfies the CP-property.
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Proof. Let 7 be a proper integral v-ideal of R. Then J, the intersection of the
principal integral ideals of R which contain I, is a proper integral v -ideal with I s J. Since
R is completely integrally closed, the set of v-ideals of R forms a group. If I^J, then
(LT\<= R. So by hypothesis, (IJ~\£xJR <= R for some xeR. But then I^xJ^J. But xJ
is also an intersection of principal integral ideals, so J £ xJ, a contradiction.

If R satisfies the CP-property, then any integral ideal / which is maximal with respect
to being a v-ideal is principal. If, in addition, R is completely integrally closed, / is
necessarily a principal prime ideal [5, p. 13].

If each maximal ideal of R is principal, clearly JR satisfies the CP-property. In the
special case that R is also quasi-local with principal maximal ideal we can ask when R is a
GCD-domain, or equivalently, (by Proposition 2.7) when J? is a valuation domain.
Example 2.4 shows that in general this is not true. Recall that R is a finite conductor
domain if the intersection of two principal ideals of R is finitely generated.

PROPOSITION 2.7. Let Rbe a quasi-local domain with principal maximal ideal M = xR.
(1) If R is integrally closed, then R is a valuation ring if and only if R is a finite

conductor domain.
(2) R is a valuation ring if any of the following conditions hold:
(a) R is completely integrally closed.
(b) R satisfies the ascending chain condition on principal ideals.
(c) R has Krull dimension one.
(d) Ris a GCD-domain.
(e) R is coherent.

Proof. (1) follows from a result of Zafrullah [12, Lemma 5] about f-ideals. (2) (a) and
(c) follow because then (~)xnR = 0 [6,p. 74].

If R satisfies the ascending chain condition on principal ideals, then (5)^(1) of
Proposition 2.2, shows that R is a UFD, and hence a DVR. Thus (b) holds. Finally, (d) is
a special case of (1), while (e) is a special case of [11, p. 60 Lemma 3.9].

Note that in (a), (b), and (c) above, R is actually a DVR.

3. The PSP-Property and Schreier Rings. Based on earlier work of Tang [10],
Arnold and Sheldon [1] defined a finitely generated integral ideal I of R to be primitive if
it is contained in no proper principal integral ideal of JR and to be super-primitive if
I~1 = R. Clearly a super-primitive ideal is primitive. They defined J? to satisfy the
PSP-property if each primitive ideal is super-primitive. Our next result, implicit in their
work, shows that the CP-property implies the PSP-property.

PROPOSITION 3.1. R satisfies the PSP-property if and only if each proper integral
v -ideal of finite type is contained in a proper principal integral ideal of R.

Proof. Let I be a finitely generated ideal of R with Iv <= .R. If Iv is not contained in
any proper principal integral ideal, then neither is I. Thus I is primitive, so I~1 = R
because R satisfies the PSP-property. But then Iv = (I"1)"1 = R, a contradiction. The
converse may be proved similarly.
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Thus the difference between the CP- and PSP-properties is whether we consider all
the integral v-ideals or just those of finite type. In [1, p. 49], it is shown that if V = K + M
is a rank-one non-discrete valuation ring, then for any proper subfield F of K, R = F+M
satisfies the PSP-property; but R does not satisfy the CP-property by Proposition 2.3.

However, if R is a finite conductor domain, then the PSP-property and CP-property
are equivalent. This follows easily from Lemma 2.1.

If R[X] satisfies either the IP- or CP-property, then so does R. But polynomial
extensions, like localizations, need not preserve either property [1, Theorem 3.3].

An element x of R is primal if x | ab implies x = cd with c | a and d \ b. An integrally
closed domain in which each element is primal is called a Schreier ring [3], [4]. A
GCD-domain is a Schreier ring, but the converse need not be true [3, p. 256], or Example
3.2. If R satisfies the ascending chain condition on principal ideals, then the PSP-property
or Schreier property imply that R is a UFD [1, p. 42], [3, Theorem 2.3]. This gives
another proof of (5)^>(1) of Proposition 2.2.

In general, there is no relationship between Schreier rings and the IP- or CP-
property. For the F+M examples of Arnold and Sheldon mentioned earlier are Schreier
rings as long as F is algebraically closed in K [8, p. 80]. McAdam and Rush show that if all
elements of R are primal, then R satisfies the PSP-property [8, p. 80]. They also ask if the
PSP-property implies that all elements of R are primal. Example 2.5 shows that it does
not. For that R satisfies the CP-property, and X31X2X4, but there do not exist a,beR
with X3 = ab so that a | X2 and b | X4. Another example, due to G. M. Bergman, is in [3,
p. 262]. However, neither of these examples is integrally closed.

Finally, we give an example of a completely integrally closed domain D which
satisfies the PSP, but not the CP-property. This is the example of Heinzer and Ohm [7] of
an essential domain that is not a Priifer v-multiplication domain. We follow their
notation.

EXAMPLE 3.2. Let k be a field and R = k(xu x 2 , . . . )[y, z](y2). For each i, let V; be
the DVR containing fc({Xj},-,&j) obtained by giving Xj, y, and z the value 1 and then taking
infimums. Then let D = R n{V; | i = 1,2, . . .}. D is completely integrally closed since R
and each Vf is completely integrally closed. G, the group of divisibility of D, is
v-embedded in H©(nz f ) , where H is the group of divisibility of R. A proper integral
v-ideal I of D of finite type corresponds to an element w = (h, tu t2, ) with h, tj ^ 0
and some k > 0 . But the principal integral ideal x«D corresponds to (0, en)<w. Thus

^I; so D satisfies the PSP-property. However, the proper integral v-ideal J =
i = l ,2 , . . .} ) v = Dny/zD is contained in no proper principal integral ideal of D.

For / corresponds to (h, 0 ,0 , . . . ) with h > 0, and a positive element of G of the form
(h, tu t2, • •) with h >0 necessarily has k >0 for all large n. Thus D does not satisfy the
CP-property. It may be shown that D is actually a Schreier ring because it is an ascending
union of UFD's [9].
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