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Abstract

We consider homogeneous STIT tessellations Y in the �-dimensional Euclidean space
R

� and show the triviality of the tail σ -algebra. This is a sharpening of the mixing result
by Lachièze-Rey (2001).
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1. Introduction

Let Y = (Yt : t > 0) be the STIT tessellation process, which is a Markov process taking
values in the space of tessellations of the �-dimensional Euclidean space R

�. The process Y

is spatially stationary (that is, its law is invariant under translations of the space) and on every
polytope with nonempty interior W (called a window) the induced tessellation process, denoted
by Y ∧ W = (Yt ∧ W : t > 0), is a pure jump process. The process Y was first constructed
in [16], and in Section 4 we give a brief description of it and recall some of its main properties.

In stochastic geometry, ergodic and mixing properties as well as weak dependencies in space
are studied. For example, Heinrich et al. considered mixing properties for Voronoi and some
other tessellations, Poisson cluster processes, and germ–grain models, and derived laws of
large numbers and central limit theorems; see [6], [9], and [8]. In the monograph by Daley
and Vere-Jones [4, pp. 207–209] the concept of the tail σ -algebra and of mixing conditions for
random measures and point processes is developed.

For STIT tessellations, Lachièze-Rey [12] showed that they are mixing in space. We pursue
the problem of whether sharper mixing properties also hold. In the present paper we prove tail
triviality for STIT tessellations. This is a step towards stronger mixing conditions like α- or
β-mixing; cf. [2, Chapter 2].

In Section 2 we introduce a definition for the tail σ -algebra B∞(T) on the space T of
tessellations in the �-dimensional Euclidean space R

�. This definition relies essentially on the
definition of the Borel σ -algebra with respect to the Fell topology on the set of closed subsets
of R

� (cf. [18]) as well as on the mentioned definition of the tail σ -algebra for random measures
and point processes, as given in [4].

Our main result is formulated in Section 3, Theorem 2: for the distribution of a STIT
tessellation, the tail σ -algebra B∞(T) is trivial, i.e. all its elements (the terminal events) have
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either probability 1 or 0. A detailed proof is given in Section 6. A key concept is the apparently
new definition in Section 5 of the encapsulation time of a window inside another window.

Finally, we compare STIT tessellations with Poisson hyperplane tessellations, and we show
that the tail σ -algebra B∞(T) is not trivial with respect to the distribution of Poisson hyperplane
tessellations. This shows that STIT tessellations are intermediary in their long-range regime
between Poisson hyperplane tessellations (with strong dependencies in very distant locations)
and the Poisson–Voronoi tessellation (where the dependencies are local only).

Schreiber and Thäle [19], [20], [21] proved some limit theorems. They provided central
limit theorems for the number of vertices and the total edge length in the two-dimensional
case (� = 2). Furthermore, they proved that in dimensions � ≥ 3 there appear nonnormal
limits, e.g. for the total surface area of the cells of STIT tessellations. Because it is known (see
[7]) that certain mixing properties—which are stronger than ‘tail triviality’—provide sufficient
conditions for central or other limit theorems, it remains as an open problem to characterize the
strong mixing properties of STIT tessellations in a more precise way. The results by Schreiber
and Thäle indicate that there will be some distinctions for different dimensions.

Let us mention that the triviality of the tail σ -algebra has revealed to be a powerful tool in
some areas. In particular, in ergodic theory with the introduction of K-systems (see [17]) and in
statistical physics where it characterizes when a Gibbs state is extremal for some specification
(see Theorem 7.7 of [5]). The Lévy processes have trivial tail σ -algebra (Kolmogorov 0–1
law), and also around the origin the initial σ -algebra is trivial, so it satisfies the Blumenthal 0–1
law; see [1].

2. The space of tessellations and the tail σ -algebra

The concepts of ergodic theory, mixing, and triviality of invariant and of tail σ -algebras are
well established for random processes on the real axis; see [10]. For random measures and
point processes on a Euclidean space R

�, the corresponding definitions can be found in [4]. In
the abovementioned papers [6], [9], [8] models of stochastic geometry were considered.

In the present paper we adapt these concepts for random tessellations. An analogous result to
Lemma 1 has already been shown in [10] and [4], and Lemma 2 is closely related toTheorem 2.14
of [2]. For completeness, we give a proof of these two lemmas.

Let R
� be the �-dimensional Euclidean space, and denote by T the space of tessellations of

this space as defined in [18, Chapter 10]. A tessellation can be considered as a set T of polytopes
(the cells) with disjoint interiors and covering the Euclidean space, as well as a closed subset
∂T which is the union of the cell boundaries. There is an obvious one-to-one relation between
both descriptions of a tessellation, and their measurable structures can be related appropriately;
see [13] and [18].

Let C be the set of all compact subsets of R
�. We endow T with the Borel σ -algebra B(T)

of the Fell topology (also known as the topology of closed convergence), namely,

B(T) = σ({{T ∈ T : ∂T ∩ C = ∅} : C ∈ C}).
(As usual, for a class of sets J, we denote by σ(J) the smallest σ -algebra containing J.)

A compact convex polytope W with nonempty interior in R
� is called a window. For

a window W , we introduce the σ -algebra of sets of tessellations which are determined by
restraints inside W :

BW(T) = σ({{T ∈ T : ∂T ∩ C = ∅} : C ⊆ W, C ∈ C}).
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By definition, BW(T) ⊂ B(T) is a sub-σ -algebra. We note that if W ′ ⊆ W then BW ′(T) ⊆
BW(T).

Denote by N = {1, 2, . . .} the set of positive integers. Let (Wn : n ∈ N) be an increasing
sequence of windows such that

R
� =

⋃
n∈N

Wn and Wn ⊂ intWn+1 for all n ∈ N. (1)

We have
BWn(T) ↗ B(T) as n ↗ ∞,

which means that σ(
⋃

n∈N
BWn(T)) = B(T).

In order to define the tail σ -algebra, we will also consider sets of tessellations which are
determined by their behavior outside a window W , i.e. in its complement W c. We define the
σ -algebra

BW c(T) = σ({{T ∈ T : ∂T ∩ C = ∅} : C ⊂ W c, C ∈ C}).
We have BW c(T) ⊂ B(T). On the other hand, if W ′ ⊆ W then BW c(T) ⊆ BW ′c (T).

Let (Wn : n ∈ N) be an increasing sequence of windows satisfying the conditions in (1).
Then, for every window W , there exists an m such that W ⊆ Wm and so BWc

m
(T) ⊆ BWc(T).

Hence,
⋂∞

n=1BWc
n
(T) ⊆ BWc(T). Since this happens for every window W , we have proven

that
⋂∞

n=1 BWc
n
(T) ⊆ ⋂

W window
BW c(T). But the converse inclusion obviously holds and so we

have
⋂∞

n=1 BWc
n
(T) = ⋂

W window
BW c(T). This equality allows us to define, in analogy with the

definition for point processes (see [4, Definition 12.3.IV]), the tail σ -algebra on the space of
tessellations.

Definition 1. The tail σ -algebra is defined as

B∞(T) =
⋂

W window

BW c(T) =
∞⋂

n=1

BWc
n
(T),

where (Wn : n ∈ N) is an increasing sequence of windows satisfying (1).

Let us fix P a probability measure on (T, B(T)). For E , D ∈ B(T), we write E = Dmod P
if P(E�D) = 0. Also, for a pair B ′, B ′′ of sub-σ -algebras of B(T), we write B ′ ⊆ B ′′ modP
if, for all E ∈ B ′, there exists D ∈ B ′′ such that E = D modP. It is easily checked that every
set of B(T) can be approximated by some set in

⋃
n∈N

BWn(T), which means that

B(T) = {E ∈ B(T) : for every ε > 0, there exist n ∈ N and En ∈ BWn(T) : P(E�En) < ε}.
(2)

Now we consider invariance (both of measurable sets and of distributions) under the group
of translations of R

�. Let h ∈ R
�. For any set D ⊆ R

�, put D + h = {x + h : x ∈ D} and,
for T ∈ T, denote by T + h the tessellation with the boundary ∂(T + h) = ∂(T ) + h. For
E ⊆ T, put E + h = {T + h : T ∈ E}. For all E ∈ B(T), we have E + h ∈ B(T) because
{C ∈ C} = {C + h : C ∈ C}. The probability measure P is translation invariant if it satisfies
P(E) = P(E + h) for all E ∈ B(T) and h ∈ R

�.
Now assume that P is translation invariant. A set E ∈ B(T) is said to be (P-)invariant if

P(E�(E + h)) = 0 for all h ∈ R
�. Let I(T) denote the set of all invariant subsets of T.

Note that if E ∈ I(T), D ∈ B(T), and E = D modP, then D ∈ I(T). It is easily checked
that I(T) ⊆ B(T) is a sub-σ -algebra, the invariant σ -algebra (see, e.g. [4]). We have the
following inclusion relation which corresponds to Exercise 12.3.2. of [4, pp. 208–215] for
random measures. For completeness, we give the proof.
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Lemma 1. Suppose that P is translation invariant. Then

I(T) ⊆ B∞(T) mod P . (3)

Proof. We define 1 = (1, . . . , 1) ∈ R
�, so a1 = (a, . . . , a) for a ∈ R. Fix the sequence

(Wn = [−n, n]� : n ∈ N). Note that if m > 2n then Wn − m1 ⊂ Wc
n .

Let E ∈ I(T). Then it follows from (2) that, for all n ∈ N, there exists k = k(n) > n

and Ek ∈ BWk
(T) such that P(E�Ek) < 2−n. Since Ek ∈ σ({{T ∈ T : ∂T ∩ C = ∅} : C ⊆

Wk, C ∈ C}), we have, for N > 2k,

Ek − N1 ∈ σ({{T ∈ T : ∂T ∩ C = ∅} : C ⊆ Wk − N1, C ∈ C})
⊆σ({{T ∈ T : ∂T ∩ C = ∅} : C ⊂ Wc

k , C ∈ C})
= BWc

k
(T).

Since P(E�(E − N1)) = 0 and P((E − N1)�(Ek − N1)) = P(E�Ek) < 2−n, we obtain

P(E�(Ek − N1)) ≤ P(E�(E − N1)) + P((E − N1)�(Ek − N1)) < 2−n

for all N > 2k. Now choose N = k2, k > 2, and use k2 > 2k to obtain

P(E�(Ek − k21)) ≤ 2−n and Ek − k21 ∈ BWc
k
(T).

For m ≥ 1, define
Dm =

⋃
n>m

(Ek(n) − k(n)21).

This sequence of sets satisfies P(E�Dm) ≤ 2−m, Dm ∈ BW c
k(m)

(T) and Dm decreases with m.
We conclude that D = ⋂

m>1 Dm satisfies P(E�D) = 0 and D ∈ B∞(T). Hence, relation (3)
holds, completing the proof.

So, if the tail σ -algebra B∞(T) is P-trivial then P is ergodic with respect to translations,
because every invariant set E ∈ I(T) also belongs to B∞(T) andso P(E) = 0 or P(E) = 1.
Moreover, it implies mixing, an implication that is found in Proposition 12.3.V of [4] for the
case of random measures. That is, if P is translation invariant and B∞(T) is P-trivial then the
action of translations is mixing, i.e.

B∞(T) is P -trivial


⇒ lim|h|→∞ P(D ∩ (E + h)) = P(D) P(E) for all D, E ∈ B(T).
(4)

A sufficient condition ensuring that the tail σ -algebra is trivial is given by the following
result.

Lemma 2. Assume that, for every window W ′, all D ∈ BW ′(T), and all ε > 0, there exists a
window W depending on (W ′, D, ε) such that

W ′ ⊂ intW and | P(D ∩ E) − P(D) P(E)| < ε for all E ∈ BW c(T). (5)

Then the tail σ -algebra B∞(T) is P-trivial, that is,

P(E) = 0 or P(E) = 1 for all E ∈ B∞(T).
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Proof. Let D ∈ B∞(T). Let (Wn : n ∈ N) be an increasing sequence of windows satisfying
(1). Let ε > 0 be fixed. Since D ∈ B(T), from (2), there exist k ∈ N and Dk ∈ BWk

(T) such
that

P(D�Dk) < ε. (6)

Hypothesis (5) implies that there exists a window W , depending on (Wk, Dk, ε), such that
Wk ⊂ intW and, for all E ∈ BW c(T), it holds that | P(Dk ∩ E) − P(Dk) P(E)| < ε. We know
that there exists an n ≥ k such that W ⊆ Wn. So, BWc

n
(T) ⊆ BW c(T). We then have

| P(Dk ∩ E) − P(Dk) P(E)| < ε for all E ∈ BWc
n
(T).

Since D ∈ B∞(T) ⊂ BWc
n
(T), we obtain | P(Dk ∩ D) − P(Dk) P(D)| < ε. From (6) we

deduce that | P(D ∩D)− P(D) P(D)| < 3ε. Since this occurs for all ε > 0, we conclude that
P(D) = P(D) P(D), so P(D) = 1 or 0.

3. Main results

Let 	 be a (nonzero) measure on the space of hyperplanes H in R
�. It is assumed that 	 is

translation invariant and possesses the following locally finiteness property:

	([B]) < ∞ for all bounded sets B ⊂ R
�,

where [B] = {H ∈ H : H ∩ B �= ∅}. It is further assumed that the support set of 	 is such
that there is no line in R

� with the property that all hyperplanes of the support are parallel to
it (in order to obtain almost surely (a.s.) bounded cells in the constructed tessellation (cf. [18,
Theorem 10.3.2]), which can also be applied to STIT tessellations).

Let P denote the law of the STIT process Y .

Theorem 1. Let Y = (Yt : t > 0) denote a STIT tessellation process defined by the measure 	

on H in R
�, and let W ′ be a window. Then, for all t > 0 and all ε > 0, there exists a window

W such that W ′ ⊂ intW , and, for all D ∈ BW ′(T) and E ∈ BW c(T),

|P(Yt ∈ D ∩ E) − P(Yt ∈ D)P(Yt ∈ E)| < ε.

Let Pt (E) = P(Yt ∈ E) for E ∈ B(T) be the marginal law of Yt in T. Theorem 1 implies
that Pt satisfies the sufficient condition (5), and, thus, Lemma 2 implies the triviality of the tail
σ -algebra B∞(T) for Pt . Hence, the following result holds.

Theorem 2. For all t > 0, the tail σ -algebra is trivial for the STIT process Y , that is, for all
E ∈ B∞(T), we have P(Yt ∈ E) = 0 or P(Yt ∈ E) = 1.

Relation (4) ensures that Theorem 2 is stronger than the mixing property shown by Lachièze-
Rey [12].

4. The STIT model

4.1. A construction of STIT tessellations

For a window W , we denote the set of all tessellations of W by T∧W . If T ∈ T, we denote by
T ∧W the induced tessellation on W . Its boundary is defined by ∂(T ∧W) = (∂T ∩W)∪∂W .

In the present paper we will refer to the construction given in [16] for all details (for an
alternative but equivalent construction, see [13]). On every window W there exists a STIT
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tessellation process Y ∧ W = (Yt ∧ W : t > 0). It turns out that this is a pure jump Markov
process and, hence, has the strong Markov property (see [3, Proposition 15.25]). Each marginal
Yt ∧ W takes values in T ∧ W . Furthermore, for any t > 0, the law of Yt is consistent
with respect to the windows, that is, if W ′ and W are windows such that W ′ ⊆ W , then
(Yt ∧ W) ∧ W ′ ∼ Yt ∧ W ′, where ‘∼’ denotes the identity of distributions (for a proof, see
[16]). This yields the existence of a STIT tessellation Yt of R

� such that, for all windows W , the
law of Yt ∧ W coincides with the law of the construction in the window. A global construction
for a STIT process was provided in [15]. A STIT tessellation process Y = (Yt : t > 0) is a
Markov process and each marginal Yt takes values in T.

Here, let us recall roughly the construction of Y ∧ W carried out in [16].
The assumptions made on 	 at the beginning of Section 3 imply that 0 < 	([W ]) < ∞ for

every window W . Denote by 	[W ] the restriction of 	 to [W ] and by 	W = 	([W ])−1	[W ]
the normalized probability measure. Let us take two independent families of independent
random variables D = (dn,m : n, m ∈ N) and τ = (τn,m : n, m ∈ N), where each dn,m has
distribution 	W and each τn,m is exponentially distributed with parameter 	([W ]).

1. Even if, for t = 0, the STIT tessellation Y0 is not defined in R
�, we define Y0 ∧W = {W },

the trivial tessellation for the window W . Its unique cell is denoted by C1 = W .

2. Any extant cell has a random lifetime, and at the end of its lifetime it is divided by a
random hyperplane. The lifetime of W = C1 is τ1,1, and at that time it is divided by d1,1
into two cells denoted by C2 and C3.

3. Now, for any cell Ci which is generated in the course of the construction, the random
sequences (di,m : m ∈ N) and τ = (τi,m : m ∈ N) are used, and the following rejection
method is applied.

4. When the time τi,1 is elapsed, the random hyperplane di,1 is thrown onto the window W .
If it does not intersect Ci then this hyperplane is rejected, and we continue until a number
zi , which is the first index j for which a hyperplane di,j intersects and, thus, divides Ci

into two cells, Cl1(i) and Cl2(i), which are called the successors of Ci . Note that this
random number zi is finite a.s. Hence, the lifetime of Ci is a sum τ ∗(Ci) := ∑zi

m=1 τi,m.
It is easy to check, see [16], that τ ∗(Ci) is exponentially distributed with parameter
	([Ci]). Note that z1 = 1 and τ ∗(C1) = τ1,1.

5. This procedure is performed for any extant cell independently. It starts in that moment
when the cell is born by division of a larger (the predecessor) cell. In order to guarantee
independence of the division processes for the individual cells, the successors of Ci get
indexes l1(i), l2(i) in N that are different, and that can be chosen as the smallest numbers
which were not yet used before for other cells.

6. For each cell Ci , we denote by η = η(i) the number of its ancestors and we de-
note by (k1(i), k2(i), . . . , kη(i)) the sequence of indexes of the ancestors of Ci . So
W = Ck1(i) ⊃ Ck2(i) ⊃ · · · ⊃ Ckη(i) ⊃ Ci . Hence, k1(i) = 1. The cell Ci is born at
time κ(Ci) = ∑η

l=1 τ ∗(Ckl(i)) and it dies at time κ̄(Ci) = κ(Ci) + τ ∗(Ci); for C1, this
is κ(C1) = 0 and κ̄(C1) = τ ∗(C1). It is useful to put kη+1(i) = i.

With this notation at each time t > 0, the tessellation Yt ∧ W is constituted by the cells Ci

for which κ(Ci) ≤ t and κ̄(Ci) > t . It is easy to see that at any time, a.s. at most one cell dies
and a.s. at most only two cells are born.
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Now we describe the generated cells as intersections of half-spaces. First note that, by
translation invariance, it follows that 	([{0}]) = 0. Hence, all the random hyperplanes
(dn,m : n, m ∈ N) a.s. do not contain the point 0. Now, for a hyperplane H ∈ H such that
0 �∈ H , we denote by H+ and H− the closed half-spaces generated by H with the convention 0 ∈
int(H+). Hence, Ckl+1(i) = Ckl(i) ∩ d±

kl(i),zkl (i)
, where the sign in the upper index determines on

which side of the dividing hyperplane the cell Ckl+1(i) is located. Then any cell can be
represented as an intersection of W with half-spaces:

Ci = W ∩
η(i)⋂
l=1

zkl (i)⋂
m=1

d
s(kl(i),m)
kl(i),m

∩
zi−1⋂
m=1

d
s(i,m)
i,m . (7)

In the above relation we define the sign s(j, m) ∈ {+, −} by the relation Cj ⊂ d
s(j,m)
j,m for

j, m ∈ N. Note that the origin 0 ∈ Ci if and only if all signs in (7) satisfy s(kl(i), m) = + and
s(i, m) = +.

Obviously, the set of cells can be organized as a dyadic tree by the relation ‘C′ is a successor
of C’. This method of construction is used in [16]. For the following, it is important to
observe that all the rejected hyperplanes dkl(i),m are also included in this intersection because
the intersection with the appropriate half-spaces does not alter the cell. Although the third set⋂zi−1

m=1 d
s(i,m)
i,m in intersection (7) does not modify the resulting set, we also include it because

we will use this representation later.
In [16] it was shown that there is no explosion, so at each time t > 0 the number of cells of

Yt ∧ W , denoted by ξt , is finite a.s. Renumbering the cells, we write {Ci
t : i = 1, . . . , ξt } for

the set of cells of Yt ∧ W .

4.2. Independent increments relation

The name STIT is an abbreviation for ‘stochastic stability under the operation of iteration
of tessellations’. Closely related to that stability is a certain independence of increments of the
STIT process in time.

In order to explain the operation of iteration, we number the cells of a tessellation T ∈ T in
the following way. Assign to each cell a reference point in its interior (e.g. the Steiner point,
see [18, p. 613], or another point that is a.s. uniquely defined). Order the set of reference points
of all cells of T by its distance from the origin. For random homogeneous tessellations, this
order is a.s. unique. Then number the cells of T according to this order, starting with number 1
for the cell which contains the origin. Thus, we write C(T )1, C(T )2, . . . for the cells of T .

For T ∈ T and �R = (Rm : m ∈ N) ∈ T
N, we define the tessellation T � �R, referred to as

the iteration of T and �R, by its set of cells

T � �R = {C(T )k ∩ C(Rk)l : k ∈ N, l ∈ N, int(C(T )k ∩ C(Rk)l) �= ∅}.
So, we restrict Rk to the cell C(T )k , and this is done for all k = 1, . . . . The same definition
holds when the tessellation and the sequence of tessellations are restricted to some window.

To state the independence relation of the increments of the Markov process Y of STIT
tessellations, we fix a copy of the random process Y and let �Y ′ = (Y ′m : m ∈ N) be a sequence
of independent copies of Y , all of them also being independent of Y . In particular, Y ′m ∼ Y .
For a fixed time s > 0, we set �Y ′

s = (Y ′
s
m : m ∈ N). Then, from the construction and from the

consistency property of Y , it is straightforward to see that the following property holds:

Yt+s ∼ Yt � �Y ′
s for all t, s > 0. (8)
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This relation was first stated in Lemma 2 of [16]. It implies that Y2t ∼ Yt � �Y ′
t . The STIT

property means that
Yt ∼ 2(Yt � �Y ′

t ) for all t > 0,

so Yt ∼ 2Y2t . Here the multiplication with 2 stands for the transformation x �→ 2x, x ∈ R
�.

5. The encapsulation time of an embedded window

In the present section we introduce the concept of the encapsulation time of a window W ′
which is embedded in a larger window W . This will provide an essential tool for the proof of
the main result.

Let W ′ be a window, and let 	 be a measure on the set of hyperplanes, as introduced at
the beginning of Section 3. Since 	 is supposed to be translation invariant, without loss of
generality, it can be assumed that the origin 0 ∈ int(W ′).

Let W be a window such that W ′ ⊂ int(W). A key idea is the investigation of the probability
that the window W ′ and the complement W c are separated by the edges of the STIT process Y

(we say that W ′ is encapsulated within W ) at some time, and, thus, after that time, the processes
inside W ′ and outside W , are approximately independent.

For simplicity, denote by Ct = C1
t the (a.s. uniquely determined) cell of tessellation Yt ∧W

that contains the origin in its interior. Obviously, C0 = W . Note that Ct decreases as time t

increases. On the other hand, since W ′ ⊂ W , when we consider the STIT on W ′, we can take
(Yt ∧ W) ∧ W ′.

Definition 2. Let W ′ and W be two windows with 0 ∈ int(W ′) and W ′ ⊂ int(W), and let
t > 0. We say that W ′ is encapsulated inside W at time t if the cell Ct that contains 0 in Yt ∧W

is such that
W ′ ⊆ Ct ⊂ int(W).

We write W ′|tW if W ′ is encapsulated inside W at time t .

We denote the encapsulation time by

S(W ′, W) = inf{t > 0 : W ′|tW },

where, as usual, we put S(W ′, W) = ∞ if {t > 0 : W ′|tW } = ∅. Encapsulation of W ′ inside
W means that S(W ′, W) < ∞ or, equivalently, W ′|tW for some t > 0. In other words, the
boundaries ∂W ′ and ∂W are completely separated by facets of the 0-cell before the smaller
window W ′ is hit for the first time by a facet of the STIT tessellation.

We have {S(W ′, W) ≤ t} ∈ σ(Ys : s ≤ t), so S(W ′, W) is a stopping time. Hence,
S(W ′, W) is also a stopping time for the processes Y ∧ W . On the other hand, note that the
distribution of S(W ′, W) does not depend on a particular method of construction of the STIT
process Y . Furthermore, if the construction as described in Subsection 4.1 is performed in
a window W̃ ⊇ W then the spatial consistency of STIT tessellations (see [16]) implies that
S(W ′, W) does not depend on W̃ . In some of our proofs we will assume that the starting
process is Y , but in some others we will start from the STIT process Y ∧ W , as in the proof of
Lemma 3.

Note that even if in the STIT construction we have ‘independence (inside W ′ and outside W )
after encapsulation’, it has to be considered that the tessellation outside W also depends on the
process until the encapsulation time.
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For two Borel sets A, B ⊂ R
�, we denote by

[A|B] = {H ∈ H : (A ⊂ int(H+), B ⊂ int(H−)) or (A ⊂ int(H−), B ⊂ int(H+))},
the set of all hyperplanes that separate A and B. This set is a Borel set in H .

For a window W (which is defined to be a convex polytope), we denote by f W
a , a = 1, . . . , q,

the (� − 1)-dimensional facets of W . Let W ′ be another window such that W ′ ⊂ int(W). We
denote by

Ga = [W ′|f W
a ], a = 1, . . . , q,

the set of hyperplanes that separate W ′ from the facet f W
a of W . Note that all these sets are

nonempty, and they are not necessarily pairwise disjoint.
There exists a finite family {G′

a : a = 1, . . . , q} of pairwise disjoint nonempty measurable
sets that satisfy

G′
a ⊆ Ga for all a ∈ {1, . . . , q}. (9)

(For example, we can choose G′
a = Ga \ ⋃

b<a Gb, or we can partition
⋃q

a=1 Ga alternatively.)

Lemma 3. Let W ′ and W be two compact convex polytopes, with W ′ ⊂ int(W). Let {G′
a : a =

1, . . . , q} be a finite class of nonempty disjoint measurable sets satisfying (9) and such that
	(G′

a) > 0 for all a = 1, . . . , q. Then,

P(S(W ′, W) ≤ t) ≥ e−t	([W ′])
q∏

a=1

(1 − e−t	(G′
a))

+
∫ t

0
	([W ′])e−x	([W ′])

q∏
a=1

(1 − e−x	(G′
a)) dx. (10)

Proof. Our starting point in the proof is the construction of the process Y ∧W . Because we
assume that 0 ∈ int(W ′), we focus on the genesis of the 0-cell Ct = C1

t , t ≥ 0, only. We use
representation (7), and we emphasize that in this intersection the positive half-spaces of those
hyperplanes di,m which are rejected in the construction are also involved.

Now, we consider a Poisson point process

� = {(dm, Sm) : m ∈ N}
on [W ] × [0, ∞) with intensity measure 	W ⊗ 	([W ])λ+, where λ+ denotes the Lebesgue
measure on R+ = [0, ∞). This point process can be considered as a marked hyperplane process
where the marks are birth times (or as a ‘rain of hyperplanes’). This choice of intensity measure
corresponds to the families D and τ of random variables in Subsection 4.1: the interval between
two sequential births of hyperplanes is exponentially distributed with parameter 	([W ]), and
the law of the born hyperplanes is 	W . Thus, the Sm are sums of independent and identically
distributed exponentially distributed random variables which are independent of the dm. This
corresponds to one of the standard methods to construct (marked) Poisson point processes
(cf., e.g. [11]). Note that this Poisson process is used for the construction of the 0-cell
exclusively.

Let η denote the number of ancestors of Ct with indexes k1, . . . , kη, and let Zkl
= ∑l

i=1 zki
,

l = 1, . . . , η + 1. Thus, we can write (7) for the 0-cell as

Ct = W ∩
η⋂

l=1

Zkl⋂
m=Zkl−1+1

d+
m ∩

Zkη+1−1⋂
m=Zkη+1

d+
m = W ∩

⋂
{m : Sm<t}

d+
m.

https://doi.org/10.1239/aap/1409319553 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1409319553


652 • SGSA S. MARTÍNEZ AND W. NAGEL

Define the random times

σ ′ = min{S : there exist (d, S) ∈ � : d ∈ [W ′]}
and σa = min{S : there exist (d, S) ∈ � : d ∈ G′

a}, a = 1, . . . q.

These are the first times that a hyperplane of � falls into the respective sets. Note that, a.s., these
minima exist and are greater than 0 because all 	[W ](G′

a) > 0; furthermore, we are working
on a bounded window W and 	 is assumed to be locally finite, so 	W is a probability measure.
Let

M = max{σa : a = 1, . . . q}.
By definition, for all a = 1, . . . , q, there exists a (d(a), S(a)) ∈ � with d(a) ∈ G′

a and S(a) ≤ M.
Then f W

a ⊂ d−
(a) and CS(a)

⊆ d+
(a). Since CM ⊆ CS(a)

, we deduce that

CM ⊆
q⋂

a=1

d+
(a) ⊂ int(W).

On the other hand, if σ ′ ≥ M then W ′ is not intersected until the time M = max{σa : a =
1, . . . , q}, so we have W ′ ⊆ CM. Then

W ′ ⊆ CM ⊂ int(W).

We have shown that
{M ≤ σ ′} ⊆ {S(W ′, W) ≤ M}.

This relation straightforwardly implies the inclusion

{M ≤ min{σ ′, t}} ⊆ {S(W ′, W) ≤ t}. (11)

Indeed, from M ≤ σ ′ we obtain S(W ′, W) ≤ M, and we use M ≤ t to obtain relation (11).
We deduce that

P(S(W ′, W) ≤ t) ≥ P(M ≤ min{σ ′, t}).
Now, the sets [W ′] and G′

a, a = 1, . . . , q, are pairwise disjoint and, therefore, the restricted
Poisson point processes � ∩ ([W ′] × [0, ∞)) and � ∩ (G′

a × [0, ∞)), a = 1, . . . , q, are
independent. Hence, σ ′ and σa, a = 1, . . . , q, are independent random variables. Then σ ′ and
M are independent, and we obtain

P(M ≤ min{σ ′, t}) = P(M ≤ σ ′ ≤ t) + P(M ≤ t ≤ σ ′)
= P(M ≤ σ ′ ≤ t) + P(M ≤ t)P(t ≤ σ ′).

Since σ ′ and σa, a = 1, . . . , q, are exponentially distributed with the respective parameters
	([W ′]) and 	(G′

a) > 0, a = 1, . . . , q, we find that

P(t ≤ σ ′) = e−t	([W ′]) and P(M ≤ t) =
q∏

a=1

(1 − e−t	(G′
a)).

Now, by denoting the density functions of σ ′ by p′ and those of σi by pi , we obtain

P(M ≤ σ ′ ≤ t) =
∫ t

0
p′(x)

(∫ x

0
p1(x1) dx1 · · ·

∫ x

0
pq(xq) dxq

)
dx

=
∫ t

0
	([W ′])e−x	([W ′])

q∏
a=1

(1 − e−x	(G′
a)) dx.

Therefore, (10) follows.

https://doi.org/10.1239/aap/1409319553 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1409319553


STIT tessellations have trivial tail σ -algebra SGSA • 653

Remark 1. (i) We stress that M ≤ min{σ ′, t} is sufficient but not necessary for S(W ′, W) ≤ t .
There are other ways than separating the complete facets of W by single hyperplanes to
encapsulate W ′ within W . Alternate geometric constructions are possible.

(ii) It is well known in convex geometry that [W ′|f W
a ] �= ∅ for all a = 1, . . . , q. But, depending

on the support of the measure 	 (in particular, if 	 is concentrated on a set of hyperplanes
with only finitely many directions), there can be windows W such that 	([W ′|f W

a ]) = 0 for
some a. In such cases the bound given in Lemma 3 is useless. Therefore, in the following, W

will be adapted to 	 in order to have all 	(G′
a) > 0. However, here we will not try to find an

optimal W in the sense that the quantities 	(G′
a) could somehow be maximized.

(iii) As an example, consider the particular measure 	⊥ = ∑�
j=1 gj δj , where gj > 0 and δj

is the translation invariant measure on the set of all hyperplanes that are orthogonal to the j th
coordinate axis in R

�, with the normalization δj ([sj ]) = 1, where sj is a linear segment of
length 1 and parallel to the j th coordinate axis. With each axis j we associate two indices
a ∈ {1, . . . , 2�}, where a = j refers to the negative part of this axis and a = j + � refers to
its positive part. Let W ′ = [−α, α]� and W = [−β, β]� be two windows with 0 < α < β. If
(f W ′

a , f W
a ) is a pair of parallel facets (of W ′ and of W , respectively) which are orthogonal to the

j th coordinate axis and hitting this axis at −α and −β, respectively, when a = j , or at α and β

when a = j+�, j = 1, . . . , �, we can choose G′
a as the set of all hyperplanes that are orthogonal

to the j th axis and which separate f W
a from f W ′

a . This implies that 	⊥(G′
a) = gj (β − α).

Simple geometric considerations yield

{M ≤ min{σ ′, t}} = {S(W ′, W) ≤ t} a.s.,

and, hence, for 	⊥, we have the equality sign in (10).

We will use the following parameterization of hyperplanes. Let S
�−1 be the unit hypersphere

in R
�. For H ∈ H , d(H) ∈ R denotes its signed distance from the origin and u(H) ∈ S

�−1

is its normal direction. We denote by H(u, d) the hyperplane with the respective parameters
(u, d) ∈ R × S

�−1. The image of a nonzero, locally finite, and translation invariant measure 	

with respect to this parameterization can be written as the product measure

γ λ ⊗ θ, (12)

where γ > 0 is a constant, λ is the Lebesgue measure on R, and θ is an even probability
measure on S

�−1 (cf., e.g. [18, Theorem 4.4.1 and Theorem 13.2.12]). Here θ is even means
that θ(A) = θ(−A) for all Borel sets A ⊆ S

�−1. The property that there is no line in R
� such

that all hyperplanes of the support of 	 are parallel to it is equivalent to the property that θ is
not concentrated on a great subsphere of S

�−1, i.e. there is no one-dimensional subspace L1 of
R

� (with the orthogonal complement L⊥
1 ) such that the support of θ equals G = L⊥

1 ∩ S
�−1.

Lemma 4. For all windows W ′ with 0 ∈ int(W ′), there exists a compact convex polytope W

with facets f W
1 , . . . , f W

2� and W ′ ⊂ int(W), and pairwise disjoint sets G′
a ⊆ [W ′|f W

a ] such
that 	(G′

a) > 0 for all a = 1, . . . , 2�.

Proof. For u ∈ S
�−1, we denote by HW ′(u) the supporting (i.e. tangential) hyperplane to W ′

with normal direction u ∈ S
�−1. By hW ′(u) we denote the distance from the origin to HW ′(u).

This is the support function of W ′: hW ′(u) = max{〈x, u〉 : x ∈ W ′} (see [18, p. 600]). With
this notation we have HW ′(u) = H(u, hW ′(u)). Note that, for d ∈ R, the hyperplane H(u, d)

is parallel to HW ′(u) at a signed distance d from the origin.
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The shape of the window W will depend on 	. We use some ideas given in the proof of
Theorem 10.3.2 of [18]. Under the given assumptions on the support of 	, there exist points
u1, . . . , u2� ∈ S

�−1 which all belong to the support of θ and 0 ∈ int(conv{u1, . . . , u2�}), i.e.
the origin is in the interior of the convex hull. Now, the facets f W

a of W are chosen to have
normals ua , and their distance from the origin is |hW ′(ua)| + 3, a = 1, . . . , 2�. Formally,

W =
2�⋂

a=1

H(ua, hW ′(ua) ± 3)+.

Note that the described condition on the choice of the directions u1, . . . , u2� guarantees that W

is bounded (see the proof of Theorem 10.3.2 of [18]).
From the definition of the support of a measure and some continuity arguments (applied

to sets of hyperplanes), it follows that, for all ua , there are pairwise disjoint neighborhoods
Ua ⊂ S

�−1 such that θ(Ua) > 0, and, for the sets of hyperplanes,

G′
a = {H ∈ H : u(H) ∈ Ua, hW ′(ua) ± 1 < d(H) < hW ′(ua) ± 2},

it holds that G′
a ⊂ [W ′|f W

a ]. Hence,

	([W ′|f W
a ]) ≥ 	(G′

a) = γ θ(Ua) > 0 for all a = 1, . . . , 2�.

Since the Ua are pairwise disjoint, the sets G′
a, a = 1, . . . , 2�, also have this property.

Remark 2. Because the directional distribution θ is assumed to be an even measure, in the
construction above we can choose u�+a = −ua, a = 1, . . . , �. Then the facets f W

a and f W
�+a

are parallel.

Lemma 5. The compact convex polytope W constructed in Lemma 4 also satisfies the following
property. For all ε > 0, there exists a t∗(ε) > 0 such that the following encapsulation time
relation holds. For all s ∈ (0, t∗(ε)] and all r ≥ r(s), there exists r(s) ≥ 1 such that

P(S(W ′, rW) ≤ s) > 1 − ε. (13)

Proof. Let us use the notation introduced in Lemma 4 and its proof. For r > 0, we set
rG′

a = {rh : h ∈ G′
a}. Then, it follows from elementary linear algebra that G′

a ⊂ [W ′|f W
a ]

implies that rG′
a ⊂ [W ′|rf W

a ] for all r > 1. Furthermore, from (12) we find that

	([W ′|rf W
a ]) ≥ 	(rG′

a) = γ rθ(Ua) for all a = 1, . . . , 2�.

Now define
L = min{	(G′

a) = γ θ(Ua) : a = 1, . . . , 2�}.
We have L > 0, and (10) yields

P(S(W ′, rW) ≤ s)

≥ e−s	([W ′])(1 − e−srL)2� +
∫ s

0
	([W ′])e−x	([W ′])(1 − e−xrL)2� dx

> e−s	([W ′])(1 − e−srL)2�.

Note that, for all ε ∈ (0, 1), there exists t∗(ε) > 0 such that

e−t∗(ε)	([W ′]) >
√

1 − ε.

Then, for all s ∈ (0, t∗(ε)], we have e−s	([W ′]) >
√

1 − ε. Furthermore, for any such s ∈
(0, t∗(ε)], there is an r(s) ≥ 1 with (1 − e−sr(s)L)2� >

√
1 − ε. This completes the proof.
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It is clear that (13) holds for all s > 0 if it holds for all s ∈ (0, t∗(ε)]. For our purposes,
only values of s close to 0 are of interest. The emphasis put on the behavior for small s in the
formulation of Lemma 5 also allows us to obtain easier proofs for the next propositions and to
organize them in a logical structure that is easier to read.

6. Proof of Theorem 1

In the sequel we prove some auxiliary results for STIT tessellations to provide the proof of
Theorem 1.

Lemma 6. For all W ′, all t > 0, and all ε > 0 and t∗(ε) such that (13) holds, there exists
t1 = t1(ε, t) ∈ (0, min{t, t∗(ε)}) such that, for all t2 ∈ (0, t1],

P(Y ∧ W ′ has no jump in [t − t2, t)) > 1 − ε.

Proof. Let {C ′i
t : i = 1, . . . , ξ ′

t } be the family of cells of the pure jump Markov process
Yt ∧ W ′. The lifetimes of C

′i
t are exponentially distributed with parameters 	([C ′i

t ]) and they
are conditionally independent, conditioned that a certain set of cells is given at time t . Then,
given a certain set of cells at t , the minimum of the lifetimes is exponentially distributed with
parameter ζt = ∑ξ ′

t

i=1 	([C ′i
t ]).

Note that ζt is monotonically increasing in t , because if at some time a cell C′ is divided
into the cells C′′ and C′′′, we have C′ = C′′ ∪ C′′′ and [C′] = [C′′] ∪ [C′′′]. Then, by the
subadditivity of 	,

	([C′]) = 	([C′′] ∪ [C′′′]) ≤ 	([C′′]) + 	([C′′′]).
Since the process Y ∧ W ′ has no explosion, for any fixed t > 0, there exists an x0 > 0 such
that, for all s ∈ [0, t], we have P(ζs ≤ x0) >

√
1 − ε. We fix t1 = t1(ε, t) ∈ (0, min{t, t∗(ε)})

as a value which also satisfies e−t1(ε)x0 >
√

1 − ε. This yields, for all t2 ∈ (0, t1],
P(Y ∧ W ′ has no jump in [t − t2, t))

≥ P(Y ∧ W ′ has no jump in [t − t1, t))

=
∫ ∞

0
P(Y ∧ W ′ has no jump in [t − t1, t) | ζt−t1 = x)P(ζt−t1 ∈ dx)

≥
∫ x0

0
P(Y ∧ W ′ has no jump in [t − t1, t) | ζt−t1 = x)P(ζt−t1 ∈ dx)

=
∫ x0

0
e−t1xP(ζt−t1 ∈ dx)

≥ e−t1x0P(ζt−t1 ≤ x0)

> 1 − ε.

This completes the proof.

In the sequel, for t > 0 and ε > 0, the quantity t1 = t1(ε, t) is that given by Lemma 6.
To avoid overburdened notation and since there will be no confusion, if E ∈ BW ′(T), we

will write E instead of E ∧ W ′, and, correspondingly, for all t > 0 and all E ∈ BW ′(T),

P(Yt ∈ E) = P((Yt ∧ W ′) ∈ (E ∧ W ′)) = P(Yt ∧ W ′ ∈ E).
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This abbreviation also allows us to put, for all E ∈ BW ′(T), D ∈ BW c(T), and s > 0,

P(Yt ∈ E ∩ D, S(W ′, W) < s) = P(Yt ∧ W ′ ∈ E , Yt ∈ D, S(W ′, W) < s).

Lemma 7. For all t > 0, ε > 0, and t2 ∈ (0, t1], we have

|P(Yt ∈ E) − P(Yt−s ∈ E)| < ε for all s ∈ (0, t2] and all E ∈ BW ′(T).

Proof. We have, for all s ∈ (0, t2],
{Y ∧ W ′ has no jump in [t − t2, t)} ⊆ {Y ∧ W ′ has no jump in [t − s, t)}.

Then
{Yt ∧ W ′ ∈ E , Y ∧ W ′ has no jump in [t − t2, t)}

= {Yt−s ∧ W ′ ∈ E , Y ∧ W ′ has no jump in [t − t2, t)}.
Therefore, {Yt ∧ W ′ ∈ E}�{Yt−s ∧ W ′ ∈ E} ⊆ {Y ∧ W ′ has some jump in [t − t2, t)}. By
using the relation |P(�) − P(�)| ≤ P(���), the result follows.

In the following results W is a window such that W ′ ⊂ int(W). We use the notation
S = S(W ′, W) for the encapsulation time.

Proposition 1. For all t > 0, ε > 0, and t2 ∈ (0, t1], we have

|P(Yt ∈ E) − P(Yt ∈ E | S < t2)| < ε for all E ∈ BW ′(T).

Proof. Let us first show that

P(Yt ∈ E | S = s) = P(Yt−s ∈ E) for all s ∈ (0, t) and all E ∈ BW ′(T). (14)

Let �Y ′ = (Y ′m : m ∈ N) be a sequence of independent copies of Y , and also independent of Y .
Relation (8) yields

Yt ∧ W ′ ∼ (Ys � �Y ′
t−s) ∧ W ′ ∼ (Ys ∧ W ′) � �Y ′

t−s .

On the event S = s we have W ′ ⊆ C1
s , the cell containing the origin at time s, and, thus,

Ys ∧ W ′ = {W ′}. Hence, on S = s we have (Ys ∧ W ′) � �Y ′
t−s ∼ Y ′1

t−s ∧ W ′. Therefore,

P(Yt ∧ W ′ ∈ E | S = s) = P(Y ′1
t−s ∧ W ′ ∈ E | S = s) = P(Y ′1

t−s ∧ W ′ ∈ E). (15)

Since Y ′1
t−s ∼ Yt−s , relation (14) is satisfied. Hence,

|P(Yt ∈ E) − P(Yt ∈ E | S < t2)|
=

∣∣∣∣P(Yt ∈ E) − 1

P(S < t2)

∫ t2

0
P(Yt ∈ E | S = s)P(S ∈ ds)

∣∣∣∣
=

∣∣∣∣P(Yt ∈ E) − 1

P(S < t2)

∫ t2

0
P(Yt−s ∈ E)P(S ∈ ds)

∣∣∣∣
= 1

P(S < t2)

∣∣∣∣
∫ t2

0
P(Yt ∈ E) − P(Yt−s ∈ E)P(S ∈ ds)

∣∣∣∣
≤ 1

P(S < t2)

∫ t2

0
|P(Yt ∈ E) − P(Yt−s ∈ E)|P(S ∈ ds)

< ε,

where in the last inequality we used Lemma 7.
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Lemma 7, Proposition 1, and relation (14) obviously imply the following result.

Corollary 1. For all t > 0, ε > 0, t2 ∈ (0, t1], and all s ∈ (0, t2), it holds that

|P(Yt−s ∈ E) − P(Yt ∈ E | S < t2)| = |P(Yt ∈ E | S = s) − P(Yt ∈ E | S < t2)|
< 2ε for all E ∈ BW ′(T ).

Lemma 8. For all t > 0, ε > 0, and t2 ∈ (0, t1], we have, for all D ∈ BW ′(T) and
E ∈ BW c(T),

|P(Yt ∈ D ∩ E | S < t2) − P(Yt ∈ D | S < t2)P(Yt ∈ E | S < t2)| < 2ε.

Proof. Firstly, we show the following conditional independence property: for all D ∈
BW ′(T) and E ∈ BW c(T),

P(Yt ∈ D ∩ E | S = s) = P(Yt ∈ D | S = s)P(Yt ∈ E | S = s). (16)

We use the notation introduced in the proof of Proposition 1, and we also write E instead of
E ∧ W c for short. Also, the arguments are close to those used in the proof of relation (14).

Recall that, on the event S = s, we have W ′ ⊆ C1
s . By Ys � (Y ′m

t−s : m ≥ 2) we mean that the
tessellations Y ′m

t−s are nested only into the cells Cm
s of Ys with m ≥ 2, and not into the cell C1

s .
From (14), (15), and the independence of the random variables Ys , Y ′m

t−s , m ≥ 1, we obtain

P(Yt ∧ W ′ ∈ D, Yt ∈ E | S = s)

= P((Ys � �Y ′
t−s) ∧ W ′ ∈ D, (Ys � �Y ′

t−s) ∈ E | S = s)

= P(Y ′1
t−s ∧ W ′ ∈ D, (Ys � (Y ′m

t−s : m ≥ 2)) ∈ E | S = s)

= P(Y ′1
t−s ∧ W ′ ∈ D)P(Ys � (Y ′m

t−s : m ≥ 2) ∈ E | S = s)

= P(Yt ∧ W ′ ∈ D | S = s)P(Yt ∈ E | S = s).

Then (16) is verified. By using this equality and Corollary 1, we find that

P(Yt ∈ D | S < t2)P(Yt ∈ E | S < t2) − 2ε

≤ (P(Yt ∈ D | S < t2) − 2ε)P(Yt ∈ E | S < t2)

= 1

P(S < t2)

∫ t2

0
(P(Yt ∈ D | S < t2) − 2ε)P(Yt ∈ E | S = s)P(S ∈ ds)

<
1

P(S < t2)

∫ t2

0
P(Yt ∈ D | S = s)P(Yt ∈ E | S = s)P(S ∈ ds)

= 1

P(S < t2)

∫ t2

0
P(Yt ∈ D ∩ E | S = s)P(S ∈ ds)

= P(Yt ∈ D ∩ E | S < t2).

In an analogous way, we can prove that

P(Yt ∈ D ∩ E | S < t2) < P(Yt ∈ D | S < t2)P(Yt ∈ E | S < t2) + 2ε,

which completes the proof.
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We summarize the argument as follows. The window W ′ was fixed and there was no
loss of generality in assuming that 0 ∈ int(W ′). Let t > 0 and ε > 0 be fixed. We construct
t1 = t1(ε, t) ∈ (0, min{t, t∗(ε)}). Now let W be as in Lemma 4. Note that, for all t2 ∈ (0, t1(ε)],
we have e−t2	([W ′]) >

√
1 − ε. Then, from Lemma 5, for all t2 ∈ (0, t1(ε)], there exists

r(t2) ≥ 1 such that P(S(W ′, rW) < t2) > 1 − ε for all r ≥ r(t2).
Now we fix t2 ∈ (0, t1(ε)] and in the sequel we write W instead of r(t2)W (W := r(t2)W )

for short. We have W ′ ⊂ int(W). From Lemma 8 we deduce the following result.

Corollary 2. For all D ∈ BW ′(T) and E ∈ BW c(T), it holds that

|P(Yt ∈ D ∩ E | S < t2) − P(Yt ∈ D | S < t2)P(Yt ∈ E | S < t2)| < 2ε.

Proposition 2. For the window W ′, all t > 0, and ε > 0, the window W satisfies

|P(Yt ∈ D ∩ E) − P(Yt ∈ D)P(Yt ∈ E)| < 4ε for all D ∈ BW ′(T) and E ∈ BW c(T).

Proof. Define

� = {Yt ∈ D}, � = {Yt ∈ E}, ϒ = {S(W ′, W) < t2}.
We have

|P(� ∩ � | ϒ) − P(� | ϒ)P(� | ϒ)| < 2ε and P(ϒ) > 1 − ε. (17)

Observe that P(ϒ) > 1−ε implies that P(�)−P(�∩ϒ) < ε and P(�)−P(�∩ϒ)P(ϒ) < 2ε

for all events �, in particular when � is �, �, or � ∩ �.
The first relation in (17) obviously implies that

|P(� ∩ � | ϒ) − P(� | ϒ)P(� | ϒ)|P(ϒ)2 < 2ε.

Then

P(� ∩ �) − 4ε < P(� ∩ �) − P(� ∩ � | ϒ)P(ϒ)2 + P(� | ϒ)P(� | ϒ)P(ϒ)2 − 2ε

= P(� ∩ �) − P(� ∩ � ∩ ϒ)P(ϒ) + P(� ∩ ϒ)P(� ∩ ϒ) − P(�)P(�)

+ P(�)P(�) − 2ε

< P(�)P(�).

In an analogous way, we show that P(�)P(�) < P(� ∩ �) + 4ε. Hence, the result is proven.

Proposition 2 yields the proof of Theorem 1, by substituting 4ε by ε.

7. Comparison of STIT and Poisson hyperplane tessellations

Intuitively, we expect a gradual difference in the mixing properties of STIT and Poisson
hyperplane tessellations (PHTs). Hyperplanes are unbounded, while the maximum faces (also
referred to as I-faces) in a STIT tessellation are always bounded. However, these I-faces tend to
be very large (it has already been shown in [14] for the planar case that the length of the typical
I-segment has a finite expectation but an infinite second moment). Since we have shown that
the tail σ -algebra for STIT is trivial, then STIT has a short-range correlation in the sense of [4,
Exercise 12.3.4].
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One aspect is the following. For PHTs, Schneider and Weil [18, Section 10.5] showed that
it is mixing if the directional distribution θ (see (12)) has zero mass on all great subspheres of
S

�−1+ . They contributed an example of a tessellation where this last condition is not fulfilled
and which is not mixing. In contrast to this, Lachièze-Rey [12] proved that STIT is mixing for
all θ which are not concentrated on a great subsphere.

Concerning the tail σ -algebra, we have Theorem 2 for STIT tessellations. In contrast, for
PHTs, the tail σ -algebra is not trivial.

Lemma 9. Let Y PHT denote a Poisson hyperplane tessellation with intensity measure 	 which
is a nonzero, locally finite, and translation invariant measure on H , and assume that the support
set of 	 is such that there is no line in R

� with the property that all hyperplanes of the support
are parallel to it. Then the tail σ -algebra is not trivial with respect to the distribution of Y PHT.

Proof. Let (Wn : n ∈ N) be an increasing sequence of windows such that, for all n ∈ N,
Wn ⊂ intWn+1 and R

� = ⋃
n∈N

Wn. Let B1 be the unit ball in R
� centered at 0. Consider the

following event in B(T):

D := {there exists a hyperplane in Y PHT which intersects B1}.
Since outside of any bounded window Wn all the hyperplanes belonging to Y PHT can be
identified and, thus, it can be decided (in a measurable way) whether there is a hyperplane
which intersects B1, we have D ∈ BWc

n
(T) for all n ∈ N, and, hence, D ∈ B∞(T). We have

P(D) = 1 − e−	([B1]), and this probability is neither 0 nor 1.
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