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Abstract

We consider a general homogeneous continuous-time Markov process with restarts.
The process is forced to restart from a given distribution at time moments generated
by an independent Poisson process. The motivation to study such processes comes
from modeling human and animal mobility patterns, restart processes in communication
protocols, and from application of restarting random walks in information retrieval. We
provide a connection between the transition probability functions of the original Markov
process and the modified process with restarts. We give closed-form expressions for
the invariant probability measure of the modified process. When the process evolves
on the Euclidean space, there is also a closed-form expression for the moments of the
modified process. We show that the modified process is always positive Harris recurrent
and exponentially ergodic with the index equal to (or greater than) the rate of restarts.
Finally, we illustrate the general results by the standard and geometric Brownian motions.
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1. Introduction

Many phenomena in nature and technology can be modeled by Markov processes which
restart from time to time. Human and animal movements can be modeled by Markov processes
that restart from some locations [8], [17]. Facing the congestion of the Internet traffic, the Inter-
net users tend to restart their sessions [10], [13] or a protocol governing the rate of information
transmission invokes restart routines (i.e. slow-start routine in the Internet transmission control
protocol) [16]. The PageRank algorithm [3] in information retrieval models the behavior of a
random surfer, who decides to restart web surfing from time to time. The heat kernel PageRank
[4] is a continuous-time analog of the original discrete-time algorithm. The restart policy is
also used to speedup the Las Vegas type randomized algorithms [1], [12].

Motivated by the abovementioned phenomena, we study a general homogeneous continuous-
time Markov process with restarts. We assume that the process of restarts is modeled by an
independent Poisson process. In Section 2 we derive a formula which makes a connection
between the transition probability functions of the original Markov process and the Markov
process modified by restarts. As a corollary, we obtain a closed-form expression for the invariant
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probability measure of the modified process. We also show that the modified process is always
positive Harris recurrent and exponentially ergodic with the index equal to (or greater than)
the rate of restarts. In Section 3 we provide bounds for the moments of the modified process
and investigate the limiting behavior of the modified process when the rate of restarts goes
to 0. We conclude the paper with Section 4 where we consider the restart modifications of the
two classical Markov processes: the standard Brownian motion with drift and the geometric
Brownian motion. It is very curious to observe that in the case of the geometric Brownian
motion the number of finite moments of the modified process depends on the rate of restarts.
Thus, even a small change in the value of the restart rate can lead to dramatic changes of the
properties of the geometric Brownian motion with restarts.

2. Main results

In accordance with [11], we consider a homogeneous continuous-time Markov process
{X(t) : t ∈ [0, ∞)} in a Borel space (E, E) characterized by the initial distribution γ (·), and
the (honest) transition function P(t, x, dy), satisfying the following properties:

1. P(t, x, ·) is a probability measure on E , i.e. the transition function is honest;

2. P(0, x, �) = 1{x ∈ �};
3. for each fixed � ∈ E , t ∈ [0, ∞), P (t, x, �) is a jointly measurable function with respect

to (t, x) ∈ [0, ∞) × E; and

4. the Chapman–Kolmogorov equation holds:

P(t + s, x, �) =
∫

E

P (s, y, �)P (t, x, dy).

Throughout this paper, all the processes are from the same probability space (�, F , P).
We further use the notation Px, Ex, and varx when the initial state of the concerned process is
x ∈ E.

The goal of the present work is to analyse a modification of the Markov process {X(t) : t ∈
[0, ∞)} introduced in the above by forcing the process to restart with a given restart distribution
ν(�) after an exponentially distributed random time, i.e. the process counting restarts represents
a standard Poisson process with rate, say, λ > 0, independent of {X(t) : t ∈ [0, ∞)}. In the
following theorem we characterize the transition function of the modified Markov process,
which is denoted as {X̃(t) : t ∈ [0, ∞)}.
Theorem 2.1. Let P(t, x, �) be the transition function of the Markov process {X(t) : t ∈
[0, ∞)} in a Borel space (E, E). Then the modified Markov process {X̃(t), t ∈ [0, ∞)} that
restarts from a distribution ν after (independent) exponentially distributed random times with
mean 1/λ has the following transition function:

P̃ν(t, x, �) = e−λtP (t, x, �) +
∫

E

∫ t

0
λe−λsP (s, y, �) dsν(dy). (2.1)

Proof. Denote by N(t) the number of restarts up to time t and by S the time elapsed since
the time moment of the last restart before t . Then we have

P̃ν(t, x, �) = P[{X̃(t) ∈ �} ∩ {N(t) = 0} | X̃(0) = x]
+ P[{X̃(t) ∈ �} ∩ {N(t) > 0} | X̃(0) = x]. (2.2)
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The first term on the left-hand side can be written as

P[{X̃(t) ∈ �} ∩ {N(t) = 0} | X̃(0) = x] = e−λtP (t, x, �).

Let us now calculate the second term on the right-hand side of (2.2). Note that this term can be
written as

P[{X̃(t) ∈ �} ∩ {N(t) > 0} | X̃(0) = x] =
∫

E

∫ t

0
P(s, y, �) dF(s)ν(dy),

where F(s) = P[S ≤ s, N(t) > 0]. Let Tk denote the kth restart moment from time 0. If
N(t) = n > 0 then the restart times T1, . . . , Tn have the same distribution as the order statistics
corresponding to n independent random variables uniformly distributed on the interval (0, t)

[15], and, therefore,

P[Tn ≤ τ | N(t) = n] =
(

τ

t

)n

, τ ∈ [0, t], n = 1, 2, . . . .

Then,

P[S ≤ s | N(t) = n] = P[Tn > t − s | N(t) = n] = 1 −
(

t − s

t

)n

, n = 1, 2, . . . ,

and, consequently,

F(s) =
∞∑

n=1

(λt)n

n! e−λt

[
1 −

(
t − s

t

)n]
= e−λt [eλt − eλ(t−s)] = 1 − e−λs .

Hence,

P[{X̃(t) ∈ �} ∩ {N(t) > 0} | X̃(0) = x] =
∫

E

∫ t

0
λe−λsP (s, y, �) dsν(dy),

and (2.1) follows.

Remark 2.1. Our proof is based on conditioning upon the elapsed time since the last restart.
If we condition upon the time until the first restart then we obtain the following equation:

P̃ν(t, x, �) = e−λtP (t, x, �) +
∫

E

∫ t

0
λe−λ(t−s)P̃ν(s, y, �) dsν(dy).

Corollary 2.1. The measure

qν(�) =
∫

E

∫ ∞

0
λe−λsP (s, y, �) dsν(dy) (2.3)

is an invariant probability measure for P̃ν(t, x, �).

Proof. Since P(s, y, ·) is a probability measure for all s and y, qν(·) is a probability measure
as well. Let us show that it is indeed an invariant measure. It is enough to show this for
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ν(dy) = 1{w ∈ dy}, where w ∈ E is fixed. In this case we also denote qν by qw and P̃ν by
P̃w for brevity. By Theorem 2.1 we obtain

∫
E

qw(dz)P̃w(t, z, �) =
∫

E

qw(dz)

[
e−λtP (t, z, �) +

∫ t

0
λe−λsP (s, w, �) ds

]

= e−λt

∫
E

qw(dz)P (t, z, �) +
∫ t

0
λe−λsP (s, w, �) ds.

Substituting into the above equation

qw(�) =
∫ ∞

0
λe−λsP (s, w, �) ds,

and using the Chapman–Kolmogorov equation yield
∫

E

qw(dz)P̃w(t, z, �) = e−λt

∫ ∞

0
λe−λsP (s + t, w, �) ds +

∫ t

0
λe−λsP (s, w, �) ds

=
∫ ∞

t

λe−λs′
P(s′, w, �) ds′ +

∫ t

0
λe−λsP (s, w, �) ds

=
∫ ∞

0
λe−λsP (s, w, �) ds

= qw(�),

which concludes the proof of the corollary.

Remark 2.2. We note that (2.3) can also be rewritten as

qν(�) =
∫

E

λR(y, �)ν(dy),

where R(y, �) = ∫ ∞
0 e−λsP (s, y, �) ds is the resolvent operator.

Now we are ready to prove that the modified process is positive Harris recurrent and
exponentially ergodic with index λ. Before this, we remind the reader of some definitions.

Recall that a homogeneous continuous-time Markov process {X̃(t), t ∈ [0, ∞)} is called
Harris recurrent if there exists a nontrivial σ -finite (recurrence) measure µ on E such that, for
each x ∈ E,

τ� := inf{t ≥ 0 : X̃(t) ∈ �} < ∞ Px-almost surely,

whenever µ(�) > 0; see [7] and [14]. If a Harris recurrent process admits an invariant
probability measure, it must be unique, and the process is further called positive Harris recurrent;
see [7] and [14].

A homogeneous continuous-time Markov process {X̃(t), t ∈ [0, ∞)} is called exponentially
ergodic with index α if there exist a probability measure µ(·) on E , a finite-valued function M(·)
on E, and a constant α > 0 satisfying ||P̃ (t, x, ·) − µ(·)||TV ≤ M(x)e−αt for every x ∈ E,

where || · ||TV denotes the total variation norm; see [5].

Theorem 2.2. The modified Markov process {X̃(t), t ∈ [0, ∞)} is positive Harris recurrent
and exponentially ergodic with index equal to (or greater than) the rate of restarts λ, and the
following inequality holds:

|qν(�) − P̃ν(t, x, �)| ≤ e−λt for all x ∈ Eand all � ∈ E . (2.4)
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Proof. The modified process {X̃(t), t ∈ [0, ∞)} under consideration is Harris recurrent
with the recurrence measure given by the restart distribution µ(·) = ν(·). From Corollary 2.1
we conclude that {X̃(t), t ∈ [0, ∞)} is positive Harris recurrent with the unique invariant
probability measure given by (2.3). Let us now prove (2.4). We see that

|qν(�) − P̃ν(t, x, �)| =
∣∣∣∣
∫

E

∫ ∞

t

λe−λsP (s, y, �) dsν(dy) − e−λtP (t, x, �)

∣∣∣∣
=

∣∣∣∣
∫

E

∫ ∞

t

λe−λsP (s, y, �) dsν(dy) −
∫ ∞

t

λe−λsP (t, x, �) ds

∣∣∣∣
=

∣∣∣∣
∫ ∞

t

λe−λs

[∫
E

P (s, y, �)ν(dy) − P(t, x, �)

]
ds

∣∣∣∣
≤

∫ ∞

t

λe−λs

∣∣∣∣
∫

E

P (s, y, �)ν(dy) − P(t, x, �)

∣∣∣∣ ds

≤ e−λt .

Since ||P̃ (t, x, ·) − qν(·)||TV = 2 sup�∈E |P̃ (t, x, �) − qν(�)| [9, Appendix], it follows that
{X̃(t), t ∈ [0, ∞)} is exponentially ergodic with index λ and M(x) = 2.

3. Moments and limits

In this section we let the initial distribution of the original process be the Dirac measure
concentrated at x ∈ E, where E = R

n. Then we write {X̃(t) : t ≥ 0} as

{(X̃1(t), . . . , X̃n(t)) : t ≥ 0}.
Similar notation is introduced for the process {X(t) : t ≥ 0}. Now consider the ith component
process {X̃i(t), t ≥ 0}. From (2.1) we can obtain an expression for the moments

Ex[X̃k
i (t)] = e−λt

Ex[Xk
i (t)] +

∫
E

∫ t

0
λe−λs

Ey[Xk
i (s)] dsν(dy), (3.1)

where, here and below, we assume that the involved interchange of the order of integrals is
legal, which is the case, for example, when

∫
E

∫ t

0
λe−λsEy[|Xk

i (s)|] dsν(dy) < ∞.

In turn, (3.1) helps to establish the following bound.

Proposition 3.1. Let the kth moment of the original process be exponentially bounded from
the above in time, i.e.

Ex[Xk
i (t)] ≤ ck,i(x)eηk,i t ,

where ck,i(·) is a measurable ν-integrable function, and ηk,i < λ is a constant. Then

lim sup
t→∞

Ex[X̃k
i (t)] ≤ c̄k,iλ

λ − ηk,i

,

where c̄k,i = ∫
E

ck,i(y)ν(dy). If the kth moment of the original process is uniformly bounded
from the above (i.e. Ex[Xk

i (t)] ≤ ck,i ∈ (−∞, ∞)), so is the kth moment of the modified
process by the same bound (i.e. Ex[X̃k

i (t)] ≤ ck,i).
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Proof. Equation (3.1) yields

Ex[X̃k
i (t)] ≤ e−λt ck,i(x)eηk,i t +

∫
E

∫ t

0
λe−λsck,i(y)eηk,i s dsν(dy)

= e−(λ−ηk,i )t ck,i(x) + λ

λ − ηk,i

(1 − e−(λ−ηk,i )t )

∫
E

ck,i(y)ν(dy),

which implies the first statement of the proposition. The second statement of the proposition
also follows from (3.1).

Now let us investigate what happens when the parameterλgoes to 0. Since
∫
E
P (s,y,�)ν(dy)

is a bounded measurable function with respect to s, according to [6], we can conclude that the
limiting discounting is equivalent to the time averaging. This fact and Theorem 1 of [7] lead to
the following statement.

Theorem 3.1. The existence of the limit limλ→0 qν(�) is equivalent to the existence of the limit
limT →∞(1/T )

∫ T

0

∫
E

P (s, y, �)ν(dy) ds. If these limits exist, they are equal. In particular, if
the original process {X(t) : t ∈ [0, ∞)} is positive Harris recurrent, the limit limλ→0 qν(�)

exists and is equal to the invariant probability measure of the original process.

Remark 3.1. There could be cases when the limit limλ→0 qν(·) exists for any probability
distribution ν(·). However, similarly to the case of singularly perturbed Markov processes [2],
the original process might not be ergodic.

4. Examples

Let us illustrate the general results with two examples.

4.1. Brownian motion with drift

As the first example, let us consider the Brownian motion with drift µ and variance coefficient
σ 2 on the real line E = R (see, e.g. [15]). The initial distribution of the original process is the
Dirac measure concentrated at x ∈ E. It can be described in stochastic differential notation as

dX(t) = µ dt + σ dW(t),

where W(t) is the standard Wiener process. The probability density function of the Brownian
process has a closed form:

p(t, 0, z) = 1√
2πσ 2t

exp

(
− (z − µt)2

2σ 2t

)
.

Here we assume that the process starts from 0. We observe that p(t, 0, z) does not converge
to a proper probability density as t goes to ∞. If the modified process also restarts from 0, by
(2.1), we have

p̃(t, 0, z) = exp(−λt)
1√

2πσ 2t
exp

(
− (z − µt)2

2σ 2t

)

+ λ

∫ t

0
exp(−λs)

1√
2πσ 2s

exp

(
− (z − µs)2

2σ 2s

)
ds,

which has the well-defined limiting probability density function

q0(z) = λ

∫ ∞

0
exp(−λs)

1√
2πσ 2s

exp

(
− (z − µs)2

2σ 2s

)
ds.
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Let us now consider that the original process starts with an arbitrarily fixed x ∈ E and restarts
according to the distribution ν(dy), which admits a finite second moment. Then we may
calculate the first moment of the modified process by (3.1) with Ex[X(t)] = x + µt :

Ex[X̃(t)] = e−λt (x + µt) +
∫

E

∫ t

0
λe−λs(y + µs) dsν(dy)

= e−λt (x + µt) + [1 − e−λt ]
∫

E

yν(dy) + [1 − (1 + λt)e−λt ]µ
λ

.

Thus,

Ex[X̃(t)] →
∫

E

yν(dy) + µ

λ
as t → ∞.

Similarly, a direct calculation gives

Ex[X̃2(t)] → σ 2

λ
+ 2µ2

λ2 +
∫

E

(
2µy

λ
+ y2

)
ν(dy) as t → ∞,

and, thus,

varx[X̃2(t)] →
∫

E

y2ν(dy) −
(∫

E

yν(dy)

)2

+ σ 2

λ
+ µ2

λ2 as t → ∞.

4.2. Geometric Brownian motion

As the second example, we consider the geometric Brownian motion (see, e.g. [15]), so we
take E = [0, ∞). It can be described by the stochastic differential equation (with the initial
condition P[X(0) ∈ dy] = 1{x ∈ dy}, where x ∈ E is fixed)

dX(t) = µX(t) dt + σX(t) dW(t),

where W(t) is the standard Wiener process. The probability density function of the geometric
Brownian motion also has a closed form, i.e.

p(t, x, z) = 1√
2π

1

zσ
√

t
exp

(
− (ln(z) − ln(x) − (µ − σ 2/2)t)2

2σ 2t

)
,

which defines a log-normal distribution with mean

Ex[X(t)] = xeµt (4.1)

and variance

varx[X(t)] = x2e2µt (eσ 2t − 1).

Indeed, for any k = 1, 2, . . . , it holds for this log-normal distribution that

Ex[Xk(t)] = xk exp

(
k

(
µ − σ 2

2

)
t + k2σ 2t

2

)
.
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Next, for any fixed k = 1, 2, . . . , we assume that λ−k(µ−σ 2/2)− 1
2k2σ 2 
= 0, and ν(dy)

has a finite kth moment. By using (3.1), the kth moment of the modified process is given by

Ex[X̃k(t)] = e−λtxk exp

(
k

(
µ − σ 2

2

)
t + 1

2
k2σ 2t

)

+
∫

E

∫ t

0
λe−λsyk exp

(
k

(
µ − σ 2

2

)
s + 1

2
k2σ 2s

)
dsν(dy)

= xk exp

(
−t

(
λ − k

(
µ − σ 2

2

)
− 1

2
k2σ 2

))

+
∫

E

λyk

∫ t

0
exp

(
−s

(
λ − k

(
µ − σ 2

2

)
− 1

2
k2σ 2

))
dsν(dy)

= xk exp

(
−t

(
λ − k

(
µ − σ 2

2

)
− 1

2
k2σ 2

))

+ λ
1 − exp(−t (λ − k(µ − σ 2/2) − k2σ 2/2))

λ − k(µ − σ 2/2) − k2σ 2/2

∫
E

ykν(dy).

Thus, when λ > k(µ − σ 2/2) + 1
2k2σ 2 > 0, we have

Ex[X̃k(t)] → λ

λ − k(µ − σ 2/2) − k2σ 2/2

∫
E

ykν(dy) as t → ∞.

Let us provide some intuition why in the case of the geometric Brownian motion with restart
the number of moments that converge to a finite limit depends on the restart rate. Consider a
piecewise-deterministic process driven by a Poisson process with rate λ, whose deterministic
component between two consecutive restart moments is described by x0 exp(µu), where u is
the time after the last restart (compare with (4.1)). This process can also be viewed as a restart
process whose original process has the transition function

P(t, x, �) = 1{xeµt ∈ �}.
Note that

∫ ∞
0 zP (t, x, dz) = x exp(µt), which is equal to (4.1). The substitution of the above

transition function into (2.3) yields the Pareto steady-state distribution

P(X̃(t) ≥ x) =
(

x0

x

)λ/µ

,

which can have only a finite number of finite moments.
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