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Abstract

The omega-3 index, defined as the sum of EPA and DHA in erythrocyte membranes expressed as a percentage of total fatty acids, has been

proposed as both a risk marker and risk factor for CHD death. A major determinant of the omega-3 index is EPA þ DHA intake, but the

impact of other dietary fatty acids has not been investigated. In a cross-sectional study on 198 subjects (102 men and 96 women, mean age

66 years) at high cardiovascular risk living in Spain, the country with low rates of cardiac death despite a high prevalence of cardiovascular

risk factors, dietary data were acquired from FFQ and blood cell membrane fatty acid composition was measured by GC. The average

consumption of EPA þ DHA was 0·9 g/d and the mean omega-3 index was 7·1 %. In multivariate models, EPA þ DHA intake was the

main predictor of the omega-3 index but explained only 12 % of its variability (P,0·001). No associations with other dietary fatty acids

were observed. Although the single most influential determinant of the omega-3 index measured here was the intake of EPA þ DHA,

it explained little of the former’s variability; hence, the effects of other factors (genetic, dietary and lifestyle) remain to be determined.

Nevertheless, the high omega-3 index could at least partially explain the paradox of low rates of fatal CHD in Spain despite a high

background prevalence of cardiovascular risk factors.

Key words: Diet: Cardiovascular risk: EPA: DHA: PUFA: SFA

There is a large body of evidence on the cardiovascular ben-

efits of n-3 long-chain PUFA (marine n-3 fatty acids), mainly

EPA (20 : 5n-3) and DHA (22 : 6n-3)(1). The synthesis of these

fatty acids is extremely inefficient in humans(2), and thus

they must be acquired pre-formed from dietary sources,

mainly from fatty fish. Dietary EPA and DHA are readily incor-

porated into cell membranes where they influence membrane

function, and this is believed to be one of the mechanisms

underlying their anti-arrhythmic, lipid-lowering, anti-thrombotic

and overall anti-atherosclerotic effects(1). The strength of the

evidence favouring n-3 fatty acids has prompted many

international health organisations and agencies to publish

recommendations for increased n-3 fatty acid intake, typically

by advising the inclusion of at least two servings/week of fatty

fish to promote cardiovascular health(3).

The blood lipid contents of EPA and DHA have been widely

used as biomarkers of intake and as surrogates of their enrich-

ment in cellular membranes(4). In addition, the omega-3

index, defined as the sum of percentages of EPA þ DHA in

erythrocyte membranes, has been proposed as a new risk

marker and risk factor for CHD, particularly sudden cardiac

death(2). Based on previous studies in Western populations,

the cardioprotective target level for the omega-3 index

has been tentatively set at 8 %, while values below 4 % are
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associated with higher cardiovascular risk(5). The main deter-

minant of the omega-3 index is the consumption of

EPA þ DHA(6–8), which explains the higher values reported

in Japanese populations compared with those from the USA

or other Western countries(6–9). In recent years, some other

factors that influence the omega-3 index have been described,

including age, BMI, diabetes, smoking, physical activity and

socio-economic status(6–9). The influence of dietary fatty

acids other than EPA and DHA on the omega-3 index has

been little investigated but is a subject of interest. This is par-

ticularly true of the n-6 fatty acids linoleic acid (LA) and ara-

chidonic acid since there is some controversy regarding their

role in CHD risk(10–13), and of the plant-derived n-3 fatty

acid a-linolenic acid (ALA) because it is a precursor of long-

chain n-3 PUFA. To address these questions, we examined

the associations between the omega-3 index and dietary

fatty acids in subjects at high cardiovascular risk living in

Spain, the country with the highest fish consumption both in

Europe(14) and among Mediterranean countries(15).

Methods

Subjects

The present analysis was conducted within the Prevención

con Dieta Mediterránea (PREDIMED) study, a large, multicen-

tre, parallel-group, controlled, randomised clinical trial aimed

at assessing the effects of the Mediterranean diet on the pri-

mary prevention of CVD. PREDIMED has eleven recruitment

sites in nine Spanish cities, including one at the Hospital

Clinic of Barcelona (Barcelona-North, Spain). The protocol

has been reported in detail elsewhere(16). Briefly, participants

were men aged between 55 and 80 years and women aged

between 60 and 80 years with no prior CVD but at high cardi-

ovascular risk. Inclusion criteria were either type 2 diabetes

mellitus or at least three of the following risk factors: current

smoking (.1 cigarette/d during the last month); hypertension

(systolic blood pressure $140 mmHg or diastolic blood

pressure $90 mmHg or antihypertensive medication); LDL-

cholesterol $1600 mg/l; HDL-cholesterol #400 mg/l in men

or #500 mg/l in women, independently of lipid-lowering

therapy; BMI $25 kg/m2; family history of premature CHD

(definite myocardial infarction or sudden death before 55

years in male first-degree relatives or before 65 years in

female first-degree relatives). Exclusion criteria were as fol-

lows: previous history of CVD; any severe chronic illness;

drug or alcohol addiction; history of allergy or intolerance to

olive oil or nuts (supplemental foods given in two arms of

the study); low predicted likelihood of changing dietary

habits. Between 2007 and 2009, 198 participants were

recruited in the Barcelona-North site. At the first visit, partici-

pants provided informed consent to participate in the study

and have their data about medical history, medication use

and lifestyle, including dietary intake to be used. Anthropo-

metric and blood pressure measurements were performed,

and fasting blood samples were drawn. The study protocol

(ISRCTN 35739639) was conducted according to the

guidelines laid down in the Declaration of Helsinki, and all

procedures were approved by the ethics committee of the

institution. Written informed consent was obtained from

all subjects.

Assessment of risk factors

Participants were considered as diabetic, hyperlipidaemic or

hypertensive if they had a previous diagnosis of these con-

ditions and/or they were treated with antidiabetic, choles-

terol-lowering or antihypertensive agents, respectively.

Smoking status was categorised into never, current or past

smoking according to self-reports. Physical activity was deter-

mined with the validated Spanish version of the Minnesota

questionnaire(17,18). Height, weight and waist circumference

were measured with standard methods. Trained personnel

measured systolic and diastolic blood pressure in triplicate

with a validated semi-automatic oscillometer (Omron

HEM-705CP; Omron Healthcare Europe, Hoofddorp, The

Netherlands).

Dietary intake

The dietary habits of participants were assessed using a vali-

dated 137-item FFQ(19). At the inclusion visit, the FFQ was

completed by a trained dietitian in face-to-face interviews.

Participants were asked about the frequency of consumption of

each food item during the past year, specifying usual portion

sizes (semi-quantitative assessment). A total of nine possibili-

ties of frequency were offered, from never to more than six

times per d. Information on seafood products was collected

in eight items of the FFQ (uncanned fatty fish; lean fish;

smoked/salted fish; molluscs; shrimp, prawn and crayfish;

octopus, baby squid and squid; fatty fish canned in oil; fatty

fish canned in salted water). Nutrient intakes were computed

using Spanish food composition tables(20) and were adjusted

for energy intake by the residual method(21).

Laboratory analyses

Both fasting serum and 0·1 % EDTA blood were collected and

processed immediately. Serum lipid and glucose concen-

trations were determined by standard enzymatic methods in

the hospital clinical laboratory. A 100ml aliquot of EDTA-

collected blood was transferred into a chloroform-resistant

eppendorf containing 1400ml of distilled water. Once cells

were haemolysed, they were spun for 5 min at 48C at 2800 g

in a microcentrifuge (Hermle Z 233 MK-2; Midwest Scientific,

St Louis, MO, USA). The supernatant fluid (containing Hb and

serum lipids) was discarded, and the pellet (almost entirely

composed of erythrocyte membranes) was extracted with

chloroform–methanol (2:1, v/v) containing butylated hydro-

xytoluene (50 mg/ml) and evaporated to dryness under N2.

The lipid extract was stored at 2808C until analysed.

The lipid extract was redissolved in 1 ml boron trifluoride–

methanol and transferred to a screw-cap test-tube, which

was heated for 10 min at 1008C to hydrolyse and methylate

the membrane glycerophospholipid fatty acids. The extracts

were cooled at 258C, and fatty acid methyl esters were isolated
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by adding 300ml of n-hexane. After shaking for 1 min, 1 ml of

a saturated NaCl solution was added, and the tubes were cen-

trifuged for 10 min at 2200 g at room temperature to separate

the layers. The upper (hexane) layer was removed, dried

with anhydrous sodium sulphate, and a 50ml aliquot was

transferred into an automatic injector vial equipped with a

volume adapter of 300ml. Fatty acid methyl esters were separ-

ated by GC using a Perkin Elmer Clarus 500 apparatus (Perkin

Elmer España, Madrid, Spain) equipped with a 30 m £ 0·25

mm £ 0·25 mm SupraWAX-280 capillary column (Teknokroma,

Barcelona, Spain), an autosampler and a flame ionisation

detector. Each fatty acid is expressed as a percentage of total

identified fatty acids in the whole blood sample. The

omega-3 index was calculated by the sum of percentages of

EPA þ DHA. To ensure the comparability of the omega-3 indi-

ces measured in the laboratory of the Hospital Clinic of Barce-

lona with that of other centres, ten dried blood samples were

analysed, and the results were compared with those obtained

in a reference centre (OmegaQuant, LLC, Sioux Falls, SD,

USA). The regression coefficient (r 2) between the omega-3

index values was 0·96 (P,0·0001), and mean values for

EPA þ DHA were 3·84 (SD 2·22) % at OmegaQuant v. 3·89

(SD 2·11) % in Barcelona.

Statistical analyses

Univariate regression and one-way ANOVA models were used

to determine the effects of each patient’s characteristics on the

EPA þ DHA of whole blood cells. The ANOVA models

included independent determinants known to be predictors

of the omega-3 index, chosen based on previous literature,

i.e. sex, age, being a current smoker, treatment for diabetes,

hypertension or dyslipidaemia, physical activity, BMI,

and energy-adjusted dietary intakes of total fat and alcohol

(g/d)(6–9,22). Some variables known to be related to the

omega-3 index, such as fasting serum TAG and hypertension(7),

were left out of the model, as they were considered to be more

a consequence than a determinant of the omega-3 index.

In addition, independent associations between the omega-3

index and the intake of fatty acids other than EPA þ DHA, i.e.

SFA, MUFA, LA, arachidonic acid and ALA, were also assessed

by multivariate regression models for the Z-transformed scores

of each fatty acid of interest. After constructing an unadjusted

model, we adjusted for energy-adjusted EPA þ DHA intake in

a second model; finally, in a third model, we further con-

sidered as confounders those predictors with P,0·05 univari-

ate associations (current smoking and physical activity).

Statistical significance was defined as P,0·05. Analyses

were performed using SPSS software, release 16.0 (SPSS,

Inc., Chicago, IL, USA).

Results

The study population included 102 men and 96 women, aged

66 (SD 6) years. None of the study subjects had suffered prior

CHD, but all of them were at high cardiovascular risk, as

attested by the prevalence of overweight or obesity (92·9 %),

family history of premature CHD (41·4 %), and/or treatment

with antidiabetic, cholesterol-lowering and/or antihyperten-

sive agents (85·4 %). Table 1 shows detailed information on

Table 1. Characteristics of the study population

(Mean values, standard deviations, number of subjects, percentages, ranges, medians and interquartile
ranges, n 198)

Variables Mean SD n % Range

Age (years) 66 6 55–80
Male 102 51·5
Current smoker 31 15·7
Former smoker 65 32·8
Dyslipidaemia 149 75·3
Hypertension 171 86·4
Type 2 diabetes mellitus 73 36·9
Hypolipidaemic drug treatment 92 46·5
Antihypertensive drug treatment 131 66·2
Antidiabetic drug treatment 58 29·3
BMI (kg/m2) 29.2 3·2 21·2–38·5
Waist circumference (cm) 100·5 8·5 76–127
Systolic blood pressure (mmHg) 148 20 96–196
Diastolic blood pressure (mmHg) 81 10 55–111
Leisure-time physical activity (MET-min*/d) 0–1521

Median 484
Interquartile ranges 316–676

Biochemistry values (mg/l)
Fasting glucose 1240 410 660–3120
Total cholesterol 2110 420 1270–4810
LDL-cholesterol (n 191) 1330 330 350–2230
HDL-cholesterol 510 110 250–880
TAG 360–12 680

Median 1120
Interquartile ranges 840–1580

* MET-min, minutes at a given metabolic equivalent level (units of energy expenditure in physical activity; 1 MET-min is
roughly equivalent to 4·2 kJ (1 kcal)).
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clinical and anthropometric variables. The whole blood cell

membrane fatty acid composition is presented in Table 2.

The average omega-3 index was 7·1 % (Fig. 1), and was

above 8 % in 25·8 % of the study group and below 4 % in

3·5 %. Consumption of the fatty acids of interest is shown in

Table 3. The intake of specific seafood items and their

EPA þ DHA content (Table 4) confirms the high consumption

of total seafood of the study population. No significant differ-

ences were observed by sex or age regarding consumption of

any of the seafood items (data not shown). None of the

participants reported consumption of fish oil supplements.

Attesting to the validity of the questionnaire used in the

present study, Pearson’s correlation coefficient values

between the omega-3 index and both the total seafood

intake and the calculated intake of EPA þ DHA from seafood

were 0·384 and 0·350, respectively (P,0·000001, both).

The univariate associations between the omega-3 index and

several clinical, anthropometric and dietary variables are

shown in Table 5. The only factors significantly associated

with the omega-3 index were serum TAG and smoking

status (inversely), and leisure-time physical activity and

EPA þ DHA intake (directly). Alcohol intake was not signifi-

cantly associated with the omega-3 index. For every additional

grams of EPA þ DHA consumed per day, the omega-3 index

increased by 1·17 units. However, the most potent determi-

nant of the omega-3 index, the EPA þ DHA intake, explained

only 12 % (P,0·001) of the index’s variability. The inclusion of

another ten potential predictors to the model (sex, age, being

a current smoker, treatment for diabetes, hypertension or dys-

lipidaemia, physical activity, BMI, and energy-adjusted dietary

intakes of alcohol and total fat) increased the explanatory

value of the index’s variability to 19 %.

Table 6 shows the associations between the omega-3 index

and the intake of different fatty acids after adjustment for

energy-adjusted intake of EPA þ DHA. (Since other subjects’

characteristics were not significant predictors in the multivari-

ate model, they were not included in this model.) Consump-

tion of EPA þ DHA continued to be strongly related to the

omega-3 index, while MUFA, LA, arachidonic acid and ALA

were unrelated even in the unadjusted models. In contrast,

the sum of dietary SFA showed a significant inverse

association with the omega-3 index in the unadjusted model.

However, when the model was further adjusted for energy-

adjusted intake of EPA þ DHA, current smoking and physical

activity, the statistical significance of the association was

blunted, although a trend for an inverse association was still

present (P¼0·095).

Table 2. Proportions of the main fatty acids in
whole blood cell membranes of the study population

(Medians and interquartile ranges, n 198)

Fatty acids (%) Median Interquartile range

12 : 0 0·06 0·03–0·16
14 : 0 0·77 0·25–1·03
16 : 0 22·47 21·57–23·44
18 : 0 14·25 11·69–16·20
20 : 0 0·21 0·14–0·28
22 : 0 0·20 0·06–0·31

SSFA 37·57 35·73–39·96
14 : 1n-5 0·31 0·14–0·48
16 : 1n-7 0·53 0·19–0·84
cis,9-18 : 1n-9 17·64 15·87–19·25
20 : 1n-9 0·30 0·24–0·36
24 : 1n-9 0·56 0·31–0·87

SMUFA 20·02 17·9–21·67
18 : 2n-6 13·42 11·7–15·56
18 : 3n-6 0·12 0·08–0·18
20 : 3n-6 1·93 1·64–2·29
20 : 4n-6 16·52 14·62–18·1

Sn-6 PUFA 31·98 30·41–34·05
18 : 3n-3 0·17 0·11–0·27
20 : 5n-3 0·94 0·71–1·26
22 : 5n-3 1·81 1·46–2·21
22 : 6n-3 6·09 5·16–6·82

Sn-3 PUFA 9·21 7·84–10·42
Omega-3 index 7·05 6·08–8·05

12·00

10·00

8·00

O
m

eg
a-

3 
In

d
ex

6·00
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Fig. 1. Distribution of the percentage of whole blood cell EPA þ DHA values

(omega-3 index) in the study population (n 198). The omega-3 index at 8 and

4 % indicates proposed low- and high-risk horizons (—), respectively, while

that at 7·1 % is the population average (····).

Table 3. Intake of fatty acids of interest in the study group

(Mean values, standard deviations and ranges)

Intake (g/d)
Intake as a percentage of

total energy

Variables Mean SD Range Mean SD Range

Total fat 105 27 48–225 40·2 5·2 26·0–54·3
SFA 28 9 8–73 10·7 2·1 4·6–18·1
MUFA 53 13 23–111 20·5 3·1 12·3–27·8
18 : 2n-6 12 4 4–29 4·7 1·3 2·5–9·3
20 : 4n-6 0·9 0·8 0·1–5·4 0·4 0·3 0·0–2·4
18 : 3n-3 1·2 0·4 0·4–3·4 0·5 0·1 0·21–1·1
20 : 5n-3 þ 22 : 6n-3 0·9 0·5 0·0–2·1 0·4 0·2 0·0–1·0
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Discussion

In the present cross-sectional study, we searched for dietary,

anthropometric and lifestyle determinants of the omega-3

index in a population at high risk of CHD living in Spain,

the country with customarily high intakes of total fat, MUFA

(supplied by olive oil), and EPA and DHA from seafood.

Consistent with previous data, intake of EPA and DHA was

the main predictor of the omega-3 index, but explained only

12 % of its variability. None of the other dietary fatty acids

was related to the omega-3 index.

Recognising that there are methodological differences in

measuring the omega-3 index, the mean value found in the

present study group (7·1 %) is noticeably higher than those

described in Western populations, particularly in the USA,

where it has been consistently reported to be about

5 %(6,7,9). The cross-validation of our method against the

method used in the original definition of the omega-3 index

(proposed by Harris and von Schacky) indicates that meth-

odological differences do not explain the higher omega-3

index values seen in Spain. However, the value for the

index reported here is still lower than those described in simi-

lar studies conducted in Japan(8), Korea(23) or Alaska (USA)(24).

The obvious explanation for the high omega-3 index in the

present study population is the high intake of EPA and DHA

(mean 0·9 g/d), which is approximately the American Heart

Association recommendation for subjects in secondary pre-

vention(3). This, in turn, is due to the high consumption of sea-

food (mean 115 g/d), a value that concurs with those reported

in recent surveys for different Spanish population

groups(14,15). This high intake of EPA and DHA could in part

explain the paradox of low rates of both incident CHD and

cardiac death in Spain despite a high background prevalence

of cardiovascular risk factors(25). A similar paradox has been

described in Japan(26), the country leading in global fish con-

sumption(27). In this regard, only 3·5 % of the present study

subjects showed an omega-3 index below 4 %, the level

associated with an increased risk of fatal CHD, while 26·1 %

displayed an index above 8 %, the level considered to be pro-

tective against CHD death(5).

A unique feature of the present study was the examination

of the potential effects on the omega-3 index of dietary fatty

acids other than EPA þ DHA. Of particular interest were LA

and arachidonic acid because there is a controversy on

whether increased consumption of these n-6 fatty acids

Table 4. Intake of seafood products and their associated EPA þ DHA
content

(Mean values, standard deviations and ranges)

Seafood products
(g/d)

EPA þ DHA
supplied (g/d)

Mean SD Range Mean SD

Uncanned fatty fish 25 21 0–102 0·49 0·41
Lean fish 44 25 0–118 0·23 0·12
Smoked/salted fish 3 4 0–26 0·01 0·01
Molluscs 4 4 0–26 0·00 0·00
Shrimp, prawn and crayfish 13 12 0–86 0·03 0·04
Octopus, baby

squid and squid
17 19 0–86 0·05 0·06

Fatty fish canned in oil 8 8 0–32 0·10 0·10
Fatty fish canned in water 1 3 0–21 0·01 0·02
Total seafood 115 50 3–254 0·92 0·49

Table 5. Univariate associations of the omega-3 index with clinical, anthropometric and dietary variables*

95 % CI

Independent variables Estimate Lower Upper P

Age (10 years) 20·215 20·584 0·154 0·253
Male, yes 20·247 20·694 0·200 0·227
Current smoker, yes 20·653 21·263 20·044 0·036
Former smoker, yes 0·041 20·436 0·518 0·864
Dyslipidaemia, yes 20·099 20·618 0·420 0·708
Hypertension, yes 0·547 20·102 1·195 0·098
Type 2 diabetes mellitus, yes 0·033 20·431 0·498 0·888
Hypolipidaemic drug treatment, yes 0·051 20·398 0·500 0·824
Antihypertensive drug treatment, yes 0·280 20·192 0·752 0·243
Antidiabetic drug treatment, yes 0·223 20·269 0·714 0·373
BMI (3·12 kg/m2)† 20·026 20·250 0·199 0·821
Waist circumference (8·5 cm)† 20·175 20·398 0·048 0·124
Systolic blood pressure (19·9 mmHg)† 0·005 20·221 0·231 0·966
Diastolic blood pressure (10·1 mmHg)† 0·048 20·177 0·274 0·674
Leisure-time physical activity (293·7 MET-min‡/d)† 0·271 0·048 0·494 0·018
Fasting glucose (408 mg/l)† 20·064 20·290 0·162 0·577
Total cholesterol (418 mg/l)† 20·193 20·418 0·032 0·092
LDL-cholesterol (321 mg/l)† (n 191) 0·012 20·213 0·238 0·913
HDL-cholesterol (112 mg/l)† 20·077 20·304 0·150 0·505
TAG (1363 mg/l)† 20·299 20·522 20·077 0·009
Energy-adjusted alcohol intake (g/d) 0·010 20·005 0·026 0·190
Energy-adjusted total fat intake (g/d) 20·001 20·009 0·008 0·839
Energy-adjusted intake of EPA þ DHA (g/d) 1·178 0·742 1·613 ,0·001

* Results obtained by regression and ANOVA.
† Value corresponding to a 1 SD increase.
‡ MET-min, minutes at a given metabolic equivalent level (units of energy expenditure in physical activity; 1 MET-min is

roughly equivalent to 4.2 kJ (1 kcal)).
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would decrease the proportions of EPA and DHA in

membranes(11–13). ALA intake was of interest since it is the

precursor of EPA and DHA(2). We found that the intake of

none of these fatty acids was related to the omega-3 index.

It is possible that ALA might have had more influence on

the omega-3 index had the EPA intake not been so high,

since EPA can inhibit the activity of d-5 and d-6 desaturases,

which are required for the conversion of ALA into longer-

chain derivatives(2). On the other hand, the relatively low

intake of LA (mean 12 g/d, owing to the low consumption

of seed oils, margarines and shortenings in Spain) would be

expected to enhance the conversion of ALA to EPA by reduced

competition for the desaturases.

There were significant associations of current smoking and

physical activity with the omega-3 index, findings that concur

with data from prior studies(8). The inverse relationship

between the omega-3 index and serum TAG has also been

reported previously(7), and probably reflects the well-known

effects of EPA and DHA on this serum lipid fraction(28). Finally,

in contrast to the findings of the IMMIDIET study(22), the

omega-3 index was unrelated to alcohol intake, even though

average consumption was similar in the two studies. The

higher EPA þ DHA intakes in Spain compared with those in

the countries included in the IMMIDIET study suggest that

alcohol intake may only affect the omega-3 index in the con-

text of low n-3 intakes.

The present study has limitations. First, it was a single-

centre study with a relatively small sample size. Second,

given the cross-sectional design of the study, temporal

relationships cannot be established, and we cannot exclude

the possibility of residual confounding. Strengths of the

study included the use of a validated FFQ that is comprehen-

sive regarding seafood intake, the validation of the fatty acid

analysis method against a reference laboratory and the specific

focus on individuals at increased risk for cardiac death. To our

knowledge, this is the first examination of the omega-3 index

in a Spanish cohort.

In conclusion, in a population at high risk of CHD with high

intakes of total fat, MUFA and EPA þ DHA, the omega-3 index

was primarily predicted by the intake of EPA þ DHA, not by

known demographic, metabolic or other lifestyle factors.

Further research is needed to more clearly define the

environmental and genetic determinants of this emerging

risk factor for CHD.
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