
imperative because current AST systems may not accurately
characterize the resistance profile. Moreover, the interpretation
of AST outputs should be undertaken with caution, especially in
the setting of cascade reporting.
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Pathogen and Procedure Trends Among
Surgical-Site Infections at a Children’s
Hospital: A 20-Year Experience

To the Editor—Surgical-site infections (SSIs) are common
healthcare-associated infections that increase patient morbidity
and mortality and cost the US healthcare system billions of
dollars annually.1 The 1999 Centers for Disease Control and
Prevention (CDC) SSI prevention guidelines define a set of
recommendations based on relative pathogen frequency and
patient- and procedure-based SSI risk known at that time.2 Most
of the effort in SSI prevention has been built around these
guidelines since their publication.3,4 Additional recommen-
dations have been published to direct specific aspects of SSI
prevention, such as antimicrobial prophylaxis, in addition to
their implementation and tracking.5,6 While these updated
guidelines have included new data, they are built upon the
foundation of the 1999 CDC guidelines. Despite SSI rate
improvement, SSIs remain the most common and costly
healthcare-acquired infection in the United States.1

We hypothesized that targeted SSI prevention efforts based
on the 1999 guidelines could have changed the relative
pathogen frequency, possibly indicating a need to refine our
approach to SSI prevention. We used SSI data from our
medical center over 2 decades to study trends in SSI pathogen
frequency.

methods

Pathogens associated with SSIs in incision class I and II
surgical procedures2 performed between January 1, 1994, and
December 31, 2015, were obtained through the Infection
Prevention and Control Program at Cincinnati Children’s
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Hospital Medical Center. All SSIs were identified prospectively
and met the CDC’s National Nosocomial Infection Surveillance
System (NNISS) or National Healthcare Safety Network
(NHSN) criteria for SSIs at the time they occurred.7

Multiple reports of single pathogens from the same procedure
were considered to represent a polymicrobial infection and were
consolidated and counted as a single SSI. Cases were excluded
from the final analysis if the associated surgery occurred prior to
January 1, 1994, the SSI had no culture obtained or no pathogen
identified, the result was reported asmixed flora, or if the SSI was
associated with an incision class III or IV surgical procedure.7

Cases were subsequently divided by the year in which the surgery
was performed.

Procedures were stratified into 4 periods: 1994–1999,
2000–2005, 2006–2011, and 2012–2015. The organisms of single-
pathogen and polymicrobial infections were determined for each
period for SSIs meeting the inclusion criteria. Linear trends were
analyzed for pathogen prevalence among single-pathogen SSIs
and among polymicrobial SSIs utilizing variance-weighted least-
squares regression, with P< .05 considered statically significant.
Analyses were performed using STATA version 14.0 software
(StataCorp, College Station, TX).

results

In total, 1,278 unique SSIs were reported at CCHMC during
the study period, of which 953 were single or polymicrobial

SSIs. Pathogens identified for single and polymicrobial SSIs are
listed in Table 1.
Staphylococci were the predominant pathogens for single-

pathogen SSIs. Among single-pathogen SSIs, the proportion of
both methicillin-resistant and methicillin-susceptible S. aureus
(MRSA and MSSA, respectively) increased during the study
period. MRSA increased from 0.6% to 19.7% (P< .01), while
MSSA increased from 28.1% to 36.1% (P= .03) (Table 1).
The proportion of most other pathogens declined steadily,
with the exception of Enterococcus spp., Streptococcus spp., and
Pseudomonas aeruginosa, for which no change was detected
(Table 1). Among polymicrobial infections, >50% included a
gram-negative organism. No significant change was noted for
most pathogens associated with polymicrobial SSIs.

discussion

Our study demonstrates that the pathogens most commonly
associated with SSIs in pediatric surgical cases are similar to
those in adults.2 Current interventions are designed to prevent
infections caused by skin flora. However, their ongoing
prevalence despite these interventions suggests that additional
interventions are needed to prevent SSIs caused by these
organisms.
Staphylococcus spp. were the most prevalent species identified,

and the proportion of both MSSA and MRSA increased over
time. The increase in MRSA is not particularly surprising given

table 1. Prevalence of Pathogens Associated With Single-Pathogen and Polymicrobial SSIs

Period

Single-Pathogen SSIs 1994–1999 2000–2005 2006–2011 2012–2015 P Value % Change Between Groups

MSSA 45 (28.1) 56 (26.2) 70 (35.9) 53 (36.1) .03 3.50
MRSA 1 (0.6) 17 (7.9) 32 (16.4) 29 (19.7) <.01 7.00
Coagulase-negative Staphylococcus 34 (21.3) 64 (29.9) 21 (10.8) 22 (15.0) <.01 −4.20
Streptococcus spp. 6 (3.8) 6 (2.8) 8 (4.1) 4 (2.7) .81 −0.10
Enterococcus spp. 7 (4.4) 11 (5.1) 6 (3.1) 8 (5.4) .92 0.08
Other gram-positive isolatesa 1 (0.6) 3 (1.4) 15 (7.7) 7 (4.8) <.01 1.70
Pseudomonas aeruginosa 13 (8.1) 18 (8.4) 16 (8.2) 10 (6.8) .65 −0.40
Enterobacter spp. 15 (9.4) 12 (5.6) 13 (6.7) 6 (4.1) .12 −1.30
Other gram-negative isolatesb 34 (21.3) 22 (10.3) 11 (5.6) 7 (4.8) <.01 −4.40
Yeast/Mold 4 (2.5) 5 (2.3) 3 (1.5) 1 (0.7) .11 −0.68
Total single-pathogen SSIs 160 214 195 147
MSSA 9 (12.5) 9 (9.8) 11 (26.2) 6 (19.4) .17 1.60
MRSA 0 (0.0) 7 (7.6) 4 (9.5) 3 (9.7) .61 0.70
Coagulase-negative Staphylococcus 18 (25.0) 40 (43.5) 14 (33.3) 9 (29.0) .40 1.20
Streptococcus spp. 10 (13.9) 14 (15.2) 3 (7.1) 6 (19.4) .76 −0.32
Enterococcus spp. 30 (41.7) 23 (25.0) 9 (21.4) 6 (19.4) .04 −2.87
Other gram-positive isolatesa 4 (5.6) 7 (7.6) 12 (28.6) 3 (9.7) .10 1.43
Pseudomonas aeruginosa 14 (19.4) 20 (21.7) 8 (19.0) 10 (32.3) .33 1.33
Enterobacter spp. 21 (29.2) 15 (16.3) 7 (16.7) 3 (9.7) .04 −2.28
Other gram-negative isolatesb 50 (69.4) 55 (59.8) 19 (45.2) 16 (51.6) .14 −2.87
Yeast and mold 7 (9.7) 16 (17.4) 4 (9.5) 3 (9.7) .99 0
Total polymicrobial SSIs 163 206 91 65

NOTE. Each value is expressed as the number of SSIs associated with that pathogen and the percentage of SSIs in which the pathogen was
recovered. MSSA, methicillin-sensitive Staphylococcus aureus; MRSA, methicillin-resistant S. aureus.
aOther gram-positive isolates: Actinomyces spp., Bacillus spp., Clostridium spp., Corynebacterium spp., Eubacterium spp., Gemella spp.,
Lactobacillus spp., Propionibacterium spp., Peptostreptococcus spp, unidentified gram-positive cocci.
bOther gram-negative isolates: Acinetobacter spp., Aeromonas spp., Argobacterium spp, Alcaligenes spp, Bacteroides spp, Capnocytophagia spp.,
Citrobacter spp., E coli, Eikenella spp., Flavobacterium spp., Fusobacterium spp., Hafnia spp, Haemophilus spp, Klebsiella spp, Moraxella spp.,
Morganella spp., Neisseria spp., Proteus spp., other Pseudomonas spp., Pantoea spp., Providencia spp., Prevotella spp., Serratia spp.,
Sphingobacteria spp., Xanthomonas spp., unidentified gram-negative rods.
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its emergence as a major community pathogen nationally.8 The
concurrent increase in cases of SSIs caused by MSSA, however,
was unexpected. This finding suggests that despite the increase in
MRSA, MSSA still plays a large role in causing SSIs. Therefore,
preoperative screening for Staphylococcus spp., not just MRSA,
may help guide preoperative antibiotic selection, skin prepara-
tion, and postoperative wound care to minimize the risk of
infection with either of these organisms.9

The predominance of gram-negative organisms in
polymicrobial SSIs suggests that external contamination of
the wound, (eg, with fecal matter) plays a major role in poly-
microbial SSI pathogenesis. This finding highlights the ongoing
importance of postoperative wound management and the need
for protective barriers to prevent contamination of the wound.9

Our conclusions are limited by our inability to account for
potential correlations between patient-level characteristics, such as
comorbidities, with particular organisms causing SSIs. 10 Another
limitation was our inability to assess the direct influence of specific
interventions that occurred in our medical center over the study
period.3 Further study is planned to examine such interactions.

Our study findings indicate that among pediatric patients,
skin and bowel flora play a significant role in SSIs. Future
interventions to target aspects such as preoperative screening
and management of MSSA and MRSA colonization and
postoperative wound management to prevent fecal
contamination may reduce pediatric SSIs. Further study is
planned to assess the effect of patient and procedure factors as
well as interventions on both the incidence of and the type of
pathogens associated with SSIs.
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Oak in Hospitals, the Worst Enemy of
Staphylococcus aureus?

To the Editor—Although the infection risk to patients from
contaminated healthcare surfaces has long been controversial,
it is now recognized that the environment may facilitate
transmission of several important healthcare-associated
bacteria, including vancomycin-resistant enterococci,
Clostridium difficile, Acinetobacter spp., and methicillin-
resistant Staphylococcus aureus (MRSA).1 In addition, the
longer a nosocomial pathogen persists on a surface, the longer
it may be a source for transmission to a susceptible patient or
healthcare worker.2 Therefore, regular and conscientious
cleaning is a necessary measure for keeping surfaces free from
microbes. The nature of surfaces can also be considered.1

Although the use of wood is not banned in hospitals,3 this
material still generates controversy in terms of infection
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