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ON STOCHASTIC PREDICTIONS
OF FAILURE PROCESSES UNDER
POPULATION HETEROGENEITY
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Abstract

In reliability a number of failure processes for repairable items are described by point
processes, depending on the types of repairs being performed on failures of items. In
this paper we describe the failure processes of repairable items from heterogeneous
populations and study the stochastic predictions of future processes which utilize
the failure/repair history. Two types of repair processes, perfect and minimal repair
processes, will be considered. The results will be derived under a general stochastic
formulation/setting. Applications of the obtained results to many different areas will be
discussed and, specifically, some reliability applications will be illustrated in detail.
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1. Introduction

Recently, there has been a rapidly increasing literature concerning modeling and analysis of
recurrent events, with a wide range of applications, including reliability analysis of repairable
items.

Traditionally, the literature on repairable items is concerned with modeling failure processes,
with point process theory being the main tool. The most commonly used models for the failure
process of repairable items are renewal processes and nonhomogeneous Poisson processes
(NHPPs), including the homogeneous Poisson process (HPP) as a special case in both models.
These point processes are closely related to the types of repair actions performed for the items
on their failures. The NHPP is often used to model repairable items that are subject to a minimal
repair strategy, whereas the renewal process is adopted to describe the failure process of items
subject to a perfect repair strategy (see Aven and Jensen (1999)).

While the basic and fundamental theory on point processes developed for such models
might often be sufficient for simple reliability analysis, the need for advanced studies on more
complex and practical problems has recently been emerging, aiming at significant contributions
to relevant areas. The main interest of the problems in this stream has been focused on the
‘stochastic prediction’ of random recurrent events.

One of the most important emerging issues in this area is the study of the stochastic behavior
of random recurrent events in a random time interval. For instance, in Esary et al. (1973),
Grandell (1997), Badía and Sanggüessa (2008), and Badía (2011), the authors obtained suitable
conditions under which the reliability properties of a random time T are inherited by N(T ),
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where {N(t) : t ≥ 0} is a stochastic counting process independent of T . Through the studies
on this issue, one may ‘predict’ the stochastic behavior of the random number of events in an
independent random interval.

Another important issue might be to ‘predict’ future failure processes based on the
failure/repair history of repairable items. In many cases, the ‘prior information’ about the items
under operation might not be sufficient and, thus, as a result, we may have a certain degree of
‘uncertainty’. In these cases, the operational history of the repairable items generally conveys
additional information about the reliability characteristic of the items under operation and,
combined with the prior information that we already have, it may produce updated ‘posterior
information’. This could make it possible to predict the future behavior of the failure process
under consideration. In spite of the practical importance of this issue, to the best of the author’s
knowledge, little effort has been paid to this topic in reliability.

Frequently, the ‘uncertainty’ exists in the information about the population from which our
items are being selected. This may happen especially when we are dealing with heterogeneous
populations. For example, in some situations, items may come from one of k subpopulations,
each with a distinct lifetime distribution. A reliability engineer, for instance, might have a
component that was manufactured in one of k facilities, but is not certain which facility the
item came from.

In this paper we describe the failure processes of repairable items from heterogeneous
populations and study the stochastic predictions of the future processes of items. Two kinds
of repair models, perfect and minimal repair models, will be considered and, accordingly,
the renewal process and NHPP will be our main concerns. For the purpose of a convenient
description of the model, we formulate the problem in the context of reliability modeling.
However, the approaches and obtained results could straightforwardly be reformulated and
extended within the general point process context, which might entail general contributions of
this work to various relevant areas.

This paper is organized as follows. In Section 2, the basic mathematical setup for the
model formulation will be built. Then, considering the perfect repair process, the stochastic
predictions of future failure processes will be investigated. In Section 3, the point process for
minimal repair will be studied and an application to reliability will be illustrated. In Section 4,
various potential applications of the obtained results will be discussed and future research topics
will also be suggested. Finally, some concluding remarks will be given.

2. Point process for perfect repair

In this section we consider a perfect repair strategy for items under operation. If the items
under operation and perfect repair processes are from a homogeneous population, then the
failure process of the repairable item follows an ordinary renewal process. In this situation, the
future failure process from time t depends only on the age of the item in use at time t (i.e. the time
measured backwards from t to the last renewal point) and it can be straightforwardly predicted.
However, the situation becomes dramatically different for heterogeneous settings. We start
the formulation of our problem with an introductory example, which has only an explanatory
purpose.

Example 1. Consider a stock of k substocks (substock 1, substock 2, . . ., substock k) of
identical items, which are manufactured by k different manufacturers. Suppose that the
lifetime of items in each substock has an absolutely continuous distribution and, thus, its
distribution can be characterized by the corresponding distribution function F(t, i) and failure
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rate function λ(t, i), i = 1, 2, . . . , k. Assume that at time t = 0 one item is chosen from a
substock which was randomly selected in accordance with a discrete distribution π(i), i =
1, 2, . . . , k. This item is put into operation and the operating item is ‘perfectly’ repaired on its
failure. Here, by ‘perfect repair’ we mean that the state of the item after the repair is restored to
an ‘as-good-as-new’ condition. For instance, if the initial item is chosen from substock i then
this type of repair implies that the distribution function of the perfectly repaired item is given
by F(t, i). In practice, this type of repair can be realized by a series of repair actions which
would bring each part of the item to a ‘brand new’ state (i.e. by a complete overhaul), or by
replacing the failed item with an identical new item ‘from the same substock’.

Based on this simple consideration, we now formulate our problem under the more general
setting of a continuous mixing model. However, the formulation can be easily modified for a
simpler case (e.g. the discrete mixing model illustrated in Example 1) when it is more suitable.
Let T be a lifetime random variable (RV) of an item with cumulative distribution function
(CDF) F(t) (F̄ (t) ≡ 1 − F(t)). Assume that F(t) is absolutely continuous and, therefore, the
probability density function (PDF) f (t) = F ′(t) exists. It is well known that the failure rate
function is then defined as

λ(t) ≡ lim
�t→0

P[t < T ≤ t +�t | T > t]
�t

= f (t)

F̄ (t)
, t ≥ 0. (1)

Based on (1), the failure rate function for items from heterogeneous populations can also be
formally defined as follows (see, e.g. Finkelstein (2008, Chapter 6), (2009)). Assume that F(t)
is indexed by an RV Z, P(T ≤ t | Z = z) ≡ F(t, z), and that the corresponding PDF f (t, z)
exists. Then the corresponding failure rate λ(t, z) is defined by λ(t, z) = f (t, z)/F̄ (t, z), where
F̄ (t, z) ≡ 1−F(t, z). LetZ be a nonnegative RV with support in [a, b], 0 ≤ a < b ≤ ∞, and
PDF π(z). Without loss of generality, let a = 0 and b = ∞. The above setting leads naturally
to considering mixtures of distributions, i.e.

Fm(t) =
∫ ∞

0
F(t, z)π(z) dz,

whereas the mixture (population) failure rate, in accordance with the definition, is

λm(t) =
∫ ∞

0 f (t, z)π(z) dz∫ ∞
0 F̄ (t, z)π(z) dz

=
∫ ∞

0
λ(t, z)π(z | t) dz, (2)

where π(z | t) is the conditional PDF (on condition that T > t) defined by

π(z | t) ≡ π(z)
F̄ (t, z)∫ ∞

0 F̄ (t, w)π(w) dw
. (3)

Under this mixing structure, as in the motivating example (Example 1), we consider the perfect
repair process (i.e. items are perfectly repaired on failures) with the frailty variableZ = z of the
initial item ‘preserved’. Obviously, this point process is not a renewal process as the interarrival
times are dependent. However, even in this case, stochastic measures of the point process can
be described as the point process, givenZ = z, follows a renewal process. Therefore, this point
process can be called a conditional renewal process.

Suppose that this point process is started at time t = −s, but that the process is not
observed before time t = 0. As usual, let N(t), t > 0, be the number of failures in the
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time interval (0, t]. We start the observation on the point process at time t = 0 and observe it in
the time interval [0, t). For a simple formulation of the problem, we assume in the following that
the time point t = 0 is not a renewal point, but the generalization of the following discussions
to this special case is straightforward. Then our objective is to predict the future failure process
based on the observation of the history of the process in [0, t). For simplicity, we omit the
starting point ‘−s’ in all the notation to be defined, but it should be noted that the starting point
is ‘implicitly’ contained in the corresponding notation.

Let Ht ≡ {N(u), 0 ≤ u < t} be the history in [0, t), and let ht be the realization of the
corresponding history. Observe that Ht can be completely defined in terms of N(t−) and the
sequential arrival failure points 0 < S1 < S2 < · · · < SN(t−) < t in [0, t), where Si is the time
from 0 until the ith failure in [0, t). Then, equivalently, Ht can be defined in terms ofN(t−) and
the interarrival times T1, T2, . . . , TN(t−): Ht = {N(t−), T1, T2, . . . , TN(t−)}, where T1 ≡ S1,
Ti ≡ Si − Si−1, i = 2, 3, . . . , N(t−).

A convenient way to describe the mathematics of orderly point processes is to use the concept
of the stochastic intensity (the intensity process) λt , t ≥ 0 (see Aven and Jensen (1999, pp. 54–
56) and Finkelstein (2008, pp. 70–76)). In our discussions below, as our main objective is to
predict the future failure process based on the observation of the history in [0, t), we define the
general stochastic intensity

λx|Ht ≡ lim
�t→0

P[N(x, x +�t) = 1 | Ht ]
�t

= lim
�t→0

E[N(x, x +�t) | Ht ]
�t

, x ≥ t, (4)

where N(t1, t2), t1 < t2, represents the number of failures in [t1, t2). Then the above general
stochastic intensity has the heuristic interpretation

λx|Ht dx = E[dN(x) | Ht ], x ≥ t.

Observe that the general stochastic intensity in (4) with s = 0 and x = t reduces to the ordinary
stochastic intensity λt , t ≥ 0, in Aven and Jensen (1999, p. 54) and Finkelstein (2008, p. 71).
In the following, by convention, the notation λx|ht is defined as

λx|ht ≡ lim
�t→0

P[N(x, x +�t) = 1 | Ht = ht ]
�t

.

For convenience, define Nt(u) ≡ N(t + u) − N(t), u > 0, which is the number of failures
during u units of time from t , and Tt as the time from t until the next failure. In addition, we
define A(w) and Y (w) as the ‘age’ and the forward recurrent time of the item in use at time w,
respectively. Then, clearly, Tt defined above is equal to Y (t). We are now ready to describe
the stochastic measures for the future process {Nt(u), u ≥ 0} in the following theorem. In the
following, by convention,

∏n
i=2(·) ≡ 1 for n = 1. Furthermore, letH(t) andG(t) be CDFs and

h(t) and g(t) be the corresponding PDFs, respectively. Then H(r) is the r-fold convolution of
the CDFH(t) and h(r) is the corresponding PDF. Also, the convolution ofH andG is denoted
by the conventional notationH ∗G and the corresponding PDF is denoted by h ∗ g. Note that,
when the frailty variable Z = z is given, these convolutions will be defined with fixed z. For
example, H(2)(t, z) ≡ ∫ t

0 H(t − u, z)h(u, z) du and H ∗G(t, z) ≡ ∫ t
0H(t − u, z)g(u, z) du.

Theorem 1. Let wz(r) ≡ ∑∞
k=1 f

(k)(r, z). Under the perfect repair process, given Ht , the
stochastic measures for the process {Nt(u), u ≥ 0} are given as follows.
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Case I: ht = {N(t−) = n, T1 = t1, T2 = t2, . . . , Tn = tn}, n ≥ 1. Let sn ≡ ∑n
i=1 ti ,

fD1(w, z) ≡ λ(t − sn + w, z) exp{−∫ w
0 λ(t − sn + v, z) dv}, and wD1

z (r) ≡ ∑∞
k=1fD1 ∗

f (k−1)(r, z). Then

(i) λt+u|ht =
∫ ∞

0

{
λ(t − sn + u, z) exp

{
−

∫ u

0
λ(t − sn + v, z) dv

}

+
∫ u

0
λ(r, z) · (1 − F(r, z))wD1

z (u− r) dr

}
πt (z) dz,

(ii) P[Tt ≥ x | Ht = ht ] =
∫ ∞

0
exp

{
−

∫ x

0
λ(t − sn + v, z) dv

}
πt (z) dz,

(iii) P[Nt(u) = k | Ht = ht ] =
∫ ∞

0
[FTt |ht ∗ F (k−1)(u, z)− FTt |ht ∗ F (k)(u, z)]πt (z) dz,

(iv) E[Nt(u) | Ht = ht ] =
∫ ∞

0

[ ∞∑
k=1

FTt |ht ∗ F (k−1)(u, z)

]
πt (z) dz,

where

πt (z) ≡ fY(0)(t1,z)
∏n
i=2(λ(ti ,z) exp{− ∫ ti

0 λ(w,z) dw}) exp{− ∫ t−∑n
i=1 ti

0 λ(w,z) dw}π(z)∫ ∞
0 fY(0)(t1,v)

∏n
i=2(λ(ti ,v) exp{− ∫ ti

0 λ(w,v) dw}) exp{− ∫ t−∑n
i=1 ti

0 λ(w,v) dw}π(v) dv
,

fY(0)(x, z) ≡ f (s + x, z)+
∫ s

0
f (v + x, z)wz(s − v) dv,

and

FTt |ht (x, z) ≡ 1 − exp

{
−

∫ x

0
λ(t − sn + v, z) dv

}
.

Case II: ht = {N(t−) = 0}. Let fD2,a(w, z) ≡ λ(a+ t+w, z) exp{−∫ w
0 λ(a+ t+v, z) dv}

and wD2
z,a (r) ≡ ∑∞

k=1fD2,a ∗ f (k−1)(r, z). Then

(i) λt+u|ht =
∫ ∞

0

∫ s

0

{
λ(a + t + u, z) exp

{
−

∫ u

0
λ(a + t + v, z) dv

}

+
∫ u

0
λ(r, z)(1 − F(r, z))wD2

z,a (u− r) dr

}
φ1
t (a, z) da dz

+
∫ ∞

0

{
λ(s + t + u, z) exp

{
−

∫ u

0
λ(s + t + v, z) dv

}

+
∫ u

0
λ(r, z)(1 − F(r, z))wD2

z,s (u− r) dr

}
φ2
t (s, z) dz,

(ii) P[Tt ≥ x | Ht = ht ] =
∫ ∞

0

∫ s

0
exp

{
−

∫ x

0
λ(a + t + v, z) dv

}
φ1
t (a, z) da dz

+
∫ ∞

0
exp

{
−

∫ x

0
λ(s + t + v, z) dv

}
φ2
t (s, z) dz,

(iii) P[Nt(u) = k | Ht = ht ]
=

∫ ∞

0

∫ s

0

{
FTt |ht ,a ∗ F (k−1)(u, z)− FTt |ht ,a ∗ F (k)(u, z)

}
φ1
t (a, z) da dz

+
∫ ∞

0

{
FTt |ht ,s ∗ F (k−1)(u, z)− FTt |ht ,s ∗ F (k)(u, z)

}
φ2
t (s, z) dz,
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(iv) E[Nt(u) | Ht = ht ] =
∫ ∞

0

∫ s

0

{ ∞∑
k=1

FTt |ht ,a ∗ F (k−1)(u, z)

}
φ1
t (a, z) da dz

+
∫ ∞

0

{ ∞∑
k=1

FTt |ht ,s ∗ F (k−1)(u, z)

}
φ2
t (s, z) dz,

where

φ1
t (a, z) ≡ exp{− ∫ t

0 λ(a + w, z) dw}fA(0)(a, z)π(z)
ξ(t, s)

,

fA(0)(a, z) ≡ (1 − F(a, z))wz(s − a), 0 ≤ a < s,

ξ(t, s) ≡
∫ ∞

0

∫ s

0
exp

{
−

∫ t

0
λ(b + w, v) dw

}
fA(0)(b, v)π(v) db dv

+
∫ ∞

0
exp

{
−

∫ t

0
λ(s + w, v) dw

}
exp

{
−

∫ s

0
λ(w, v) dw

}
π(v) dv,

φ2
t (s, z) ≡ exp{− ∫ t

0 λ(s + w, z) dw} exp{− ∫ s
0 λ(w, z) dw}π(z)

ξ(t, s)
,

and

FTt |ht ,a(x, z) ≡ 1 − exp

{
−

∫ x

0
λ(a + t + v, z) dv

}
.

Proof. We first consider case I, that is, ht = {N(t−) = n, T1 = t1, T2 = t2, . . . ,

Tn = tn}, n ≥ 1.
(i) Observe that the general stochastic intensity in (4) can now be specified as

λx|Ht = lim
�t→0

E[P[N(x, x +�t) = 1 | Ht , Z]]
�t

= E

[
lim
�t→0

P[N(x, x +�t) = 1 | Ht , Z]
�t

]
= E[λx|Ht ,Z], x ≥ t, (5)

where all the expectations in the equations in (5) are with respect to the ‘conditional distribution’
of (Z | Ht ), and

λx|Ht ,Z ≡ lim
�t→0

P[N(x, x +�t) = 1 | Ht , Z]
�t

, x ≥ t.

Here, for a fixed x, λx|Ht ,Z is the function of (Ht , Z)whose value when Ht = ht and Z = z is

lim
�t→0

P[N(x, x +�t) = 1 | Ht = ht , Z = z]
�t

, x ≥ t,

which will be denoted by λx|ht ,z.
We now derive λt+u|Ht ,Z; we will then take its expectation with respect to the conditional

distribution Z | Ht according to (5). Observe that

λt+u|ht ,z = lim
�t→0

P[N(t + u, t + u+�t) = 1 | Ht = ht , Z = z]
�t

.
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Here, P[N(t + u, t + u+�t) = 1 | Ht = ht , Z = z] can be obtained by

P[N(t + u, t + u+�t) = 1 | Ht = ht , Z = z]
= E[P[N(t + u, t + u+�t) = 1 | Ht = ht , Z = z, A(t + u)]], (6)

where the expectation is with respect to the conditional distribution of (A(t + u) | Ht = ht ,
Z = z). Note that, given Ht = ht and Z = z, the counting process ‘which starts from time t’
is the ‘delayed renewal process’ with the first interarrival time distribution (PDF)

fD1(w, z) ≡ λ(t − sn + w, z) exp

{
−

∫ w

0
λ(t − sn + v, z) dv

}
,

and the common remaining interarrival times distribution (PDF) f (w, z). Then, given Ht = ht
and Z = z, the ‘age’ of the item at time t + u, A(t + u), is equal to t − sn + u with
probability exp{− ∫ u

0 λ(t − sn + v, z) dv} (discrete part), and the PDF of the continuous part
of the distribution of (A(t + u) | Ht = ht , Z = z) is

(1 − F(r, z))wD1
z (u− r), 0 ≤ r < u,

wherewD1
z (r)≡∑∞

k=1 fD1 ∗ f (k−1)(r, z) (see Cox (1962, p. 61)). Now, in accordance with (6),

P[N(t + u, t + u+�t) = 1 | Ht = ht , Z = z]
= P[N(t + u, t + u+�t) = 1 | Ht = ht , Z = z, A(t + u) = t − sn + u]

× exp

{
−

∫ u

0
λ(t − sn + v, z) dv

}

+
∫ u

0
P[N(t + u, t + u+�t) = 1 | Ht = ht , Z = z, A(t + u) = r]
× (1 − F(r, z))wD1

z (u− r) dr.

Note that
P[N(t + u, t + u+�t) = 1 | Ht = ht , Z = z, A(t + u) = w]

= 1 − exp

{
−

∫ �t

0
λ(w + v, z) dv

}
+ o(�t),

and, thus,

lim
�t→0

P[N(t + u, t + u+�t) = 1 | Ht = ht , Z = z, A(t + u) = w]
�t

= λ(w, z).

Therefore, we have

λt+u|ht ,z = λ(t − sn + u, z) exp

{
−

∫ u

0
λ(t − sn + v, z) dv

}

+
∫ u

0
λ(r, z)(1 − F(r, z))wD1

z (u− r) dr. (7)

Now the conditional distribution Z | Ht will be constructed. The conditional distribution
of the history Ht = ht given Z = z is

fY(0)(t1, z)

n∏
i=2

(
λ(ti , z) exp

{
−

∫ ti

0
λ(w, z) dw

})
exp

{
−

∫ t−∑n
i=1 ti

0
λ(w, z) dw

}
,
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where fY(0)(x, z) is the PDF of the forward recurrence time (the conditional PDF givenZ = z)
of an item operating at time 0 under the corresponding repair process, started at time ‘−s’, and
is given by (see, e.g. Rausand and Høyland (2004, Section 7.3.6))

fY(0)(x, z) = f (s + x, z)+
∫ s

0
f (v + x, z)wz(s − v) dv, 0 ≤ x < ∞,

with wz(r) ≡ ∑∞
k=1 f

(k)(r, z). Then the conditional PDF of Z given Ht = ht , which is
denoted by πt (z), is given by

πt (z) = fY(0)(t1,z)
∏n
i=2(λ(ti ,z) exp{− ∫ ti

0 λ(w,z) dw}) exp{− ∫ t−∑n
i=1 ti

0 λ(w,z) dw}π(z)∫ ∞
0 fY(0)(t1,v)

∏n
i=2(λ(ti ,v) exp{− ∫ ti

0 λ(w,v) dw}) exp{− ∫ t−∑n
i=1 ti

0 λ(w,v) dw}π(v) dv
.

Finally, in accordance with (5), λt+u|ht can be obtained as

λt+u|ht =
∫ ∞

0
λt+u|ht ,zπt (z) dz.

(ii) By similar arguments to those given in (i), it is clear that

P[Tt ≥ x | Ht ] = E[P[Tt ≥ x | Ht , Z]],
where the expectation is with respect to the conditional distribution Z | Ht . Obviously,

P[Tt ≥ x | Ht = ht , Z = z] = exp

{
−

∫ x

0
λ(t − sn + v, z) dv

}
,

and, therefore, the desired result is obtained.
(iii) Clearly, given Ht = ht and Z = z, the process {Nt(u), u ≥ 0} is a delayed renewal

process with the first interarrival time distribution

FTt |ht (x, z) = 1 − exp

{
−

∫ x

0
λ(t − sn + v, z) dv

}
.

Therefore, the result can now be obtained by constructing the corresponding conditional
distribution and then taking an appropriate expectation.

(iv) The result is directly obtained from (iii).
Now we consider case II, i.e. ht = {N(t−) = 0}.
(i) When ht = {N(t−) = 0}, given the history, the age of an item operating at time 0, A(0),

is still a random variable. In this case, similar to (5),

λx|Ht = E[λx|Ht ,Z,A(0)], x ≥ t, (8)

where the expectation is with respect to the joint conditional distribution A(0), Z | Ht , and

λx|Ht ,Z,A(0) ≡ lim
�t→0

P[N(x, x +�t) = 1 | Ht , Z,A(0)]
�t

, x ≥ t.

Here, the corresponding limit and the notation λx|ht ,z,a are defined as in case I. Then

λt+u|ht ,z,a = lim
�t→0

P[N(t + u, t + u+�t) = 1 | Ht = ht , Z = z, A(0) = a]
�t

.
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Here, P[N(t + u, t + u+�t) = 1 | Ht = ht , Z = z, A(0) = a] can be obtained by

P[N(t + u, t + u+�t) = 1 | Ht = ht , Z = z, A(0) = a]
= E[P[N(t + u, t + u+�t) = 1 | Ht = ht , Z = z, A(0) = a, A(t + u)]],

where the expectation is with respect to the conditional distribution of (A(t + u) | Ht = ht ,
Z = z, A(0) = a). Now, given Ht = ht , Z = z, and A(0) = a, the counting process ‘which
starts from time t’ is the ‘delayed renewal process’ with the first interarrival time distribution
(PDF)

fD2,a(w, z) ≡ λ(a + t + w, z) exp

{
−

∫ w

0
λ(a + t + v, z) dv

}
,

and the common remaining interarrival times distribution (PDF)f (w, z). Then, given Ht = ht ,
Z = z, and A(0) = a, the ‘age’ of the item at time t + u, A(t + u), is equal to a + t + u with
probability exp{− ∫ u

0 λ(a + t + v, z) dv} (discrete part), and the PDF of the continuous part of
the distribution of (A(t + u) | Ht = ht , Z = z, A(0) = a) is

(1 − F(r, z))wD2
z,a (u− r), 0 ≤ r < u,

wherewD2
z,a (r) ≡ ∑∞

k=1 fD2,a ∗ f (k−1)(r, z). Then, following a procedure similar to that given
in case I(i), λt+u|ht ,z,a can be obtained as

λt+u|ht ,z,a = λ(a + t + u, z) exp

{
−

∫ u

0
λ(a + t + v, z) dv

}

+
∫ u

0
λ(r, z)(1 − F(r, z))wD2

z,a (u− r) dr. (9)

Let φt (a, z) be the conditional joint PDF of (A(0), Z) given Ht = ht . Observe that the
conditional probability of the history Ht = ht given (A(0) = a, Z = z) is

exp

{
−

∫ t

0
λ(a + w, z) dw

}
,

whereas the ‘nonabsolutely continuous’ joint distribution of (A(0), Z), which has its marginal
point mass at a = s, is given by

fA(0)(a, z)π(z), 0 ≤ a < s, 0 ≤ z < ∞,

exp

{
−

∫ s

0
λ(w, z) dw

}
π(z), a = s, 0 ≤ z < ∞,

where fA(0)(a, z) is the PDF of the continuous part of the distribution A(0) | Z = z and is
given by fA(0)(a, z) = (1 − F(a, z))wz(s − a), 0 ≤ a < s. Therefore, the nonabsolutely
continuous conditional joint distribution of (A(0), Z), φt (a, z), can be constructed as

φt (a, z) =

⎧⎪⎪⎨
⎪⎪⎩

exp{− ∫ t
0 λ(a+w,z) dw}fA(0)(a,z)π(z)

ξ(t,s)
, 0 ≤ a < s, 0 ≤ z < ∞,

exp{− ∫ t
0 λ(s+w,z) dw} exp{− ∫ s

0 λ(w,z) dw}π(z)
ξ(t,s)

, a = s, 0 ≤ z < ∞,

(10)
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where

ξ(t, s) ≡
∫ ∞

0

∫ s

0
exp

{
−

∫ t

0
λ(b + w, v) dw

}
fA(0)(b, v)π(v) db dv

+
∫ ∞

0
exp

{
−

∫ t

0
λ(s + w, v) dw

}
exp

{
−

∫ s

0
λ(w, v) dw

}
π(v) dv.

Then, in accordance with (8),

λt+u|ht =
∫ ∞

0

∫ s

0
λt+u|ht ,z,a

exp{− ∫ t
0 λ(a + w, z) dw}fA(0)(a, z)π(z)

ξ(t, s)
da dz

+
∫ ∞

0
λt+u|ht ,z,s

exp{− ∫ t
0 λ(s + w, z) dw} exp{− ∫ s

0 λ(w, z) dw}π(z)
ξ(t, s)

dz.

Results (ii), (iii), and (iv) can also be obtained following similar arguments to those given in
case I, by first conditioning the corresponding measure on (Ht , A(0), Z) and then taking the
expectation with respect to the conditional distribution of (A(0), Z | Ht ).

Remark 1. (i) For recurrent events of natural disasters, such as earthquakes and river floods, the
starting point of the process is generally given by ‘−∞’. In this case, fY(0)(x, z) is simplified
to

fY(0)(x, z) = 1∫ ∞
0 F̄ (t, z) dt

F̄ (x, z), 0 ≤ x < ∞.

Also, in this case, the nonabsolutely continuous distributions in case II become absolutely
continuous distributions with

fA(0)(a, z) = 1∫ ∞
0 F̄ (t, z) dt

F̄ (a, z), 0 ≤ a < ∞,

and s ≡ ∞.

(ii) Observe that λm(t) in (2) corresponds to λt+u|ht in case II(i) with s = 0, u = 0, and
A(0) ≡ 0 (i.e. A(0) has a degenerate distribution) as the given history {T > t} in the former
case corresponds to ht = {N(t−) = 0}. In this case, φt (a, z) in (10) reduces to the one-
dimensional distribution π(z | t) in (3) and, accordingly, we have λm(t) = λt |ht .

In the following example we consider the point process with interarrival times following
(conditionally given Z) exponential distributions.

Example 2. Suppose that F(t, z) is an exponential distribution with parameter λ(t, z) = zλ,
and let π(z) be an exponential PDF in [0,∞) with parameter θ .

Case I: suppose that ht = {N(t−) = n, T1 = t1, T2 = t2, . . . , Tn = tn}. Then, in this
case,

fY(0)(x, z) = zλ exp{−zλx}, x ≥ 0,

which does not depend on the starting point s and, accordingly, the stochastic measures are
independent of s. Obviously, λt+u|ht ,z in (7) is simply given by

λt+u|ht ,z = zλ.
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On the other hand,

πt (z) = (zλ)n exp{−zλt}θ exp{−θz}∫ ∞
0 (vλ)n exp{−vλt}θ exp{−θv} dv

= (θ + λt)n+1zn exp{−(θ + λt)z}
�(n+ 1)

, 0 ≤ z < ∞,

which is a gamma distribution. Therefore,

λt+u|ht =
∫ ∞

0
λt+u|ht ,zπt (z) dz = (n+ 1)λ

θ + λt
.

Now the other measures are given by

P[Tt ≥ x | Ht = ht ] =
∫ ∞

0
exp{−zλx}πt (z) dz = (θ + λt)n+1

(θ + λt + λx)n+1 , x ≥ 0,

P[Nt(u) = k | Ht = ht ]

=
∫ ∞

0

(zλu)k

k! exp{−zλu}πt (z) dz

=
(
n+ k

k

)(
λu

θ + λt + λu

)k(
θ + λt

θ + λt + λu

)n+1

, k = 0, 1, 2, . . . ,

and

E[Nt(u) | Ht = ht ] =
∫ ∞

0
zλuπt (z) dz = (n+ 1)λu

θ + λt
.

Case II: suppose that ht = {N(t−) = 0}. In this case,

fA(0)(x, z) = zλ exp{−zλx}, 0 ≤ x < s,

and

ξ(t, s) = θ

θ + λt
.

Furthermore, λt+u|ht ,z,a in (9) is given by

λt+u|ht ,z,a = zλ.

Therefore,

λt+u|ht = θ + λt

θ

∫ ∞

0
zλ exp{−λtz}θ exp{−θz} dz = λ

θ + λt
.

The other measures in this case are given by

P[Tt ≥ x | Ht = ht ] = θ + λt

θ

∫ ∞

0
exp{−zλx} exp{−λtz}θ exp{−θz} dz

= θ + λt

θ + λt + λx
, x ≥ 0,

P[Nt(u) = k | Ht = ht ] = θ + λt

θ

∫ ∞

0

(zλu)k

k! exp{−zλu} exp{−λtz}θ exp{−θz} dz

=
(

λu

θ + λt + λu

)k
θ + λt

θ + λt + λu
, k = 0, 1, 2, . . . ,
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and

E[Nt(u) | Ht = ht ] = θ + λt

θ

∫ ∞

0
zλu exp{−λtz}θ exp{−θz} dz = λu

θ + λt
.

3. Point process for minimal repair

In this section we consider the point process for minimal repairs in heterogeneous
populations. In Cha and Finkelstein (2011), a simple consideration for the stochastic intensity
of minimally repaired items was made, where the main interest is in obtaining the ordinary
stochastic intensity and its comparison. As the main concern of this current paper is the
stochastic predictions, we now further extend the discussion and deal with the extended issues
under a more general setting. In Subsection 3.1, general results will be derived and an
application of the results to reliability will be considered in Subsection 3.2.

3.1. Main result

In order to define the minimal repair processes to be considered in this section precisely,
as in Section 2, we start our discussion with an explanatory example, which is a variant of
Example 1.

Example 3. (Example 1 continued.) As in Example 1, assume that at time t = 0 one item is
chosen from a substock which was randomly selected in accordance with a discrete distribution
π(i), i = 1, 2, . . . , k. This item is put into operation and the operating item is now ‘minimally’
repaired on its failures. Here, by ‘minimal repair’ we mean that the state of the item after the
repair is restored to the ‘as-bad-as-old’ condition. For instance, if the initial item is chosen
from substock i and it has failed at time x, then this type of repair implies that the CDF of the
repaired item is given by

1 − F̄ (x + t, i)

F̄ (x, i)
.

Thus, this type of repair restores our system to the state (defined by the CDF) it had prior to the
failure. In practice, the minimal repair can be performed using the following ‘operations’.

• The failed system is replaced by a statistically identical system (with the same CDF)
‘from the same substock’ that was operating for the same time but did not fail.

• The system consists of ‘a large number’ of elementary components and, therefore, the
replacement of only the failed component by an as-good-as-new component, essentially
‘does not affect the overall reliability characteristic of the system’and, accordingly, it does
not change the system’s failure rate. Another example of this ‘physical operation’ is when
a realized defect (fault) is corrected upon failure, whereas the number of possible inherent
defects in the system is very large. The minimal repair defined above is considered a
reasonable approximation in this case.

Note that we consider a minimal repair process with the frailty variable Z = z of the
initial item ‘preserved’. Therefore, this type of minimal repair can also be considered as the
information-based (or physical) minimal repair, which brings our item back to the state (defined
by the relevant information) it had just prior to the failure (see Aven and Jensen (1999), (2000)
and Finkelstein (1992), (2004)). Obviously, this point process is not an NHPP as it does not
possess the independent increments. However, it is clear that the point process given Z = z

follows an NHPP. Therefore, this point process can be called a conditional nonhomogeneous

https://doi.org/10.1239/jap/1378401238 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1378401238


822 J. H. CHA

Poisson process (cf. Freedman (1962) and Kingman (1964)). The stochastic prediction of this
point process will be the main focus of this section.

Now we are ready to formally describe our problem. As in the perfect repair process model,
let us suppose that the point process is started at time t = −s, but that the process is not
observed before time t = 0. We start the observation on the point process at time t = 0
and observe it in the time interval [0, t). Very often in practice, the age of the item under
operation or under study may be unknown (e.g. operations of used items with unknown age
or observation of lifetimes with left censoring). This makes it natural to model it by an RV S

and to introduce a random initial starting point. Suppose that S is an absolutely continuous
random variable with corresponding CDF and PDFG(s) and g(s), respectively, representing the
information/uncertainty about the starting point. In this situation, the process history updates
not only the information on the frailty variable, but the information on the unknown starting
point as well. Also, it is natural to assume that Z and S are stochastically independent.

We now describe the stochastic measures for the future process {Nt(u), u ≥ 0} in the
following theorem.

Theorem 2. Under the minimal repair process, given Ht , the stochastic measures for the
process {Nt(u), u ≥ 0} are given as

(i) λt+u|ht =
∫ ∞

0

∫ ∞

0
λ(s + t + u, z)ψt (s, z) ds dz,

(ii) P[Tt ≥ x | Ht = ht ] =
∫ ∞

0

∫ ∞

0
exp

{
−

∫ x

0
λ(s + t + v, z) dv

}
ψt(s, z) ds dz,

(iii) P[Nt(u) = k | Ht = ht ]

=
∫ ∞

0

∫ ∞

0

(
∫ u

0 λ(s + t + v, z) dv)k

k! exp

{
−

∫ u

0
λ(s + t + v, z) dv

}
× ψt(s, z) ds dz,

(iv) E[Nt(u) | Ht = ht ] =
∫ ∞

0

∫ ∞

0

[∫ u

0
λ(s + t + v, z) dv

]
ψt(s, z) ds dz,

where ψt(s, z) is the conditional joint PDF of (S, Z) given Ht = ht , i.e.

ψt(s, z) =
∏n
i=1 λ(s + ∑i

j=1 tj , z) exp{− ∫ t
0 λ(s + w, z) dw}g(s)π(z)∫ ∞

0

∫ ∞
0

∏n
i=1 λ(r + ∑i

j=1 tj , v) exp{− ∫ t
0 λ(r + w, v) dw}g(r)π(v) dr dv

(11)

for 0 ≤ s, z < ∞, and
∏n
i=1(·) ≡ 1 for n = 0.

Proof. It is now clear that

λx|Ht = E[λx|Ht ,Z,S], x ≥ t, (12)

where the expectation is with respect to the joint ‘conditional distribution’ of (S, Z | Ht ), and

λx|Ht ,Z,S ≡ lim
�t→0

P[N(x, x +�t) = 1 | Ht , Z, S]
�t

, x ≥ t.

Again, the corresponding limit and the notation λx|ht ,z,s are defined as in the proof of case I of
Theorem 1. Then

λt+u|ht ,z,s = lim
�t→0

P[N(t + u, t + u+�t) = 1 | Ht = ht , Z = z, S = s]
�t

.
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Note that, given (Ht = ht , Z = z, S = s), owing to the property of the information-based
minimal repair defined before (i.e. each failure does not change the age or the frailty variable
of the item in use), the age and the frailty variable of the item in operation at time t + u is
given by s + t + u and z, respectively. Furthermore, owing to the property of the information-
based minimal repair, the repair does not change the shape of the corresponding failure rate.
Accordingly, we have λt+u|ht ,z,s = λ(s + t + u, z). Therefore,

λt+u|Ht ,Z,S = λ(S + t + u,Z), u ≥ 0.

Note that the conditional distribution of the history Ht = ht given (S = s, Z = z) is

λ(s + t1, z) exp

{
−

∫ t1

0
λ(s + w, z) dw

}
λ(s + t1 + t2, z) exp

{
−

∫ t1+t2

t1

λ(s + w, z) dw

}

× · · · × λ

(
s +

n∑
j=1

tj , z

)
exp

{
−

∫ ∑n
j=1 tj

∑n−1
j=1 tj

λ(s + w, z) dw

}

× exp

{
−

∫ t

∑n
j=1 tj

λ(s + w, z) dw

}

=
n∏
i=1

λ

(
s +

i∑
j=1

tj , z

)
exp

{
−

∫ t

0
λ(s + w, z) dw

}
,

where
∏n
i=1(·) ≡ 1 for n = 0. Therefore, the conditional joint PDF of (S, Z) given Ht = ht ,

ψt(s, z), is given by (11). Then, in accordance with (12),

λt+u|ht =
∫ ∞

0

∫ ∞

0
λ(s + t + u, z)ψt (s, z) ds dz.

Results (ii), (iii), and (iv) can also be obtained following a similar procedure.

3.2. Application

In the previous section we considered a continuous mixing model. In this subsection we
consider a discrete mixing model, which can be used to illustrate how the formulation can be
modified to a simpler case when necessary. Suppose that the population is composed of the
mixture of two exponential distributions with parameters (failure rates) λ1 and λ2, λ1 < λ2.
The composition of our mixed population is as follows: the proportion of the items with λ1 (to
be called ‘strong’ items) is π , whereas the proportion of the items with λ2 (to be called ‘weak’
items) is 1 − π . Then the frailty variable Z in this case has a discrete probability distribution

π(z) =
{
π, z = 1,

1 − π, z = 2,

where z = i, i = 1, 2, corresponds to ‘strong’ and ‘weak’ subpopulations, respectively.
Suppose that a new item is randomly chosen from the mixed population and that it is tested

during [0, t) before a field operation. During this test period, the item is repaired following the
minimal repair process described in the previous subsection. Then, based on the information
obtained during the period, Ht , the item is either eliminated or put into a field operation. Observe
that this kind of elimination procedure can be considered as a kind of burn-in procedure (see
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Jensen and Petersen (1982), Mi (1994), and Cha (2000)). However, in conventional burn-in
procedures, items are subjected to a period of simulated use prior to actual operation and those
which failed during this period are scrapped and discarded. In this conventional case, the
information which is used for the burn-in procedure is whether the items have survived the
burn-in period or not, the failure times for failed items are not used.

On the other hand, in the elimination procedure described above, the items that have gone
through the procedure possess different information about the reliability characteristics, which
can then be used for establishing the elimination procedure. Based on this reasoning, the
following elimination procedure can be considered. Let τ be the mission time in the field
operation. For a given integer k∗, define a set of histories

Hp ≡ {ht | P[Nt(τ) ≤ k∗ | Ht = ht ] ≥ α},
where α, 0 < α < 1, is a predetermined threshold level. Then, given the history in [0, t) of a
tested item, H ′

t = h′
t , the elimination policy can now be defined as

(i) if h′
t ∈ Hp then the item is put into a field operation;

(ii) otherwise, it is eliminated.

That is, by the above procedure, only the items with probabilities (that the number of failures
during the mission does not exceed k∗) higher than α (the threshold level) pass the elimination
procedure and are put into field operations.

Observe that, as the starting point in this case is given by S ≡ 0 (a degenerate distribution),
from the proof of Theorem 2

ψt(z) ≡ P[Z = z | Ht = ht ] = λnz exp{−λzt}π(z)∑2
i=1 λ

n
i exp{−λit}π(i)

, z = 1, 2, (13)

which does not depend on the failure points, but depends only on the number of failures during
the period. Therefore, as far as only the corresponding stochastic predictions are involved, the
operational history in this case is completely characterized by N(t−). Then the elimination
procedure described above can be restated in terms ofN(t−) as follows. Define a set of integers

Np ≡ {n | P[Nt(τ) ≤ k∗ | N(t−) = n] ≥ α}. (14)

Then, given the number of failures in [0, t) of a tested item,N ′(t−) = n′, the elimination policy
can now be described as

(i) if n′ ∈ Np then the item is put into a field operation;

(ii) otherwise, it is eliminated.

Observe that

P[Nt(τ) ≤ k∗ | N(t−) = n] =
2∑
z=1

( k∗∑
k=0

(λzτ )
k exp{−λzτ }
k!

)
λnz exp{−λzt}π(z)∑2
i=1 λ

n
i exp{−λit}π(i)

.

It is clear that P[Nt(τ) ≤ k∗ | N(t−) = n] is strictly decreasing inn and that it has its maximum
at n = 0. Therefore, if α satisfies

0 < α ≤
2∑
z=1

( k∗∑
k=0

(λzτ )
k exp{−λzτ }
k!

)
exp{−λzt}π(z)∑2
i=1 exp{−λit}π(i)

,
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then the corresponding elimination policy can be established. Suppose that there are missions of
different importance in the field operations. Then, as the items that have passed the elimination
procedure possess information about the quality (or reliability) level, items with a higher
reliability level (i.e. items with smaller N ′(t−)) could be used for more important missions.

Moreover, the ‘average stochastic measures’ for items that have passed the elimination
procedure can also be obtained. Note that the set Np in (14) is given by

Np = {0, 1, . . . , n∗},
where n∗ is the maximum integer value satisfying

P[Nt(τ) ≤ k∗ | N(t−) = n] ≥ α.

Observe that, just after the elimination procedure, the initial frailty distribution for items that
have passed the procedure is given by

π∗(z | n∗) ≡ P[Z = z | N(t−) ≤ n∗]

= [∑n∗
k=0(λzt)

k exp{−λzt}/k!]π(z)∑2
i=1[

∑n∗
k=0(λi t)

k exp{−λit}/k!]π(i)
, z = 1, 2.

Then the average stochastic measures for items that have passed the elimination procedure can
be obtained by replacing ψt(z) in (13) with π∗(z | n∗) in the corresponding derivations of
measures in Theorem 2.

4. Concluding remarks

In this paper we have considered the failure processes of repairable items from hetero-
geneous populations. Two types of repair processes, perfect and minimal repair processes,
have been considered. The point processes that have been considered are not pure renewal
processes/NHPPs, but conditional renewal processes/NHPPs, respectively. Based on the
failure/repair history, the stochastic predictions of the future processes were studied.

In Section 3, an application of the results to reliability was considered. Burn-in is an
important issue in reliability and various methodologies have been proposed. However, there
has been little literature on the burn-in procedure, which utilizes the failure/repair history
of the item during the process. The application has been illustrated assuming exponential
distributions and the suggested model could hint at general research in this direction. Based
on this initial setup, a general study of the topic is being performed by the author. Similar
approaches could also be applied to the study of maintenance policies for repairable items from
heterogeneous populations. In this case, it is clear that the maintenance policy should depend
on the subpopulation from which the item is selected and the corresponding failure rate. Further
studies in this field are needed, with the formulation and discussions in this paper providing a
useful starting point.

In this paper, for a convenient formulation, the problem has been described in the context of
reliability modeling. However, the obtained results could be applied to various relevant areas.
For example, similar kinds of lack of information due to population heterogeneity considered
in this paper may also frequently happen in queueing analysis, where the arrival process of
customers may exhibit a heterogeneous pattern (see Yechiali and Naor (1971), Niu (1980),
and Böhm and Mohanty (1994)). In this case, a precise prediction of the arrival process is
practically a very important issue (see also Cha and Lee (2011)). The results could also be
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applied to life insurance when the insured are from heterogeneous populations, where the
recurrent occurrences of illness may correspond to the recurrent events in the point processes.
On the other hand, the predictions of natural disasters such as earthquakes and river floods are
of practical importance (see Molchan (1990), (1997) and Werner et al. (2011)), where renewal
processes are frequently adopted. The obtained results could also be applied to these areas.
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