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Let k be an algebraic number field of finite degree, K be its normal ex-

tension of degree n, and s be the set of those primes of K which have degree 1.

Using this set s instead of the set of all primes of Ky we define an s-restricted

idele of K by the same way as ordinary ideles. It is known by Bauer that the

normal extension of an algebraic number field is determined by the set of all

primes of the ground field which are decomposed completely in the extension

field. This suggests that if we treat abelian extensions over K which are normal

over k, the class field theory is expressed by means of the s-restricted ideles

(theorem 2). When K = k, s is the set of all primes of Ky and we have the

ordinary class field theory.

In fact, the φ-completion K<$ is isomorphic to the ^-completion A?p, when φ

belongs to s and divides a prime p of k. Therefore the group of all s-restsicted

ideles of K is isomorphic to the direct product of n-ίolά of a group of restricted

ideles of k. This means that the abelian extensions over K which are normal

over k are determined by some objects (s-admissible subgroups of the s-restricted

idele group) in the ground field k. In this paper we shall characterize this

object by the connected component of the unity in the idele class group of K

(theorem 3) and by the principal idele group of K(theorem 4). This result is

a generalization of our preceeding paper [8] (§8).

Throughout this paper the following notations will be used.

F an algebraic number field of finite degree.

Fx the multiplicative group of all non zero elements of F, which

is identified with the principal idele group of F.

Fp the p-adic completion of F, where p is a finite or infinite prime

of F.

£/p the p-adic unit group of F.
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122 YOSHIOMI FURUTA

/ = JF the idele group of F.

/oo the subgroup of all e lements of / which have components 1 at

all finite primes.

(£ = (£* = J/Fx the idele class group of F.

® the connected component of the unity of δ .

G(K/F) the Galois group of a Galois extension K/F.

S(F) the set of all finite or infinite primes of F.

Si K/F) the set of those primes of F which have at least a prime divisor

of degree 1 in a finite extension K/k.

S{K/F) the set of those primes of K which are of degree 1 in a finite

extension K/F.

(A B) the index of the subgroup B in the group A or the degree of

an extension field A/B.

A the closure of A in / if A is a subset of /,

A B the set of all products of elements from A and B, if A and B

are subsets of a group.

§ 1. Projection and restriction of idέle groups

Let S = S(F) be the set of all primes of F, s be a subset of S containing

infinitely many elements, and sf be its complement in S: sf = S - s. We denote

by Js the restricted direct product (as topological group) of p-adic completions

Fp over p-adic unit groups Up of F where p runs over s, that is, the group of

all elements of the direct product Π Fp whose ^-components belong to Up for

almost all p of s. Denote also by Us the unit group Π Up of / s . If s = S, then
pee

Js = Js is the ordinary idele group of F. We shall call an element of / s resp.

of Us a s-restricted idele resp. s-restricted unit idέle.

We have algebraically and topologically

(1) J=JsxJs> ( d i r e c t ) .

T h r o u g h o u t this paper we shall fix this isomorphism, and the notation x is used

for this direct product. Denote by πs the projection of / to Js, which is a

multiplicative and open continuous map and is called s-projection. For any

o ε / we set always os = 7rs(o). Put Fs = 7 r s ( F x ) , Cs = Js/Fs. By cp, cp,s and cs we

mean the natura l injections of Fp to /, Fp to /, F^ to / s, and Js to /, respectively,
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These notations are omitted frequently when it can be done without danger of

misunderstanding.

We define the ^-restriction ps by

(2) ps(A) = πs(AΓ\csJs)

for any subset of A of /. If an idele α e / is not contained in csjs, we write

ps(a) = φ. Then ps(ab) = ps(a)ps(b) for a,b&J if ps(a)^ψ and p s(b)=^0.

LEMMA 1. Let A be any subgroup of J.

Then (cgJs)A =JsX/cAA) (direct).

Proof. Let obeA(ίs/s\ oeA, bGίJ s . Since a = asxas> and b = b s xl, we

have cίb=(cϊb)sXas'&JsXπs'(A). Conversely let b s e / s and α e A Then bsxas>

= (αsxos')(bsαJ1xl)Λ(^/s). This lemma implies algebraically

K6) Ps(A)~ AΓ\t3Js = A - A

If (/; A) is finite, then (/s,'ps(A)) = (/sXτrS/(A) A)

= 7 r ( / ; " ! L Hence we have(Js πs'(A))

LEMMA 2. Lβί A be a subgroup of J of finite index. Then

= (Js;ps(A))(js,;πAA)).

LEMMA 3. Let A be any subgroup of J and B be any subgroup of Js. Then

Proof. Let a^A and b<=c3B, then αb = (αs xαS')(ί>sx D = αsbsxoS/. Hence

=asbs or = <ρ according to as, = 1 or ^=1, that is, ps(a) =as or = 0 . Hence

ps(A(tsB))cips(A)B. Conversely let α e i , b e 5 and p s (α)#ψ. Then (0S(α)b^

Ps(a)ρs(csb) = ps(a(csb)) (= ps(A(csB)).

LEMMA 4. Let A be a subgroup of J, B1 be a subgroup of Ss>, and suppose

Then ps(A)^πs(Af)(JsxB')).

Proof. Let α x b e A Γϊ (/s x BO, where H G / S and b e B f. Then ττs(αxb) = α

= 7r s ((αxb)(lxα" 1 )). Since α x ί i e A and l x ϊ ^ e A , we have α e τrs(A Γ) ^7$)
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124 YOSHIOMI FURUTA

§ 2. Restricted ideles and the class field theory-

Let k be any algebraic number field of finite degree, K/k be a normal ex-

tension of finite degree, and M be an abelian extension over K which is normal

over k. Let us characterize such M by the restricted ideles attached to Klk.

The following propositions are well known.

PROPOSITION 1. (Bauerυ) Let K be any normal extension of k of finite

degree and Ω be any extension of k of finite degree. Then S(K/k) contains

S(Ω/k) if and only if K is contained in Ω.

We have immediately

PROPOSITION 1'. Let Kx and K2 be normal extensions of finite degree. Then

S(Ki/k) = S(K2/k) if and only if Ki = K2.

PROPOSITION 2. (Whaples2)). Let A be any abelian extension of F of finite

degree, and H be the subgroup of the idele group J = JF corresponding to A by

the class field theory. Let p be a prime ideal of F. Then p is not ramified in

A if and only if cpU^czH, and p decomposes completely in A if and only if

Now we prove the following

PROPOSITION 3. Let K be a normal extension of k of finite degree and put

s = S(K/k). Let Mi and M2 be abelian extensions of K which are normal and

of finite degree over k* Let further Hi and H2 be subgroups of the idele group

of K corresponding to Mi and M2, respectively, by the class field theory. Then

we have ps{Hι) = p$(H2) if and only if Hi = H2> namely if and only if Mi = M2.

Proof. It is obvious that peS(Afί/*) if and only if p^S(K/k) and p e

S{Mι/K) for a prime divisor φ of p in K. On the other hand φ e S(MJK) if

and only if c^K^aHi by prop. 2. Assume peS(K/k), then c^K^aHi if and

only if c%K^cip$(Hi) for any prime divisor Sβ of p in K. Hence S(Mjk) con-

sists of all p(=S(K/k) such that c$K%cips(Hi) for any φ diving p. Therefore

Ps(Hι) = pi (Hi) implies S(Mjk) = S(M2/k), and this implies Mι = M2t hence

Hi = H2, by prop. V. Conversely if Hι=H2t obviousely pi (Hi) =ps(H2). Thus

the proposition is proved.

V See M. Bauer [3], H. Hasse [10], §25, and also M. Deuring [4],
2) See G, Whaples [13], also E Artin and J. Tate [2], Ch. 6.
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Now let F be any algebraic number field of finite degree, / be the ordinary

idele group of F, and £ = / / F x be its idele class group. Denote by Φ the con-

nected component of the unity of (£, and by ® the complete inverse image of

Φ by the natural homomorphism of / to (L Let s be an infinite set of primes

of F and Js be the s- restricted idele group of F. We shall call a subgroup Hs

of Js s-admissible if ϋ?s= ps{HsD). If Hs is s-admissible, then it is closed in

Js. In the case where s is equal to the set S=S(F) of all primes of F, we

call simply admissible instead of S-admissible. There is a one to one corre-

spondence between the set of admissible subgroups of / and the set of class

fields over F.

Let again K/k be a normal extension of finite degree with the Galois group

G(K/k), and put s = S(K/k). For each s-restricted idele α e / ί and each <*e

G(K/k), we define ασ as the s-restricted idele whose jΛcomponent is determined

by (a°)$σ = (op)°, where p is a prime of K.

THEOREM 1. Let K be a normal extension of k of finite degree and put

G = G(K/k), and s = S(K/k). Then the s-restriction pέ gives a one to one cor-

respondence between the set of all Ginυariant admissible subgroups H of J of

finite index and the set of all Ginυariant s-admissible subgroups Hs of Js of

finite index. Futhermore if ps(H) - Hs, then we have G-isomorphism J/H = Js/Hs.

Proof. Let H be a G-invariant admissible subgroup of / of finite index.

Then ps(H) is obviousely G-invariant. Since H contains both ps(H) and A and

is closed, we see H^p$(H) D. Hence ps(H)^>μs(ps(H)D). On the other hand

obviousely ps(H) cρiips(H)D). Thus ps(H) is 5-admissible. Moreover we have

(/ H) = (Js psίH))(Js' πs'(H)) by lemma 2, and this implies that ps(H) is

of finite index as a subgroup of J$. Conversely let Hs be a G-invariant s-ad-

missible subgroup of Js of finite index. Put H~ Hi D. Then H is G-invariant

and admissible. Since Hs is s-admissible, ps(H) =Hs. Thus if we prove the

finiteness of (J H), then the first part of the theorem follows from prop. 3.

So we shall prove the finiteness. Put Hi-JsD. Then Hi is G-invariant and

admissible subgroup of /. Moreover if $ is contained in s, then c^K% is con-

tained in Hi. Let Aι be the abelian extension over K corresponding to ffi by

the class field theory. Then Ai is normal over k and we have S(Ai/k) ̂ >S(K/k)

by prop. 2. Hence AidK by prop. 1. We have necessarily Aι = K, hence Hi
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= /sD =/. Thus we see algebraically J/H ==JSD/HC:JΪH/H^JS/JSH = JZ/

-Js/Hs. Since (Jt Hs) is finite, (J H) is finite. Thus the finiteness and so

the one to one correspondence in the theorem is proved.

Now let again H be a G-invariant admissible subgroup of J of finite index.

Since the restriction πΐ* is an open map of / to /£/, πsΛH) is closed in J$'.

Moreover πίΛH) is obviousely G-invariant and contains πs>{D). Put j£Xπi>(H)

~Ήχ. Then {J\Hι) is finite and Hi is a G-invariant admissible subgroup of/.

Let Aι be the class field over K corresponding to Hx. Then Aι is a normal

extension over k and S{AJK)^s = S (ϋf/ft) by prop. 2, hence S(Aι/k)^S{K/k).

This implies AiC /Γ by prop. 1. Then we have necessarily Ai = if, which implies

7£* = flsMfli). Since TΓSMA) = τrί-(H), we have /?, = πΐ>{H). Hence J/H^Js/Hs

by (3).

Thus the theorem is completely proved.

The following theorem is an immediate consequence of the class field theory

and theorem 1.

THEOREM 2. Let K be α normal extension of k of finite degree and put

G = G(K/k), s = §(Klk). Then there is a one to one correspondence between

the set of all G-invariant s-admissible subgroups Ht of Js of finite index and

the set of all abelian extensions M of K of finite degree which is normal over

k. If M corresponds to Hi, then G(M/K)~Js/Hs. Furthermore a prime $ of

s decomposes completely in M if and only if c^K^Hs.

§ 3. Conditions of the s-admissibility

Let F be any algebraic number field, / be the idele group of F, &=J/FX

be its idele class group, and % be the connected component of the unity in &.

Let further s be a set of infinitely many primes of F and Js be the restricted

idele group of F. We have called, in the previous section, a subgroup of Hs

of Js s-admissible if Hs = ps(7£D) where D is the complete inverse image of ©

by the natural homomorphism of / to &. Now we prove

THEOREM 3. Let Hs be a closed subgroup of Js of finite index. Then Hs is

s-admissible if and only if there exists a neighborhood U1 of the unity in Js> such

that Hs contains π,(DΓί {Jsx Uf)).

Proof. Suppose that Hs is s-admissible, and put H~HSD. Then H is ad-
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missible in / and ps(H) = Hs. Let U be a neighborhood of the unity in/whith

H'DU. Such a neighborhood always exists because of the finiteness of (J H).

Set U—Us?<Us> where US<^JS and £/s/C/a/. Then C7S/ is a neighborhood of

the unity in Js. and we see Hs= Ps(H) ^πs(HΓ\ (Jsx Us>) ^πs(D ft (Jsx Us>)) by

lemma 4.

Suppose conversely that there exists a neighborhood IP of the unity in Js,

such that JEkzWDΠ (JsxU')). Let £ be any element of ps(HsD), then

HSD. Now let £7(E) be any neighborhood of I in Js and put £7= J7(s) x IP. Then

since £/ is a neighborhood of £x l in J,Un(HsD) is not empty. Let (f)xl)

(axb) be in this intersection, where | e f t , Q X I I G D , α e / s , b e / v . Then

(ϊjxl)(αxb)=ϊjαxb€=U; b e t / ' and ϊjαe C7(ε). Hence αGτr s(DΠ(/ sx U'))cHs

and ί)α e # s . Therefore £7(g) Π 77S is not empty, which implies ϊef f i = #s, since

Hs is closed in / s. Thus we have ps(HsD)c:Hsj hence ps(HsD) = Hs. This

proves that # s is s-admissible, and the theorem is proved.

Now the structure of D is known by Artin [1]3). Let Z be the additive

group of rational integers and Z be the completion of Z under the topology

where the ideals of Z form a fundamental system of neighborhoods of 0. For

each unit e of F, we denote by Έ the idele which has components ε at all finite

primes and components 1 at all infinite primes. Then for x e Z, F* can be de-

fined as the extension of the exponentiation em by an ordinary integer m. Let

ru n be as usual the numbers of real primes and complex primes of F respec-

tively and put r = n + n - 1 . Then we have by Artin [1] immediately the

following

PROPOSITION 4. Let εi, e2, . . . , er be any system of independent totally

positive units of F. Let further E be the group of all ideles eXχ τx

r

r where

Xι . . . , xr G Z, and J^ be the group of those ideles which have components 1 at

all finite primes. Then we can choose a system of representatives of D mod. Fx

in EJn.

Notations being as above, let # e Z and e be one of the ε, . Let further IP

be a neighborhood of the unity in Js> containing 7Γs'(/«). Then there exists an

integer m<=Z such that τx/εm e / s x Uf. Indeed let p be a finite prime. If xf =0

mod pκ for a sufficiently large tc, then the ^-component of the idele ε"*' is in the

p-component of Js x IP. Since the ^-component of Js x U1 containes C/p for almost

*) See also E. Artin and J. Tate [2], Ch. 9.
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all p, we can set K = 0 for such almost all p. This implies immediately the

existence of the above integer m, being x s m mod. pκ for all finite p. Hence

by prop. 4 we have

(4) (DΠ(JsxU'))-F=D.

LEMMA 5. Let G be a topological group which is locally compact and satisfies

the second axiom of countability. Let N be a discrete normal subgroup and A

be a closed subgroup of G. Suppose further AN is closed in G. Then we have

AN/N= AlAN.

Proof Let / be the canonical map of G to G/N. Then / is an open map,

and we have/(A) =f(AN) =ANIN Since N is discrete, G/N is locally iso-

morphic to G( Hence G/N is also locally compact and satisfies the second

axiom of countability. Both A and AN are locally compact, because they are

closed in G. Furthermore AN/N is also locally compact owing to the continuity

of /. It is known4] that if g is an onto-homomorphic mapping between two

locally compact groups satisfying the second axiom of countability, then / is

open. Therefore the restriction of / to A, whose image is AN/N, is also open.

Then since the kernel off is AN, we have/(A) = Al'AN. Thus the lemma is

proved.

PROPOSITION 5. Let U1 be a neighborhood of the unity in Js> containing

πs>(/» ), and Hs be a closed subgroup of Js of finite index. If Hs => πs(F* Π (Js xU'))y

then Hs^πsiDΠ xU')).

Proof. We have the following commutative diagram

j x Π (/. x U>))

I j I

Js J~ ><« = Λ/τrβ(F* Π (/, x IT)).

where j1 and j's are the canonical homomorphisms respectively. First we shall

prove that fsπs( D(MJsxUf)) is connected in <5ί. Since J, F x and ( D n ( J s x IP))

satisfy the conditions of G, N and A in lemma 5 respectively, we .have alge-

4> See L. S. Pontrjagin [12], Ch. 3, §19, theorem 13. In this book, the topology is Ti
and every subgroup is closed. But the proof of the theorem 13 in this book hold in
general case.
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braically and topologioally D/FX(D Π (Jsx U'))F*/Fy ̂  D Π (/ sx U') = j'iDΠ

(JsXU')). Hence f(DΓ\ (JsxUf)) is connected in Si, because D/F* =<£) is the

connected component of the unity in S. Since /, fSt πs are all continuous maps,

7rί is also continuous and we have π'sj
f(D Π (/<, x Uf)) =jsπs(DΠ (Js x ^ ) ) . Hence

j'sπs(D Π (JsXU')) is connected in Si. Now since JEΓS is closed in /s and contains

τrs(Fx Π (JsXU')), j's(Hs) is also closed in Si. On the other hand, j's(Hs) is of

finite index in Si, since Hs is so in Js. Hence fs(Hs) is open in Si. Therefore

fs(Hs) must contain jsπs(DΓ\ (Jsx U')) which is connected in Si as proved above.

This implies Hs^πs(D Π (Jsx £/')), since Hs^πs(Fx Π (/sx ί/')) by the assump-

tion. Thus the proposition is proved.

Let again iΓ be a normal extension of k of finite degree, and let J = JK.

Put s = S (#/*), G = G(K/k). Then we have

THEOREM 4. Z,ef Hΐ be α G-invαriαnt closed subgroup of Js of finite index.

Then, in order that Hs is s-admissible, it is necessary and sufficient that there

exists a noighborhood ZP of the unity in Js such that U'^πsΌ^) and Hi^>πs

(KxΓ\(JixU')).

Proof. Suppose that Hs be s-admissible and put H-HSD. Then pi(H)

= Hs. If K = k, then s' is empty and the theorem is true by the class field

theory. Thus we assume K±?k. As the proof of theorem 3, let U be a neigh-

borhood of the unity in / such that H^U and set U-UsX Us> where Us<^Ji,

Us'^Js'. Then we can assume that U$» contains πΐ'ij*), because every infinite

prime of s' is ramified in K/k, and consequently complex. Hence it is not rami-

fied in any extension over K. Therefore, if p is an infinite prime of s'y then

Up is contained in H. This implies UL^H. Now we see, as the proof of the

theorem 3, that Ht = ps(H)^>πs(HΠ (JsxU$>))^>πS(KΓi (j£ x Us,), which proves

the necessity of the theorem. The sufficiency follows immediately from theorem

3 and prop. 5.

§4. &-meta-abelian extensions

Let K/k be, as in the previous sections, an extension of degree n of an alge-

braic number field k, and put s = S(K/k), s = S(K/k), G = G{Klk). For every

prime p of k we fix a prime φ of K which divides p, and set (p, a) = ψ for J G G .

Then 5 consists of all ip,a) such that | ) G S and a^G. Denote by s(σ) the set

of all (p, σ) where DGs. Then s is the union of those s(σ) where a^G, and
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we have naturally

/s= UJs(σ) (direct).

Hereafter we shall fix this isomorphism.

If | ) G S , any element a of K%σ is expressed by a = Σ am1 where a% e # and

π is any fixed prime element of k$. Thus the element of K^σ is naturally

embedded in k$. We denote this embedding by g$a or gφ.a), and we have

g$σ(aσ) - g$(a) for α: e iΓφ, <JGG. Denote by #σ the mapping of /s«,> to /s, which

maps every (p,<x)-component by g^σ=g(p,σ). Set g=Hgσ. Then g* and #
σεff

imply algebraically and topologically

(5) Js{a)=Js

and

(6) / * = / ? ,

where /? is the direct product of n-fold of /s.

Let <su > on be all elements of G and J°σ be the permutation (alt . . . ,

(Tn)-> (<τiίτ,. . . , ano) for every element a e G. For («!, . . . , ΛΛ) e / " set

Ui, . . . , β«)σ = PσUi, . . . , an).

Then /? has G as the operator domain, and the isomorphism (σ) becomes a

G-isomorphism.

Now denote by A the maximal abelian extension of k. Let M be a meta-

abelian extension of k of finite degree, that is, a normal extension of k of finite

degree with an abelian group as commutator group of the Galois group. Then

AM/A is a Kummer extension. Let AAf=A(mVS, . . . , mίV^)5) Then if

every <zf is an element of k, we called in [13] M a &-meta-abelian field over k,

and proved that M contains necessarily the all m,-th roots of unity (i = 1,. . . , t).

Therefore if M is a #-meta-abelian field over k, there exists an abelian extension

Koί k which containes the m,-th roots of unity and K(mιy/ai, . . . , mt\lat) o>M^>K

where au . . . , at e k.

Put, as before, 5 = S(K/k) and § = § (K/k). For α e / * and a e k let (α, β)m

be the norm residue symbol for Kummer extension K{m\la )/K*\ Denote by

(Qp,α)p,m the norm residue symbol for the local Kummer extension K^(m\la

5) We assume n*'V«iΦAMfor any integer
6> c. f. E. Artin and J. Tate [2], Ch. 12.
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Then we have

(α,β)m= Π (α», β)*,m.

Let Hm(a) be the idele group of U G / £ such that (α, α ) m = l. Then Hm(a) is

the admissible subgroup of /# corresponding to K(m^ a ) by the classfield theory.

We see immediately that ps(Hm(a)) consists of all o e / s

Λ such that (a, β ) m = l,

where (α, a)m= Π (α», β )»,*«. The isomorphism g implies

(α,a) m = Π(αφ.σ), β)m for uε/J.

Now we shall call a subgroup ft of /? k-admissible if there exist elements

Λi, . . . , at of # and natural numbers mi, . . . , mt such that ft contains the

intersection of all Hmι(ai)>. . . , Hmt(at), provided that s contains all primes

of h such that Np—1 is divisible by all mu - . . , mt Then we have by theorem

1 the following theorem, which essentially includes the main part of Kuroda

CUD, Frohlich [δ] and Furuta [7], [8].

THEOREM 5. Let M be a k-meta abelian extension over k of finite degree.

Then there exist an admissible closed subgroup H of the (ordinary) idέle group

J of k of finite index, say n, and a k-admissible closed subgroup ft of the re-

stricted idέle group J? of k of finite index which satisfies the following condition

(#), where s is the set of all primes p of k such that cpkpCiH.

(#) If K is the class field over k corresponding to H, we have G(M/K) =

Js/Hi and a prime p of k decomposes completely in M/k if and only if p e s and

Conversely let H be an admissible closed subgroup of the (ordinary) idέle

group J of k of finite index n and ft be a k-admissible closed subgroup of the

restricted idέle group Js of k of finite index, where s is the set of all primes p

of k such that cpkpCiH. Then there exists a k-meta-abelian field M over k which

satisfies the condition (#).
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