THE NOTION OF RESTRICTED IDELES WITH
APPLICATION TO SOME EXTENSION FIELDS

YOSHIOMI FURUTA

Dedicated to the memory of Professor Tapasi Nakavama

Let k2 be an algebraic number field of finite degree, K be its normal ex-
tension of degree 7z, and § be the set of those primes of K which have degree 1.
Using this set § instead of the set of all primes of K, we define an §-restricted
idele of K by the same way as ordinary ideles. It is known by Bauer that the
normal extension of an algebraic number field is determined by the set of all
primes of the ground field which are decomposed completely in the extension
field. This suggests that if we treat abelian extensions over K which are normal
over k, the class field theory is expressed by means of the s-restricted idéles
(theorem 2). When K =k, § is the set of all primes of K, and we have the
ordinary class field theory.

In fact, the P-completion Kg is isomorphic to the p-completion kp, when P
belongs to § and divides a prime p of 2. Therefore the group of all §-restsicted
ideles of K is isomorphic to the direct product of #-fold of a group of restricted
ideles of k. This means that the abelian extensions over K which are normal
over k are determined by some objects (§-admissible subgroups of the §-restricted
ideéle group) in the groumd field k. In this paper we shall characterize this
object by the connected component of the unity in the idéle class group of K
(theorem 3) and by the principal ideéle group of K (theorem 4). This result is
a generalization of our preceeding paper [8] (§8).

Throughout this paper the following notations will be used.

F an algebraic number field of finite degree.
F* the multiplicative group of all non zero elements of F, which

is identified with the principal idele group of F.

Fp the p-adic completion of F, where p is a finite or infinite prime
of F.
Uy the p-adic unit group of F.
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J=Jr the idele group of F.
Jw the subgroup of all elements of J which have components 1 at
all finite primes.
€ =6r=J/F* the idele class group of F.

D the connected component of the unity of €.
G(K/F) the Galois group of a Galois extension K/F.
S(F) the set of all finite or infinite primes of F.
S(K/F) the set of those primes of F which have at least a prime divisor

of degree 1 in a finite extension K/k.
S(K/F) the set of those primes of K which are of degree 1 in a finite
extension K/F.
(A; B) the index of the subgroup B in the group A or the degree of
an extension field A/B.
the closure of A in J if A is a subset of J,
A-B the set of all products of elements from A and B, if A and B

hN

are subsets of a group.

§1. Projection and restriction of ide¢le groups

Let S=S(F) be the set of all primes of F, s be a subset of S containing
infinitely many elements, and s’ be its complement in S:s'=S ~s. We denote
by Js the restricted direct product (as topological group) of p-adic completions
Fp over p-adic unit groups Uy of F where p runs over s, that is, the group of
all elements of the direct product gst whose p-components belong to U, for
almost all p of s. Denote also by Us the unit group pg Uy of Js. If s=S, then
Js=Js is the ordinary idéle group of F. We shall call an element of Js resp.

of Us a s-restricted idele resp. s-restricted unit idéle.

We have algebraically and topologically
1) J=JsxJs (direct).

Throughout this paper we shall fix this isomorphism, and the notation X is used
for this direct product. Denote by ns the projection of J to Js, which is a
multiplicative and open continuous map and is called s-projection. For any
peJ we set always 0s =ms(0). Put Fs=n(F*), Cs=Js/Fs. By ¢, tp,s and ¢s we
mean the natural injections of Fyto J, Fpto J, Fy to Js, and Js to J, respectively,
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These notations are omitted frequently when it can be done without danger of
misunderstanding.

We define the s-restriction ps by
(2) ps(A)'—“n's(An(s]s)

for any subset of A of J. If an idéle a=J is not contained in ¢Js, we write
os(a) =¢. Then ps(ab) = ps(a)ps(b) for a,6 & if ps(a) = ¢ and ps(b) % ¢.

LemMMmA 1. Let A be any subgroup of J.
Then (¢sJs)A = Js X as(A)  (direct).

Proof. Let obe A(es]s), ac A, b=¢sJs. Since a=asxXas and b=bsx 1, we
have ab= (ab)s X as = Js X rs(A). Conversely let bse J; and a= A. Then bsXas
= (asx as) (bsa5'x 1) A(esJs). This lemma implies algebraically

Jo . _efs o (eJDA _Jsxm(A)
ps(A) - Aﬂts]s - A - A

(3).

If (J;A) is finite, then (Js;ps(A)) = (Jsxns(A); A)

_ (J; A) _ (J; A)
T Jsxas(A)) T (Js 5 me(A))

Lemma 2, Let A be a subgroup of ] of finite index. Then

Hence we have

(]; A) = (Js;ﬂ's(A))(]s'; ps (A))
= (]s ’ ps(A))(]sr ;e (A)).

LemMma 3. Let A be any subgroup of | and B be any subgroup of Js. Then
ps(A -+ (¢sB)) = ps(A) * B.

Proof. Let a€ A and b< B, then ab = (as Xag)(byx1) =asbsxas. Hence
ps(ab) = asbs or = ¢ according to as, =1 or =1, that is, ps(a) =as or =¢. Hence
0s(A(¢sB)) Cps(AVB. Conversely let ae A, 5= B and ps(a) % ¢. Then ps(a)b =
ps(a)ps(tsh) = ps(alesh)) € ps(AlesB)).

LemMma 4. Let A be a subgroup of J, B! be a subgroup of Ss, and suppose
ADB. Then ps(A)Da(AN (JsxB')).

Proof. Let axbe AN(Jsx B, where ac Js and be B'. Then ns(axb) =a
=ns((axb)(1xa™")). Since axbe A and 1xb™'= A, we have ac ms(A Nefs)
=03(A).
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§ 2. Restricted ideles and the class field theory

Let % be any algebraic number field of finite degree, K/k be a normal ex-
tension of finite degree, and M be an abelian extension over K which is normal
over k. Let us characterize such M by the restricted ideéles attached to K/k.

The following propositions are well known.

ProrosiTioN 1. (Bauer”) Let K be any normal extension of k of finite
degree and 2 be any extension of k of finite degree. Then S(K/k) contains
S(R2/k) if and only if K is contained in 2.

We have immediately

ProrosiTioN 1. Let K; and K, be normal extensions of finite degree. Then
S(K:/k) = S(K:/k) if and only if Ki=K,.

ProrosiTION 2. (Whaples®). Let A be any abelian extension of F of finite
degree, and H be the subgroup of the idéle group ] = ]r corresponding to A by
the class field theory. Let p be a prime ideal of F. Then p is not ramified in
A if and only if (wUpC H, and b decomposes completely in A if and only if
tpFy © H.

Now we prove the following

ProrosiTion 3. Let K be a normal extension of k of finite degree and put
§=S(K/k). Let M, and M, be abelian extensions of K which are normal and
of finite degree over k. Let further H, and H, be subgroups of the idele group
of K corresponding to My and M., respectively, by the class field theory. Then
we have ps(Hy) = ps (H:) if and only if H,= H,, namely if and only if M= M.

Proof. It is obvious that p= S(Mi/k) if and only if p€ S(K/k) and pe
S(M/K) for a prime divisor P of p in K. On the other hand P e S(M:/K) if
and only if (K H; by prop. 2. Assume pe S(K/k), then Ky < Hy if and
only if ¢xKyC ps(H;) for any prime divisor P of p in K. Hence S(M;/k) con-
sists of all pe S(K/k) such that (K, C ps(Hy) for any P diving p. Therefore
0s(Hy) = ps (H,) implies S(Mi/k) =S(M,/k), and this implies M; = M,, hence
H,= H,, by prop. 1. Conversely if H;=H., obviousely ps;(H:) = ps(H,). Thus
the proposition is proved.

1) See M. Bauer [3], H. Hasse [10], § 25, and also M. Deuring [4].
%) See G. Whaples [13], also E. Artin and J. Tate [2], Ch. 8.
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Now let F be any algebraic number field of finite degree, J be the ordinary
idele group of F, and € = J/F* be its idele class group. Denote by ® the con-
nected component of the unity of €, and by ® the complete inverse image of
® by the natural homomorphism of J to €. Let s be an infinite set of primes
of F and J; be the s-restricted idele group of F. We shall call a subgroup Hs
of Js s-admissible if Hs= os(H,D). If Hs is s-admissible, then it is closed in
Js. In the case where s is equal to the set S= S(F) of all primes of F, we
call simply admissible instead of S-admissible. There is a one to one corre-
spondence between the set of admissible subgroups of J and the set of class
fields over F.

Let again K/% be a normal extension of finite degree with the Galois group
G(K/E), and put § = S(K/k). For each §-restricted idele aeJ; and each s
G(K/E), we define a” as the §-restricted idéle whose p°-component is determined

by (a”)yo = (ay)”, where p is a prime of K.

TueoreM 1. Let K be a normal extension of k of finite degree and put
G =G(K/E), and § = S(K/E). Then the §-restriction p; gives a one to one cor-
respondence between the set of all G-invariant admissible subgroups H of J of
finite index and the set of all G-invariant §-admissible subgroups Hs of Ji of

finite index. Futhermore if o5 (H) = Hs, then we have G-isomorphism J/H=Js/Hs.

Proof. Let H be a G-invariant admissible subgroup of J of finite index.
Then p3s(H) is obviousely G-invariant. Since H contains both ps(H) and D, and
is closed, we see HDps(H)+ D. Hence ps(H) Dps(ps(H)D). On the other hand
obviousely o3 (H) Cps(ps(H)D). Thus ps(H) is §-admissible. Moreover we have
(J; H) =(Js; 05 (H))(Jsr;ms.(H)) by lemma 2, and this implies that ps(H) is
of finite index as a subgroup of J¢. Conversely let Hs be a G-invariant §-ad-
missible subgroup of Js of finite index. Put H=Hs - D. Then H is G-invariant
and admissible. Since H: is 5-admissible, ps(H) = Hs. Thus if we prove the
finiteness of (J; H), then the first part of the theorem follows from prop. 3.
So we shall prove the finiteness. Put H;=/;D. Then H; is G-invariant and
admissible subgroup of J. Moreover if P is contained in §, then (K, is con-
tained in H;. Let A; be the abelian extension over K corresponding to H; by
the class field theory. Then A; is normal over k and we have S(A:/k) D S(K/k)
by prop. 2. Hence A;C K by prop. 1. We have necessarily A; =K, hence H;
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=J¢D =]. Thus we see algebraically J/H = J;D/HC JsH/H=]s/JsH = Js/J; (H)
=Js/Hs. Since (Js; Hs) is finite, (J; H) is finite. Thus the finiteness and so
the one to one correspondence in the theorem is proved.

Now let again H be a G-invariant admissible subgroup of J of finite index.
Since the restriction =z is an open map of J to Js/, #s:.(H) is closed in J3.
Moreover ns:(H) is obviousely G-invariant and contains 7s/.(D). Put J& X ns(H)
= H;. Then (J; Hy) is finite and H; is a G-invariant admissible subgroup of J.
Let A: be the class field over K corresponding to H;. Then A; is a normal
extension over k and S(A;/K)>§ = S (K/k) by prop. 2, hence S(A,/k) D S(K/k).
This implies 4;< K by prop. 1. Then we have necessarily A; = K, which implies
Je =75 (Hy). Since ns.(Hi) =ns-(H), we have J3 = s/, (H). Hence J/H=];/Hs
by (3).

Thus the theorem is completely proved.

The following theorem is an immediate consequence of the class field theory

and theorem 1.

TaeoreM 2. Let K be a normal extemsion of k of finite degree and put
G=G(K/k), § =S(K/k). Then there is a one to one correspondence between
the set of all G-invariant S-admissible subgroups Hs of Js of finite index and
the set of all abelian extensions M of K of finite degree which is normal over
k. If M corresponds to Hs, then G(M/K) =Js/Hs. Furthermore a prime L of
S decomposes completely in M if and only if (yKyC Hs.

§3. Conditions of the s-admissibility

Let F be any algebraic number field, ] be the idele group of F, € = J/F*
be its idéle class group, and ® be the connected component of the unity in €.
Let further s be a set of infinitely many primes of F and J; be the restricted
idele group of F. We have called, in the previous section, a subgroup of H;
of Js s-admissible if Hs= ps(H;D) where D is the complete inverse image of ®
by the natural homomorphism of J to € Now we prove

THEOREM 3. Let H; be a closed subgroup of Js of finite index. Then Hs is
s-admissible if and only if there exists a neighborhood U' of the unity m Js such
that Hs contains ns(DN (J;x U')).

Proof. Suppose that Hs is s-admissible, and put H= H:D. Then H is ad-
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missible in J and ps(H) = Hs. Let U be a neighborhood of the unity in J whith
H>DU. Such a neighborhood always exists because of the finiteness of (J; H).
Set U=U;x Us where UsCJs and UsCJs. Then U, is a neighborhood of
the unity in Js and we see H;= ps(H) Dns(HN (Js X Us) Das( DN (Jsx Uy)) by
lemma 4.

Suppose conversely that there exists a neighborhood U’ of the unity in Js
such that H;D (DN (Jsx U')). Let ¢ be any element of ps(H:D), then tx1e
H.D. Now let U(x) be any neighborhood of ¢ in Js and put U= U(x) x U'. Then
since U is a neighborhood of rx1 in J, U N (H:D) is not empty. Let (§x1)
(axb) be in this intersection, where )€ Hs, axbe D, aeJ;,, b J... Then
(hx Dilaxt) =haxbe U, b U and ha e U(x). Hence a€ (DN (Jsx U')) C Hs
and fa € Hs. Therefore U(x) N Hy is not empty, which implies t & H, = Hs, since
H; is closed in J;. Thus we have ps(H;D)C Hs, hence ps(H;D) = Hs. This
proves that Hs is s-admissible, and the theorem is proved.

Now the structure of D is known by Artin [1]®. Let Z be the additive
group of rational integers and Z be the completion of Z under the topology
where the ideals of Z form a fundamental system of neighborhoods of 0. For
each unit ¢ of F, we denote by ¢ the idele which has components ¢ at all finite
primes and components 1 at all infinite primes. Then for x € Z, " can be de-
fined as the extension of the exponentiation ¢” by an ordinary integer m. Let
71, 72 be as usual the numbers of real primes and complex primes of F respec-

tively and put =7 +7—1. Then we have by Artin [1] immediately the

following

ProrosiTiOoN 4. Let ¢, e,..., ¢ be any system of independent totally
positive units of F. Let further E be the group of all idéles € - - - 7" where
X1...,%<Z, and J_ be the group of those idéles which have components 1 at

all finite primes. Then we can choose a system of representatives of D mod. F*
in EJ..

Notations being as above, let x=7Z and ¢ be one of the . Let further U’
be a neighborhood of the unity in /s containing ns(J»). Then there exists an
integer m < Z such that t%/¢" € Jox U'. Indeed let p be a finite prime. If ' =0

—x’

mod p* for a sufficiently large x, then the p-component of the ideéle ¥ is in the

p-component of Js x U'. Since the p-component of Jsx U’ containes Uy for almost

3) See also E. Artin and J. Tate [2], Ch. 9.
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all p, we can set £ =0 for such almost all p. This implies immediately the
existence of the above integer m, being x =m mod. p* for all finite p. Hence

by prop. 4 we have
(4) (DN (JsxU"))+F=D.

LemMa 5. Let G be a topological group which is locally compact and satisfies
the second axiom of countability. Let N be a discrete normal subgroup and A
be a closed subgroup of G. Suppose further AN is closed in G. Then we have
AN/N=A/AN.

Proof. Let f be the canonical map of G to G/N. Then f is an open map,
and we have f(A) =f(AN) = AN/N. Since N is discrete, G/N is locally iso-
morphic to G. Hence G/N is also locally compact and satisfies the second
axiom of countability. Both A and AN are locally compact, because they are
closed in G. Furthermore AN/N is also locally compact owing to the continuity
of f. It is known" that if g is an onto-homomorphic mapping between two
locally compact groups satisfying the second axiom of countability, then f is
open. Therefore the restriction of /' to A, whose image is AN/N, is also open.
Then since the kernel of f is AN, we have f(A) = A/AN. Thus the lemma is

proved.

ProposiTION 5. Let U' be a neighborhood of the wunity in Js conlaining
7s(Jo), and Hs be a closed subgroup of Js of finite index. If Hs Drs(F* N (Jsx T")),
then .Hsjn's(D n x U’)).

Pyroof. We have the following commutative diagram

J— L& =J/(F 0 (Jsx U)

7s 7

| I i
J—L Gl =J/ns(F* 0 (Jsx U")).

where j/ and j; are the canonical homomorphisms respectively. First we shall
prove that jsms(D N (Jsx U')) is connected in G¢. Since J, F* and (DN (Js x U"))
satisfy the conditions of G, N and A in lemma 5 respectively, we have alge-

Y See L,. S. Pontrjagin [12], Ch. 3, §19, theorem 13. In this book, the topology is T1

and every subgroup is closed. But the proof of the theorem 13 in this book hold in
general case.
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braically and topologioally D/F*(D N (Jsx UNF*/F*=Dn0(JsxU") = (DN
(JsxU"). Hence j/(DN(Jsx U")) is connected in @¢, because D/F* =D is the
connected component of the.unity in €. Since j', s, s are all continuous maps,
ms is also continuous and we have #i/(D N (Jsx U")) = fins(D N (Js x U")). Hence
Jins(D N (Jsx U')) is connected in 8. Now since H; is closed in J, and contains
as(F* N (Jsx U")), ji(Hs) is also closed in €!. On the other hand, ji(H,) is of
finite index in @, since H; is so in J,. Hence ji{(Hs) is open in Gi. Therefore
7s(Hs) must contain finrs(D N (Jsx U')) which is connected in 6/ as proved above.
This implies HsDns(DN (Jyx U')), since HsDns(F* N (Jsx U'")) by the assump-
tion. Thus the proposition is proved.

Let again K be a normal extension of % of finite degree, and let J = J«.
Put s = S(K/k), G=G(K/E). Then we have

THEOREM 4. Let Hs be a G-invariant closed subgroup of Js of finite index.
Then, in order that H: is $-admissible, it is necessary and sufficient that there
exists a noighborhood U' of the unity in Js such that U' Dns.(J.) and Hs Dns
(K*N (Js x UN).

Proof. Suppose that Hs be s-admissible and put H= HsD. Then ps(H)
=Hs. If K=k, then §' is empty and the theorem is true by the class field
theory. Thus we assume K= k. As the proof of theorem 3, let U be a neigh-
borhood of the unity in J such that HD U and set U= Us x Us, where Us C Js,
Us CJsi. Then we can assume that Uz contains n3/(J.), because every infinite
prime of §' is ramified in K/, and consequently complex. Hence it is not rami-
fied in any extension over K. Therefore, if b is an infinite prime of §', then
Uy is contained in H. This implies U, CH. Now we see, as the proof of the
theorem 3, that H$ = o5 (H) Drs(HN (Jsx Us')) Das (KN (Js x Us,), which proves
the necessity of the theorem. The sufficiency follows immediately from theorem

3 and prop. 5.

§4. k-meta-abelian extensions

Let K/k be, as in the previous sections, an extension of degree » of an alge-
braic number field %, and put s= S(K/k), § = S(K/k), G =G(K/k). For every
prime p of & we fix a prime P of K which divides », and set (p, ¢) =R° for s = G.
Then § consists of all (p,s) such that p=s and s =G. Denote by $(s) the set
of all (p,s) where p=s. Then § is the union of those §(¢s) where s G, and
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we have naturally

Js=TI J5(s) (direct).

(=1e]

Hereafter we shall fix this isomorphism.

If pe s, any element a of Ky is expressed by a = Saix’ where a; =k and
7 is any fixed prime element of ky. Thus the element of Ky is naturally
embedded in ky. We denote this embedding by gps or gy,», and we have
&yo(a’) = gpla) for @ € Ky, € G. Denote by g, the mapping of J&(s) to Js, which
maps every (p,o)-component by guo=gp,q. Set g=ale"{}ga. Then g, and g

imply algebraically and topologically

(5) Jso=Js
and
(6) Je=Ji,
where J¢ is the direct product of n-fold of Js.
Let 61, ..., on be all elements of G and P, be the permutation (gy, .. .,
on) > (010,. . ., ono) for every element s =G. For (ay, ..., as) €J; set
(@i, ..., an)’=Psla;, ..., an).

Then J¢ has G as the operator domain, and the isomorphism (s) becomes a
G-isomorphism.

Now denote by A the maximal abelian extension of k2 Let M be a meta-
abelian extension of % of finite degree, that is, a normal extension of % of finite
degree with an abelian group as commutator group of the Galois group. Then
AM/A is a Kummer extension. Let AM=A(Vai, ..., ™Ja)®. Then if
every a; is an element of %, we called in [13] M a k-meta-abelian field over 2,
and proved that M contains necessarily the all m;-th roots of unity (s =1,. .., #).
Therefore if M is a k-meta-abelian field over &, there exists an abelian extension
K of k which containes the m;-th roots of unity and K(™Vay, . . ., ™a:) DM> K
where a;, ..., a: € k.

Put, as before, s=S(K/k) and § = S(K/k). For acJxand a<k let (a,a)m
be the norm residue symbol for Kummer extension K(™Va)/K®. Denote by

(ap, @)y, m the norm residue symbol for the local Kummer extension K;n(”“\/ a)/ Ky.

) We assume "in/ais AM for any integer ni>m;.
6 c. f. E. Artin and J. Tate [2], Ch. 12.
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Then we have

(C(, a)m =%EI;I£K)(am’ a)m,m.

Let Hm(a) be the idele group of a< Jx such that (a,a)m=1. Then Hn(a) is
the admissible subgroup of Jx corresponding to K(™ya) by the classfield theory.
We see immediately that ps(Hn(a)) consists of all a € J¢ such that (¢,@)m=1,

where (a,@)m = %’I (ap, @)gm. The isomorphism g implies
(=X

(0, @)m = SIgl?a(aq,,o), a)m for aeJi.
oEGR

Now we shall call a subgroup Hi of J§ k-admissible if there exist elements
ai, ..., a: of B and natural numbers my, . .., m: such that H; contains the
intersection of all Hn(a1),..., Hm(a:), provided that s contains all primes
of k such that Np—1 is divisible by all m,, . . . , m;. Then we have by theorem
1 the following theorem, which essentially includes the main part of Kuroda
[11], Frohlich [5] and Furuta [7], [8].

TueoreM 5. Let M be a k-meta-abelian extension over k of finite degree.
Then there exist an admissible closed subgroup H of the (ordinary) idéle group
J of k of finite index, say n, and a k-admissible closed subgroup H: of the re-
stricted idéle group Ji of k of finite index which satisfies the following condition
(1), where s is the set of all primes p of k such that cpkyC H.

(4) If K is the class field over k corresponding to H, we have G(M/K) =
Js/Hy and a prime p of k decomposes completely in M/k if and only if b E s and
tpkp C H;.

Conversely let H be an admissible closed subgroup of the (ordinary) idéle
group J of k of finite index n and H, be a k-admissible closed subgroup of the
restricted idéle group Ji of k of finite index, where s is the set of all primes p
of k such that «kyC H. Then there exists a k-meta-abelian field M over k which
satisfies the condition (%).
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