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In the present paper by means of the Schauder-Tychonoff principle sufficient conditions are obtained for
Lp-equivalence of a linear and a nonlinear impulsive differential equations.
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1. Introduction

The impulsive differential equations are an adequate apparatus for the mathematical
simulation of evolution processes which, during their evolution, are subject to short-time
perturbations. They are applied successfully in dynamically developing branches of
science and technology such as theoretical physics, ecology, impulse technology,
industrial robotics, etc [1]. The impulsive differential equations can be successfully used
to the mathematical simulation of biotechnological processes [2]. Consider the equation
of Verhulst

where by N = N(t) the biomass of a given population at the moment t ̂  0 is denoted, K
is the capacity of the environment and \i is the difference between the birth-rate and
death-rate.

The case when external disturbances act upon the population is often met. We shall
consider the cases when the external disturbances take place at fixed moments of time
and are expressed as adding to or taking off certain quantities of biomass. The
impulsive analogue of the equation of Verhulst in this case has the form

(i= 1,2,3,...)
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where 0<£ 1 < t 2 <*3<" ' are the moments of external effect, /,, i= 1,2,3,... are the
amounts of biomass added to (/,<0) or taken off (/,->()) at the moments tut2,t3,...

However, the theory of systems with impulse effect develops rather slowly due to the
presence of phenomena such as merging of the solutions, bifurcations, dying of the
solutions, "beating" of the solutions and loss of the property of autonomy. The
beginning of the mathematical theory of these equations was put in 1960 by the work of
V. D. Mil'man and A. D. Myshkis [3], and the works [4], [5] mark the beginning of
the mathematical theory of these equations in abstract spaces. We shall note that [6] is
the first monograph devoted to this subject.

In the present paper sufficient conditions for the ^-equivalence of the impulsive
equations

~ = A(t)x (t¥=tn,n, 1,2,3,...) (1)
at

(« = 1,2,3,...) (2)

and

^ (t#tn,n=l,2,3,...) (3)

(tn) (n = 1,2,3,...) (4)

and found, where:

f={£„}"=! is a sequence of points satisfying the condition

0<t1<---<tn<tn+1<---,\imtn = co (5)
n-* oo

A:[0, co)-*L(X) is a continuous operator-valued function, where L{X) is the space of
linear bounded operators acting in the complex Banach space X,

{Qn}™=i is a sequence of operators such that QneL(X), «=1,2,3,...
the function / : [0, <xi)xX->X is continuous,
{Rn}™=1 is a sequence of continuous operators acting in X.

We shall note that similar results for equations without impulses were obtained in
[7-9].

2. Statement of the problem

Definition 1. The function $(t)(0^t<oo) is said to be a solution of the impulsive
equation (1), (2) if for t$x it satisfies the ordinary differential equation
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df (6)

for tex it satisfies the condition of a "jump" (2), and at the points tex it is continuous
from the left.

In an analogous way the notion of a solution of the impulsive equations (3), (4) is
introduced.

For the impulsive equation there exists an evolution operator U(t,x)(0^x^t<co)
which associates with each element xoeX a. solution x(t) = U(t,x)x0 of (1), (2) such that

Lemma 1. Let the function A(t) be continuous for 0^t<oo. Then the evolution
operator C/(t,t)<O^T^t<oo) of the impulsive equation (1), (2) has the form

U(t,x) =
k+l

U0(t,tH)[ [I QjUo(tj,tj-1))QkUo(tk,T)

tk..i<T^tk<tn<t^tn+1 where U0(t,x) is the evolution operator
of equation (6).

Lemma 1 is proved by a straightforward verification.

The operator-valued function U(t, x) (0 ̂  x ̂  t < oo) has the semi-group properties

U(t,t) = I,U(t,T) = U(t,s)U(s,x) (0^T^s^t<oo) (7)

and is continuous at the points (t,x)^(tn,x) and (t,x)¥^(t,tn)(n= 1,2,3,...). For n =
1,2,3,... the following equalities hold

o,n= 1,2,3,...) (8)

U't(t, x) = A(t)U(t, x), Wt(t, x) = U(t,x)A(x). (9)

We shall say that condition (HI) is satisfied if the following condition holds:

HI. The operators Qn have bounded inverse operators Q~1(«= 1,2,3,...).

Lemma 2. Let the following conditions be satisfied:

1. The function A(t) is continuous for 0^
2. Condition (HI) holds.
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Then the evolution operator U(t,z)for Ogt, T<OO has the form

U0(t,t), tn<t^x^tn+1;

/k+l

U(t,x) =

uo(t,O( fl QjUoity, tj-o)QkU0(tk,t),

i-1<i:^Ltk<tn<tf>tn

U0(t, O ( [I QjU0(tj, tj +1) J Qk~ *U0(tk, T),

Lemma 2 is proved by a straightforward verification.

If condition (HI) holds, the following equalities are valid:

U(t,x) = U-i(r,t), U(t,T) = U(t,s)U(s,r) (10)

(11)

We shall say that condition (H2) is satisfied if the following condition holds:

H2. There exists numbers / and X such that any interval of length / contains not more
than X points of the sequence f.

Condition (H2) is fulfilled, for instance, if

hm sup
i(t,

<oo (12)

where i(a, b) is the number of the points of the sequence f lying in the interval (a, b).
Let l ^ p ^ o o and let flc[0, oo). Denote by Lp(Q,X) the space of functions f:£l->X

integrable of power p in the sense of Bochner, i.e.

and with norm ||/||Lp(n,jf)=(Jn||/(O||p<fr)1/p, and by £.„([<),oo),JQ denote the space of
functions/: Q->X which are bounded on Q with the supremum norm. For Q = [0, oo) we
shall write more briefly LP(X), and for fi = [0, oo) and X — Rl we shall write just Lp.

By lp(X)(l ^p<oo) we shall denote the space of summable of power p sequences
/i = {/in}«=1 of elements of X, i.e.
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and with norm ||^| | (pW = (Z"=i ll^ll")1'"' a n d b v {<o(x) denote the space of bounded
sequences of elements of X with the supremum norm. For X = R} we shall write lp.

Definition 2. The impulsive equations (1), (2) and (3), (4) are called Lp-equivalent if to
any bounded solution x(t) of (1), (2) lying in a ball of sufficiently small radius and centre
at the zero there corresponds at least one bounded solution y(t) of (3), (4) such that
y(t) — x(t) e Lp(X), and vice versa.

Definition 3. [10]. The linear impulsive differential equation (1), (2) is called exponen-
tially dichotomous if there exists a splitting of the space X into a direct sum X = Xl@X2

of subspaces Xt and X2 such that the following inequalities hold

(13)

|| U(t)P2U~ l(t)\\^MeSi'-x) (0^t<T<oo) (14)

where U(t) = U(t,O), Pl and P2 are complementary to each other projectors onto
and X2 respectively, and M and S are positive numbers.

3. Main results

Theorem 1. Let the following conditions be fulfilled:

1. The function A(t) is continuous for 0 ^ t < o o .

2. Conditions (HI) and (H2) hold.

3. The impulsive equation (1), (2) is exponentially dichotomous.

4. The function / : [ 0 , oo)->X is bounded, continuous for t$r = {tn}%'=l, at the points tn

( « = 1,2,3,...) it has discontinuities of the first kind and is continuous from the left.

5. The sequence {/»„}"= i (hn e X, n = 1,2,3,...) is bounded.

Then the nonhomogeneous impulsive equation

, « = 1,2,3,...) (15)

(«= 1,2,3,..) (16)

has for 0 ^ t < 0 a bounded solution x(t)for which the following formula is valid
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x(t) = U(t)t; + J U(t)PxU~\z)f{z)dz-] U(t)P2U-l(z)f(z)dz
0 I

U{t)P,U-\tn+0)hn- (17)

where

Proof. We shall estimate the norms of the integrals and sums in (17):

•^Y sup |int)
O 0<I>oo

$U(t)P2U-l(z)f(-c) Z— sup \\J(t)
OSr>oo

MX

tj>t

r x ,

It is immediately verified that the function x(t) is a solution of the nonhomogeneous
impulsive equation (15), (16). •

We write down equality (17) in the form

where G is the linear integral operator

Gf{t)=lg{t,s)f(s)ds
0

(18)

(19)

with kernel—Green's function

Bit S\ =
\-U(t)P2

(20)

and G is an operator defined in the space m(X) of bounded sequences of elements of X
by means of the equality
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Gh(t)= togn(t)hn (21)

where

fr"'1D """ J"m ["*[ (22)

Lemma 3. Let l^p^co and let the following conditions hold:

1. The function A(t) is continuous for O^f^oo.

2. Condition (HI) holds.

3. The impulsive equation (1), (2) is exponentially dichotomous.

Then the operator G defined by equality (19) maps continuously Lp([0,oo),X) into
Lp([0, oo), X) n Lm([0, oo), X) and the following estimates are valid

(23)

"M. (24)

Proof. If p' = p / ( p - 1), for ||G/(f)|| we obtain the estimate

Up' /<*>

\°

From inequalities (13), (14) for jo'H^r,s)||p ds we obtain

OO 1 00

j \\g(t,s)\\p'ds^Mp' \e-Sp'('~s)ds + Mp' j" e~ip

0 0 (

/ oo

= M"'e~ip'' \eip'sds + Mp'eSp'' f e~ipsds
i

^ Mp' e ~ip'' -—eSp'
dp'

8p' dp

hence
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which implies estimate (24).
Consider the inequality

where

ai(r) = MJe-*'-s> ||/(5) ||rfS,a2(0 = Mje«'-s>||/(s) || ds.
o i

We estimate <x2(t) by means of Holder's inequality:

\eS{'-s)ds
t J \t

Applying Funini's theorem, we obtain

l / p /CO \ l / p

Analogously for ct^t) we obtain

/ l /p /CO \ l / p

Ua?(t)Aj ^ f l l l I J
Hence

Then

. 1/p /CO / c o \ \ l / p

which implies estimate (23). •

Lemma 4. Let l g p ^ o o and let condition (H2) hold. Then the operator G defined by
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equality (21) maps continuously lp(X) into Lp([0,oo),X)nLa:>([0,oo),X) and the following
estimates are valid:

(25)

(26)

where

P P

Proof. Let h = {hn}™=1 be an arbitrary sequence of lp(X). Then from (21), (22) and
Holder's inequality there follow the inequalities

From (13) and (14) there follows the estimate

)( X ) (27)

Condition (H2) implies the estimate

Analogously we obtain the estimate

y e-ip-u-tn\<

From the last two estimates we deduce

£ e - ^ l ' - ' ^ - ^ _ . (28)

Inequality (26) follows from inequalities (27) and (28).
Using again Holder's inequality, we obtain the inequalities

n=0 n=0
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Because of

from (30) there follows the inequality

( oo \ 1/p' / oo \ i/p

Z e^""'"1 ( X e-<"'~''ll||/in||p •
Making use of the estimate

t^-'-^j—y, (29)

which is analogous to estimate (28), we obtain

oo / 1 3 \ p — 1 o o o o

;^( _f,J M" j X e""i"~'"l||/in||pdt

21
f)|||| (30)

= 0 \ 0

— e

which implies (25). •

Further on we shall consider some questions related to the compactness of the
operators defined by equalities (19) and (21).

Lemma 5. Let the following conditions be fulfilled:

1. l ^pgoo .
2. The function A(t) is continuous for 0^t<oo.
3. Conditions (HI) and (H2) hold.

Then for any nonnegative function weLp and for any sequence of nonnegative numbers
{wn}"=i tne set of functions
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A = {Gf + Gh:\\f(t)\\^W(t),\\hn\\^wn(n = 1,2,3,...)}

is uniformly bounded and equicontinuous on each interval {tn, tn + {\ (n= 1,2,3,.. .)•

Proof. The sets

are bounded respectively in Lp([0,oo),X) and lp(X). From Lemmas 3 and 4 it follows
that the set AcGB+GB is bounded in L0O([0, oo),X), hence the set of the restrictions of
the functions of A to (tn-i,tn] is uniformly bounded for n= 1,2,3,... From (20),
Holder's inequality and Lebesgue's theorem there follow the equalities

lim sup ]\\g(t',x)-g(t",i)\\W(T)dz = 0 (n = l,2,3,...)
«'-|"-»O („<!',r"g»n+ 1 0

lim sup X \\gk(O-gk(t")\\wn=0 (n= 1,2,3,...).

The equicontinuity follows from the estimates

\\Gf{f)-Gf{t")\\^]\\g{t',x)-g{t",x)\\W(x)dT {feB)
o

\\Gh(t')-Gh(t")\\^ £ \\gk(t')-gk(t")\\wk (heB)

where t',t"e(tn,tn+l](n = 1,2,3,...). D

By € = C([0,oo),X,z) we shall denote the space of functions / : [0 , oo)->.Y which are
continuous for t=£tn and at the points t = tn they have discontinuities of the first kind
and are continuous from the left. With respect to the metric

p(x,yH\\x-y\\\

where

z =
sup

ln<«gtn+l
1+ sup ||z(t)||

the space C is locally convex.
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Lemma 6. Let the following conditions be fulfilled:

1. Conditions 1, 2, and 3 of Lemma 5 hold.
2. The set K is a centrally symmetric convex compact subset of X.

Then for any nonnegative function weLp and any sequence of nonnegative numbers
{wn}"=1€/p the set of functions

is compact in C.

Proof. From Ascoli-Arzella's theorem, Lemma 5, and the boundedness of the set K
it follows that it suffices to show that for any fixed te(tn-l,tn](n = 1,2,3,...) the set of
values of the functions xeA(K) at the point t is a relatively compact subset of X. Let
te(tn_1,fB] be fixed and let e>0 be arbitrarily chosen. For sufficiently large values of T
and N the inequalities

Gf(t)-$g(t,s)fN(s)ds
0

< £

. . . . . . , f/(s) w(s)>N , . .
are valid, where fN(s) = 1J — and, analogously

10 w(s) > N

We shall prove the compactness of the set

TN(K,t) = \jg{t,s)f(s)ds+ £ gk(t)hk:f(s)eNK(0£s<ao),hkeNK(k = l,2,3,...)\ (31)

From the elementary properties of the integrals and the sums it follows that for
/(s) £ NK and hk e NK the following relations are valid

$g(t,s)f(s)dseTN (J g(t,s)K
O OSsST

gk(t)K.
k=0 Ogk&T
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The sets at the right-hand sides of the above inclusions are compact in X, which implies
that the set defined by (31) is also compact. From Hausdorff's theorem there follows the
compactness of the set A{K). •

We shall note that for dim X < oo, K can be taken to be an arbitrary ball with centre
at the zero. For dim X = co the condition of compactness of the set K can be essentially
weakened. It suffices to assume compactness of K in some "quasi"-weak topology &~0

for which the sets of the form

are ^"-weakly (#-weakly) compact in Lp([0, oo), X) {lp(X)), thus "quasi"-functionals of
the form

n = 0

with bounded functions g(t)(0^t<oo), respectively sequences {gn}"=i are ^"-weakly
(J"-weakly) continuous in Lp([0, oo), X) (lp(X)).

Theorem 2. Let the following conditions be fulfilled:

1. The functions A(t) is continuous for 0 ^

2. Conditions (HI), (H2) hold.

3. The impulsive equation (1), (2) is exponentially dichotomous and inequalities (13), (14)
hold.

4. The inequality

| | | | (32)

is satisfied, where ^/r{t)6 ^P
 and ihe set

\\\\ (33)

is relatively compact for any r small enough (the last condition is automatically satisfied for
dimX<oo).

5. The sequence {#„}"= i satisfies the inequalities

\ \ r ) ( | | x | | ^ r , n = l ,2 ,3 , . . . ) (34)

where {xn(r)} e lp and the set

R(r) = {x;l(r)Rnx:n=l,2,3,...,\\x\\^r} (35)
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is relatively compact in X for any r small enough (the last condition is also automatically
satisfied for dim X < oo).

6. The inequality

(36)

holds for some r,p>0.
Then the nonlinear impulsive equation (3), (4) is Lp—equivalent to the linear impulsive

differential equation (1), (2).

Proof. Each bounded solution y(t) of the linear impulsive equation (1), (2) has the
form

y(t)=U(tK (37)

where ^eXt (the subspace Xt consists of all £ for which the function U(t)i is bounded
for 0^f<oo). Let x(t)(0^t<oo) be a bounded solution of (3), (4). Then x(t) is a
solution of the nonhomogeneous linear equation (15), (16) for f(t)=f(t,x(t)) and
hn = Rnx(tn). That is why the function satisfies the nonlinear integral equation

x(t) = U(tK + Gf(t, x(t)) + G(Rnx(tn)) (t). (38)

Conversely, each bounded solution of the nonlinear integral equation (38) is a
solution of the nonlinear impulsive equation (3), (4).

We set

z(t) = x(t)-U(t)Z (39)

and rewrite equation (38) in the form

z(t) = Gf(t, U(t)Z + z(0) + G(Rn(U(tn)t; + z(tn)) (t). (40)

We shall show that for sufficiently small t,eX^ equation (40) has a bounded solution
z(t). For this purpose we shall investigate the operator defined by the formula

Fz(t) = Gf(t, U(m + z(t)) + G(Rn(U(tn)^ + z(tn)) (41)

on the set

}. (42)

In view of conditions 4 and 5 of Theorem 2 for || U(t)^\\ g r and zeD(p) we obtain the
estimates
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From Lemmas 3 and 4 and condition 6 of Theorem 2 we obtain the estimate

\\Fz(t)\\^p(0^t<oo,zeD(p)).

Hence the set D(p) is invariant with respect to the operator F. By means of the
Schauder-Tychonoff theorem we shall show that the operator F has a fixed point in the
set D(p). The set D(p) is a closed and convex subset of the space C([0, oo), X,z). From
Lemmas 5 and 6, and the compactness of the sets K(r) and R(r) defined respectively by
(33) and (35) there follows the compactness of the set FD(p) in the space C([0, oo), X,x).

We shall establish the continuity of the operator F. Let (zt(()}(°LicO(p) be a sequence
tending to z(t)eD(p) in the space C([0,co),X,t). Then the sequence uk(t) =
{f(t, t/(t)^ + 2fcW)}r=i tends to f(t, U(t)£ + z(t)) for any t, and the sequence vk =
{Rn(U(tn)l; + zk(tn))}Z>=1 tends to the sequence {Rn(U(tnK + z(tn))}?=l coordinate-wise
(n= 1,2,3,...). From (32) and (34) there follow the inequalities

(n= 1,2,3,...).

Using the theorem of Lebesgue to pass to the limit under the sign of the integral, we
obtain that the sequence of functions Guk(t) tends for te [0 , oo) to the function Gu(t). By
the analogue of the theorem of Lebesgue for series we obtain that the sequence of
functions Gvk(n) tends to the function Gv(n). Since the functions Guk(t) + Gvk(i) lie in a
compact set, they tend to the function Gu(t) + Gv(t) in the metric of the space
C([0,oo),X,z)too.

Let z^(t) be a fixed point of the operator F. Then from (32) and (34) it follows that
the function u+ and the sequenceli/^'}^! defined respectively by the formulae

« • « = / ( ' , U(t)Z+Z,{t)), V? = Rn(u(

lie respectively in Lp([0, oo),AT) and lp(X).
From Lemmas 3 and 4 it follows that the function zj)t(t) = Gui)t(t) + G(v^(n))(t) also

belongs to the space Lp([0,co),X). Thus the difference z^t) between the bounded
solution xltl(t) = U(t)^ + zif(t) of the nonlinear impulsive equation (3), (4) and the
bounded solution U{t)£ of the linear impulsive equation in the space Lp([0, oo),X). •

Theorem 3. Let the following conditions be fulfilled:

1. The function A(t) is continuous for O ^ K o o .

2. Conditions (HI), (H2) hold.

3. The linear impulsive equations is exponentially dichotomous and inequalities (13), (14)
hold.

4. The inequality
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holds, where i]/r(t) e Lp and the set

is relatively compact for any r small enough.

5. The sequence {/?„}"= t satisfies the inequality

\\Rnx\\^Xn(r) (n= l ,2 ,3 ,

where {Xn(r)} e lp and the set

R(r) = {x~1(r)Rnx:n= 1 , 2 , 3 , . . . , | U | | <

is relatively compact in X for any r small enough.

6. The operators Qn + Rn(n— 1,2,3,...) are continuously invertible in some neighbour-
hood of the zero.

1. The function f(t, x) is Lipschitz continuous with respect to its second argument.

Then the nonlinear impulsive equation (3), (4) is Lp-equivalent to the linear impulsive
differential equation (1), (2).

Proof. From the conditions of Theorem 3 it follows that for sufficiently small r, p > 0
there exists a number T > 0 for which the following inequality is valid

^£- («)

This allows us to apply Theorem 2 to the impulsive equations (1),(2) and (3), (4) on the
interval [T, oo). Let xo{i) = U{t)£, be a bounded solution of (1),(2) for which | |x(t) | |^
r(T<^t< oo) and let x^(t) = U(t)£ + z^{t) be a solution of (3),(4), where z+eLp([T, oo),X).
From conditions 6 and 7 of Theorem 3 it follows that the solution x^(t) constructed on
[T, oo) can be continued as a solution defined on [0, oo) (see [11]). Because of the
continuous dependence of the impulsive equation (3), (4) on the initial condition, the
solution continued on [0, T\ will slightly differ from the solution xo(t) = U(t)£, of the
impulsive equation (1),(2). Since the two solutions x^(t) and xo(t) = U(t)^ are bounded
on [0, T] , then their difference z+(t) lies in the space Lp([0, oo),.Y). •
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