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ABSTRACT. Type II supernovae play a major role in the dynamics of the 
interstellar medium. The interstellar medium in which such supernovae 
evolve is often considerably modified by the strong stellar winds both 
from the progenitor and other nearby stars. The result is that the 
appearance and energetics of the remnants can be very different from 
that of remnants in a uniform medium. In this paper we will consider 
the evolution of supernova remnants in stellar wind bubbles including 
the effect of departures from spherical symmetry. The aim is to 
understand both the appearance of such remnants and their effect on the 
overall energetics of the interstellar medium. 

1 . Introduction 

In this paper we are going to consider a supernova explosion at the edge 
of a ~300 pc diameter cavity evacuated by the combined strong stellar 
winds of an OB association. Such bubbles and cavities are common in both 
the LMC and SMC (see e.g. Meaburn, 1978). Since an 0 star can travel up 
to 100 pc from its birthplace by the end of its ~3xl0 yr life, it is 
not unreasonable to assume it will have reached the edge of the cavity 
by the time it goes supernova. The radius of curvature of such a cavity 
is so large that we can simplify the problem to that of an explosion at 
a plane density interface. The density contrast at the cavity rim can be 
as high as 10,000 depending on whether the external medium is diffuse 
intereloud medium or dense molecular cloud. 

2 . Explosion at a plane density interface 

Assume that the explosion remains adiabatic and that the time elapsed 
since the explosion is long enough for the initial details (apart from 
the energy of the explosion) to have been forgotten. 

If α is the ratio of densities either side of the cavity rim, Eo is 
the explosion energy, and pc is the (uniform) density in the cavity, 
then this problem has one dimensionless parameter, a, and no independent 
length or time scales. It is therefore self-similar. The limiting cases 
are α = 1, the classical Sedov explosion, (Sedov, 1959) and α = oo, the 
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hemispherical explosion where all of the explosion energy goes into the 
diffuse material (Anti-Safecracker Theorem). 

For intermediate values of α the picture is not so simple. We 
cannot work out the flow analytically since we do not know the shape of 
the bounding shock. We could, of course, integrate the full time 
dependent axisymmetric Euler equations numerically but this would 
involve rezoning to allow for expansion of the flow zone, and constant 
checking to see if the solution has become self-similar. A more 
interesting and efficient method is to exploit the self-similarity of 
the problem and transform the time dependent equations to a time 
independent set in the similarity plane. 

For the explosion parameters above we can construct a variable 

with dimensions of length, L = (Eo/pc) 2 / 5t 1 / 5, and with this define two 
similarity variables ξ = r/L, and η = z/L. Further, we define 
dimensionless analogues of p, ur, uz, ρ by G, U, V, Ρ where 

L L L 2 

ρ = pcG(Ç,7),a), ur = ϋ(ξ,η,α), uz = ^ ν(ξ,η,α), ρ = pc Ρ(ξ,η,α) 

The transformed set of equations is time independent and we seek 
the steady solution in the similarity plane using a flux vector 
splitting scheme (Steger and Warming, 1981) which ensures good shock 
resolution. The use of multigrids (see e.g. Brandt, 1977) can improve 
the rate of convergence to the steady state and produce higher 
resolution solutions for small extra computing cost. See (Arthur, 1990) 
for a full description of the numerical method. 

3 . Results 

In figures 1 and 2 we present results of calculations for values of 
α of 5 and 1000. These choices show the effect of a slight departure 
from the uniform density case, and that of a slight departure from the 
hemispherical case. In figure 3 we have plotted the ratio of energies in 
the flow zones either side of the interface against log(a), the ratio of 
densities. 

4 . Conclusions 

Even for relatively small values of a, e.g. 100, the majority of 
the energy of the explosion goes into the cavity. Gas swept up by the 
blast wave in the cavity will take a long time to cool as the shock will 
be very strong and the medium is not very dense. On the other hand, gas 
swept up by the blast wave moving out of the cavity will cool fairly 
rapidly as it is much more dense and the shock is moving much slower. 
From an observational point of view what will be seen is a bright arc 
bulging from the cavity rim where the dense gas is cooling radiâtively. 
The part of the remnant in the cavity will be visible only in the X-ray 
part of the spectrum. 

The energy going back into the cavity will contribute to further 
expansion and heating of the cavity gas. 
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Figure 1. 10% contours of log(density) (bottom) Figure 2. Same as Fig. 1 for a density 
and 10% contours of log(pressure) together with ratio of 1000.0. 
velocity vectors (top), for a density ratio of 5.0. 

ό 

0 1 2 3 

LOG (DENSITY RATIO) 

Figure 3. Graph of relative energies in flow zones either side of the density interface against log(oc). 
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