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Abstract

In this paper, we study the asymptotic behavior of an SIRS epidemic model with
a time delay in the recovered class and a nonlinear incidence rate. A conjecture of
Hethcote et al. [5] on the global stability of the disease-free equilibrium is solved.
Moreover, we analyse the model when the contact number takes its threshold value.
We show that solutions tend to either the disease-free equilibrium or to a unique
positive endemic equilibrium, and there is no periodic solution.

1. Introduction

To study the spread of an infectious disease in a constant population, one
usually divides the total population into three disjoint classes: susceptible,
infectious and recovered (removed). In the susceptible class, individuals can
incur the disease but are not yet infected. The infectious class consists of
those who are transmitting the disease to others. The recovered class consists
of individuals who have recovered from the disease and have temporary im-
munity. We denote the fraction of the population in each class at time t by
S(t), I(t) and R(t), respectively.

In recent years, various epidemic models (so called SIRS models) have
been formulated to investigate such interactions between these three classes.
Hethcote [2] studied a model with a bilinear incidence rate PIS, where /?
is the contact rate. Hethcote et al. [3] studied a model with a bilinear inci-
dence rate and a time delay in the recovered class, which means individuals
gain a period of temporary immunity right after recovering. Liu et al. [6]
considered a model with a nonlinear incidence rate of form fl^S? , where
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p and q are positive numbers, but without time delay. The model we will
study here was proposed by Hethcote et al. [5]. A constant time delay and a
nonlinear incidence rate are taken into account in this model. It is assumed
that the incidence rate is nonlinear and is of the form 0IpS. The recovery
rate of individuals in the infectious class is proportional to the infectious
fraction at rate y, and then the average infectious period is 1/y. Further-
more, a constant period, co, of temporary immunity is introduced, so that
the probability P(t) of remaining immune t time units after recovering is 1
for 0 < t < co, and 0 for t > co. With the above assumptions, they obtained
the following delay epidemic model

f(t) = -yI(t) + fil"(t)S(t), (1.1)

R(t) = RQ(t) + yj I(x)P(t -x)dx, (1.2)

S'(t) = I ~Roit) ~ Pl{t)S{t)' for ' - (°> n 3)
I yl(t -co)- 0Ip(t)S(t), for t> co,

where RQ(t) is the fraction of the initial population which is initially in the
recovered class, and is still in at time t. It is reasonable to assume R0{t) is
a differentiate, nonincreasing function with R0(t) — 0 for t > co.

In [5], Hethcote et al. analysed the model (1.1)-(1.3) to determine the
equilibria and examine their stability by varying the index p and the contact
number a = P/y. For the case p > 1 in particular, they proved the following
results.

THEOREM 2.2. Let a* =pp(l + r)"~l/(p - I)""1 where r = yco. For (1.1)-
(1.3) , / /

(i) p > 1, then the disease-free equilibrium is locally asymptotically sta-
ble. In addition, if a <a*, it has no positive equilibrium;

(ii) p > 1 and a = a*, then it has one positive equilibrium;
(ii) p > 1 and a > a*, then it has two positive equilibria and the smaller

positive equilibrium is unstable. The stability of the larger positive
equilibrium depends on the value of p, a, r, and there is a Hopf
bifurcation near it for some parameter values.

Moreover, they gave a sufficient condition for the global stability of
the disease-free equilibrium. They showed that there is a positive CT, =
P*'/{p - 1)P~' such that if a < ax, the disease-free equilibrium is globally
asymptotically stable. They further conjectured that the disease-free equilib-
rium is globally asymptotically stable for all a < a*.

In the present paper, we solve this conjecture. Also, we analyse the asymp-
totic behavior of solutions of the model (1.1)-(1.3) as the contact number a
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takes the threshold value a*. The results we prove show that there is no pe-
riodic solution when a = a*. Every solution tends to either the disease-free
equilibrium or to a unique positive endemic equilibrium.

The organisation of this paper is as follows. In this section, we show
the reduction in [5] of the model (1.1)—(1.3) to an equivalent scalar integro-
differential equation. In Section 3, we prove the conjecture. In Section 4, we
use the techniques developed in Section 3 to analyse the asymptotic behavior
of the model when a = a*. In the final section, we discuss our results and
compare them with the results of Hethcote et al.

The model (1.1)—(1.3) can be reduced to an equivalent scalar integrodif-
ferential equation, namely for t < co,

l\t) = -yl(t) + Plp{t) [l - 7(0 - R0(t) - y £ I(x) dx] , (1.4)

and for t > co,

l'(t) = -yl{t) + filp(t)\l-l(t)-y f I(x)dx\. (1.5)
L Jt-w J

Obviously, 7(0 = 0 is always an equilibrium of (1.4)-(1.5). ({S, I, R) -
( 1 , 0 , 0 ) corresponding to (1.1)—(1.3).) This is called the disease-free equi-
librium. Studying the stability of equilibria of the model (1.1)—(1.3) can be
done by studying the stability of equilibria of (1.4)—(1.5). The initial-value
problem of (1.4)—(1.5) is well-posed, and the interval [0, 1] is a positive in-
variant set and an attractive region for all nonnegative solutions. Moreover,
the maximal interval for every nonnegative solution is [0, oo) (cf. [5]).

2. Global stability of the disease-free equilibrium when p > 1 and a < a*

In this section, we study the asymptotic behavior of solutions of (1.4)-
(1.5) when p > 1 and a < a*. We prove that if p > 1 and a < a*,
all nonnegative solutions will approach to the disease-free equilibrium. As a
consequence, the conjecture of Hethcote et al. is verified. First, we introduce
a definition, which will be used in our proofs.

DEFINITION. Let / ( / ) , t e [0, oo), be a continuous function. f{t) is said
to be eventually nonincreasing if there is a positive T > 0 such that f(t) is
nonincreasing for t>T.

We now state and prove our results.
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THEOREM 2.1. Suppose p > 1 and a <a*. Then, every nonnegative solution
of (1.4)-(1.5) is an eventually nonincreasing function and it tends to the
disease-free equilibrium.

To prove Theorem 2.1, we need the following lemmas.
Let I(t) be a nonnegative solution of (1.4)—(1.5). Since [0, 1] is the

attractive region, we assume 0 < I(t) < 1 without loss of generality. Define

8n = m i n { / ( f ) ; te[(n- \)co, nco]}, n = 1 , 2 ,

Then, for each n , there is a tn e [(« - \)ai, nco] such that I{tn) = Sn .

LEMMA 2.1.1. Suppose p > 1 and a < a*. Then, I(t) is an eventually
nonincreasing function or tn / nco for n = 1, 2 , . . . .

P R O O F . If tn = nco for some n, then I{tn) < I(t), / € [ ( « - l)co, nco].
Thus

J t — C

The last two inequalities become equalities if and only if I(t) = 0 or I(t) =
{p - l)/p(l + r). In these cases, I(t) is already an eventually nonincreasing
function. Hence, we assume that I{t) is not either one. So, we have l'(tn)<0.
This implies that there is a t' > tn such that /(/) is a strictly decreasing
function on [tn, t').

Let
Tn = sup{t ; I(t) strictly decreases on [tn , t')}.

If Tn < oo, then Tn is a minimal point of / ( / ) . Thus, l'(Tn) = 0, and
I(Tn) < I(t) on [tn - co, Tn). In particular, I(Tn) < I(t) and I{Tn) / I(t),
for t e[Tn-co,Tn]. Therefore, we have

l\Tn) = -yI(TH) + pi"{Tn) 11 - I(Tn) - y fT" I(x) dx]

which contradicts l'(Tn) = 0.
Hence, Tn = oo. Consequently, I(t) is an eventually nonincreasing func-

tion. We complete the proof.
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LEMMA 2.1.2. Suppose p > 1 and a < a*. Iftn ^ nco.for n = 1, 2, . . . ,
then 8n+l > Sn for n = 1, 2 , . . . .

PROOF. If dn+l <Sn , then 8n+l is the minimal value of I(t) in [(n- l)co,
(n + l)co]. From tn+l ^ (n + l)co, tn € ((« - l)co, (n + l)w). Thus
^'('«+i) = 0- Again, we have

fi -
L

Pip(tn+l) fi - Ktn+l) - v
L

a contradiction to / '(/n + 1) = 0. Hence this lemma is proved.

LEMMA 2.1.3. Under the condition of Lemma 2.1.2, we have

PROOF. Since tn+i is a minimal point in [nco, (n+l)(o] and tn+l / (n+l)co,
J ' C J + I ) > 0. On the other hand,

i' (t ) = —yl(t ) 4- BIp(t ) 1 — I(t ) — y I I(x) dx
"+ "+ "+ "+ •'ln+\~co J

By Lemma 2.1.2, 8n is the minimal value in [(« — \)(o, {n + \)co]. Hence,

I\tn+x)<-y8n+x+fi5p
n+ll\-8n+x-r8n]

From l'(tn+x)>0,

i.e.

LEMMA 2.1.4. If p > 1 and a < a*, then I{t) is an eventually nonincreasing
function.

PROOF. If not, by Lemmas 2.1.1 and 2.1.3,

8n,. -5n > — (\ -^*) > 0 .n+1 " or \ a I
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Thus, lim/I_(oo 8n = oo, which is impossible because I(t) is bounded. There-
fore we prove the lemma.

PROOF OF THEOREM 2.1. From Lemma 2.1.4, we know that every nonnega-
tive solution I(t) of (1.4)—(1.5) is eventually nonincreasing. Let IQ denote
the limit of I(t), as t —> oo. Since I(t) and l'(t) are bounded, we have

^ i'(t) = 0. Hence, let t —> oo in (1.5); we obtain

But, for p > 1 and a <a*, only 7 = 0 satisfies this equality. Hence 70 = 0.
This implies

lim 7(0 = 0.

Therefore, the disease-free equilibrium is globally asymptotically stable to all
nonnegative solutions for (1.4)—(1.5).

3. Asymptotic behavior of (1.4)-(1.5) when p > 1 and a = a*

It is easy to show that in the case p > 1 and a = a*, the unique positive
equilibrium is degenerate, i.e. the characteristic equation for its linear vari-
ational equation has a zero eigenvalue. Hence, the stability of the positive
equilibrium becomes very difficult to determine. In this section, we will show
that if a nonnegative solution does not approach the positive equilibrium, it
must approach the disease-free equilibrium. In other words, the feasible re-
gion is split into two disjoint regions: the attractive region of the positive
equilibrium and the attractive region of the disease-free equilibrium. Fur-
thermore, we give an estimation of the attractive region of the disease-free
equilibrium.

When p > 1 and a = a*, (1.5) has two equilibria: the disease-free
equilibrium 7 = 0 and the positive equilibrium 7 = Ie = (j> — l)/p{l + r).
In this situation, we have the following.

THEOREM 3.1. Let I{i) be a nonnegative solution of (1.4)- (1.5). Then, there
are only two possibilities:

(i) I{t) is an eventually decreasing function and tends to one of the equi-
libria,

(ii) I(t) is a damped oscillation and l i m ^ ^ I(t) = Ie .

Therefore, there is no periodic solution for (1.4)- (1.5).

PROOF. If I(t) is an eventually nonincreasing function, proceeding as in the
proof of Theorem 2.1, I(t) tends to one of the equilibria. Hence, (i) is true.
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If I(t) is not an eventually nonincreasing function, by Lemma 2.1.2,
dn+l >8n for n = 1, 2 . . . .

Thus, there is no periodic solution in either case.
We now prove that if I(t) is not eventually nonincreasing, l i m ^ ^ I(t)

First, we claim that liminfr_<oo/(/) = Ig .
Otherwise, since {dn}™=l is a strictly increasing sequence, by Lemma 2.1.2,

there is a positive fi such that \dn - Ie\ > fi, n > N for some integer N.
Noting that the function y ~ l - (1 + r)}^ takes the unique maximal value
I/a* at y = Ie , we have

C 1
1 - ( 1 + ' 0 < + 1 < 1 ^ , n>N,

for some positive e .
Thus, from the proof of Lemma 2.1.3,

4>o.
~ a r

Hence, I(t) is unbounded, which is impossible. Therefore, we must have
t—KX>

By defining that

en = max{I(t); te [tn-co,tn]}, n = 1 , 2 , . . . ,

there is sn e [tn - co, tn] such that I(sn) = en. We now claim

If not, then there is a fi > 0 and a subsequence, assumed to be i ^ } ^ ! ,
itself, without loss of generality, such that I(sn) > Ie + 3fi. Observing from
(1.5) that l'(t) is bounded, I{t) is a Lipschitz function. Hence, there is
a a > 0, independent of n, such that [tn- to, tn] contains a subinterval
An whose length is greater than a and on which I(t) > Ie + 2fi. Since
^m/i-»oo ^n = ^e'tnere is a n integer N such that I{t) > Sn + fi for t e An+l,
and n > N. Thus we have

= YKtm+l) ( - 1( - - y /"+1 I(x)dx

< ?Sn+1 [-1 + a'SP
n;\(l-Sn+l-rdn-

Because

Urn [-1 + o'SP
n;l(l -dn+l - rSn - yan)] = - a > a / i / f l < 0,

for sufficiently large n , l'(tn) < 0 , which contradicts that tn+l ^ {n + l)co.
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Therefore, l i m ^ ^ e n = Ie . From tn+i jt(n + l)co, nco € [tn+l - co, tn+l].
We in particular have l i m ^ ^ I(nco) = Ie .

Third, we claim that for any tQ > 0 , l i m ^ ^ I(t0 + nco) — Ie .
Obviously, the function I(t) = I(t + t0) is a solution of (1.5). Hence, the

lemmas in the last section and the above statements remain true for I(t),
especially, l im ,^^ I(nco) = Ie . This implies l i m ^ ^ I(t0 + nco) = Ie .

Finally, we prove that lim s u p ^ ^ I(t) = Ie .
If there is n > 0 such that l imsup^^/CO > Ie + n, then there is a

sequence {^}^lj such that sn -* oo, as n —> oo, and I(sn) > Ie + n.
Suppose sn = knoj + s'n , where kn > 0 is an integer and s'n e [0, &>). Then
there is t0 e [0, <o] and a subsequence of {s'n}, denoted by {s'n} again
w.l.o.g., such that l i m ^ ^ ^ ^ = tQ. Hence, limn_(oo \t0 + kna> - sn\ = 0.
Recalling that I{t) is a Lipschitz function,

Urn I(t0 + knco) = Urn I(sn) >Ie + n>Ie.

This is impossible because l i m ^ ^ I(t0 + nco) = Ie . Therefore,

lim sup/(f) = / .
<->oo

With l iminf^^ I{t) - Ie , we have l i m ^ ^ I(t) - Ie . Our proof is com-
pleted.

It is now natural to ask how to locate the attractive regions of both equi-
libria. In general, it is difficult to do so, partially because they depend on
R0{t), the fraction of the initial population which is initially recovered and
still stays in the recovered class at time t. But the next theorem gives us
some information about the attractive region of the disease-free equilibrium.

It is easy to see the equation Ip~l - Ip — 1 /a* has exactly two positive
roots. Let /, be the smaller root. Then we have

THEOREM 3.2. Let I(i) be a nonnegative solution of (1.4)- (1.5). If there is
t0 such that I(t0) G [0, / , ] , then I(t) e [0, / ,] for t > t0 and lim<_oo/(0 =
0. In particular, if 1(0) e [0, / , ] , l im/^o o / (0 = 0. Therefore, [0, /,] is a
positive invariant, attractive region for the disease-free equilibrium.

PROOF. Since /, < Ie, the disease-free equilibrium is the only equilibrium
lying in [0, / , ] . Hence, it suffices to prove that if /(f0) e [0, / J , then I(t) is
a decreasing function for t > t0. This is true because for any /(/) e [0, / , ] ,

I\t) = -yl(t) + 01"(t) [ 1 - /(*) - y f I(x) dx]
I Jt-co J

<yI(t)[-l + a*Ip-\t)(l-I(t))]<0.

The theorem is proved.
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4. Remarks

Our results in this paper and Hethcote et al. [3] have shown that for p > 1
and a <a*, every feasible solution of the model (1.1)—(1.3) approaches an
equilibrium. Hence, there is no periodic solution. Biologically, these results
indicate that the disease will die out or the number of individuals in each class
will approach a nonzero constant level. In both cases, no periodic outbreaks
occur. However, in the other cases, the asymptotic behavior of the model
(1.1)—(1.3) is not so simple. By properly choosing parameters, Hethcote et
al. [3], [5], showed that the model may possess a Hopf bifurcation. A family
of bifurcating periodic solutions therefore arises in these cases.
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