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SEMI-INVEX FUNCTIONS AND THEIR SUBDIFFERENTIALS

J. DUTTA, V. VETRIVEL AND S. NANDA

We introduce the notion of semi-invex function (non-smooth) and the associated
subdifferential. We study their properties and establish the conditions for optimal-
ity in constrained and unconstrained minimisation problems.

1. INTRODUCTION

The theory of subdifferentials for locally Lipschitz functions due to Clarke [1] has
been well developed in the recent past. In this paper we introduce subdifferentials for
functions not necessarily locally Lipschitz. We study their properties and establish the
conditions for optimality in constrained and unconstrained minimisation problems.

We start with the notion of invex functions, introduced by Hanson [3]. A differen-
tiable function / : Rn —> R is said to be invex with respect to a given r\ : Rn x Rn —> Rn

if for any x, y € Rn

(1) f(y)-f{x)^(Vf(x),r,{y,x))

where V/(z) is the gradient vector of / at x and (.,.) denotes the usual inner product
of vectors. The importance of this class of functions lies in the fact that for the con-
strained optimisation problems the Karush-Kuhn-Tucker conditions are sufficient for
optimality if the objective and constraint functions are invex with the same 77, thereby
relaxing the need for convexity in such a case.

We observe that V f(x) is not the only element in Rn which satisfies (1) with the
given 77. For example if / : R —> R is a constant function and r](y,x) = (y — x)2 then
any x* € R such that x* ^ 0 satisfies the following inequality:

(2) f(y)-f(x)>{x*,V{y,x)).

This observation motivates us to introduce the following.
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DEFINITION 1.1: A function / : Rn -> R is said to be semi-invex at x e Rn with
respect to a given r] : Rn x Rn -> Rn if for all y £ Rn there exists (, e Rn such that

(3)

We call such £ , an 77-subgradient of / at x and the set

(4) d"f(x) = {£ e Rn : f(y) - f{x) > (ZMV,*)) ^ all y e Rn}

the 77-subdifferential of / at x. Therefore a function is semi-invex at a given point if it
has a non-empty ^-differential at that point. The function / is said to be semi-invex
if it is semi-invex at each x G Rn • We note that the set dnf{x) is not necessarily
singleton even if / is differentiate and that it coincides with the subdifferential of
convex analysis [7] when / is a convex function and Tj(y, x) = y — x. Clearly the class
of semi-invex functions includes the invex functions.

It is interesting to note that if / : Rn —> R is semi-invex at x £ Rn with respect to
77 : Rn x Rn -> Rn and ip : R —> R is a strictly increasing convex function, then tp o /
is semi-invex at x £ Rn with the same 77. Yang and Craven [8] have also introduced
the notion of 77-subgradient and 77-subdifferential for locally Lipschitz functions and
established necessary conditions for optimality of constrained non-smooth programs
involving the 77-subdifferential.

EXAMPLE 1.1. Consider the function / : R -> R denned by f(x) = - \x\. / i s clearly
semi-invex at x — 0 with r](y,x) — —(\y\ + \x\). Here dnf(0) = [+l,oo). We note
that Clarke's subdifferential [1] at 0 is [—1,-1-1] and this shows that in general the two
subdifferentials are different.

Though Yang and Craven [8] have defined the 77-subdifferential for locally Lipschitz
functions, the following example which is essentially due to Yang and Craven [8] shows
that a function can have a non-empty 77-subdifferential at a point where it is not locally
Lipschitz.

EXAMPLE 1.2. Let / . R —t R and rj(x,y) be as follows:

f(x)=

{
x-y : x < 0

0 : x=0.

The function / is not locally Lipschitz at x = 0 since it is discontinuous there but
still we have <9"/(0) = {v : v ^ 0}. Thus one can compute 77-subdifferentials for
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functions which are not locally Lipschitz. Yang and Craven [8] also showed that for
a class of locally Lipschitz functions called generalised invex introduced by Craven [2]
the 7?-subdifferential remains non-empty. Let us recall that a function / : Rn —• R is
called generalised invex at x £ Rn for a given rj, if it is locally Lipschitz and satisfies

(5) f(y)-f(x)>(i,v(y,x))

for all £ £ df(x) and x £ Rn, where df (x) denotes the Clarke subdifferential at
x£Rn. (See Clarke [1].)

Further, Yang and Craven [8] have defined the ^-generalised directional derivative
f°(x,h) of / at x in the direction h as the support function of the 77-subdifferential
when it is non-empty. More precisely

(6) f%(x, h) = s u p { ( V , h):v£ 3V{x)}

if d^fix) / 0. If d*f(x) = 0 then we write f°{x,h) = -00 . If v £ ^ / ( x ) , then
f°{x, h) > (v, h) for all x e Rn. The converse problem remains open.

2. PROPERTIES OF 77-SUBDIFFERENTIALS

The proof of the following proposition is straightforward and hence omitted.

PROPOSITION 2 . 1 . If f : Rn -> R is semi-invex with r): Rn x Rn -+ Rn then

dnf(x) is a non-empty, closed and convex subset of Rn.

We note that dnf(x) is not compact in general. See Example 1.1. However we

have

PROPOSITION 2 . 2 . Let f : Rn ->• R be semi-invex with 77 : Rn x Rn -> Rn

such that r] is an open map and r](x,x) = 0 for all x £ Rn. Let x$ £ Rn. If there

exists a neighbourhood U of XQ, such that

(7) \f{y)-f(x)\<K\\r,(y,x)\\

where K > 0, then dnf(x) is compact.

PROOF: If x £ U and £ £ dnf(x), then for all y £ U

(8) (ZMv,*)) < f(y) - fir) < * \\v(y,x)\\.
Since »j(x,x) = 0 and rj is an open map, the map y -+ r](y,x) maps U onto an open
neighbourhood V of the origin. Thus at each x £U and £ £ dnf(x)

(9) (Z,z)^K\\z\\

holds for all z £ .8(0, e) C V, where J3(0,e) denotes the open ball centred at 0 with

radius e. Hence it follows that

(10) \(^z)\^K\\z\\

which implies that ||£|| ^ K. Thus the map x -» dnf(x) is locally bounded at x0 and

hence dnf(x0) is compact. D
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REMARK. If / is semi-invex with an arbitrary 77 such that f°{x, h) is finite for all h,
then it is easy to see that dnf(x) is compact if and only if

(11) f°(x, h)^K \\h\\ for all h G Rn

for some K > 0. The following example due to Yang and Craven [8] illustrates the
above results.

EXAMPLE 2.1. Let / : R —> R and 77 be as follows

tf \ I o x : x > °f(x) = < 2
I x : x < 0

1 \ \ ^x~y) : x ^ °

{ x - y : x < 0 .

Here / and 77 satisfy the hypothesis of the above Proposition and also (11) at x = 0
and dnf(x) = {l}.

PROPOSITION 2 . 3 . If f : Rn ->• R and g : Rn -> R are semi-invex with the

same r/ so is f + g and for each x € Rn,

(12) d"f(x)+dng(x)Cdn(f + g)(x).

The proof is straight forward. We note that equality does not hold in general.

EXAMPLE 2.2. Let / : R —» R and g : R —t R be denned by

f fo : x ^ 0
g(x) =

-x

These functions are semi-invex with rj(y,x) = \y — x\, and dnf(0) + dng(0)

= {x : x ̂  -1} and dn(f + g)(0) = {x : x ̂  0}.
We now recall that a function / : Rn —> R is pre-invex with respect to a given

77 : Rn x Rn ->• Rn if for all x,y € Rn,

(13) f(x + Xr,(y, x)) ^ Xf(y) + (1 - \)f(x)

where A G (0,1). Pini [5] showed that if / is differentiable pre-invex, then it is invex.
Recently Mohan and Neogi [4] have shown that the converse holds provided 77 satisfies
the following
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C O N D I T I O N C. A function 77: Rn x Rn -> Rn is said to satisfy Condition C if for any

x,y&Rn and A G [0,1]

(i) r)(x,x + \r){y,x)) =-\r){y,x).

(ii) T}{y,x+\r)(y,x)) = (l-\)r)(y,x).

Mohan and Neogi [4] have also showed that Condition C holds also for n other
than the trivial rj(y, x) = y — x.

PROPOSITION 2 . 4 . If f : Rn —> R is semi-invex with a given 77 satisfying

Condition C, then f is pre-invex with the same r\.

PROOF: Since / is semi-invex, there exists £ € Rn such that for all A G (0,1)

fiv) > fix + XV(V, x)) + (£, t](y, x + Xn(y, x)))

f{x) > fix + Xr](y, x)) + (£, 17(1, x + AJJ(J/, X))).

By noting the fact that r\ satisfies Condition C, we have

(14) fiy) > fix + Xrjiy,x)) + (1 - A)(£,tj(y,x))

(15) fix) > fix + Xviy, x)) - \(£, viy, x)).

By multiplying both sides of (14) and (15) by A and (1 — A) and then adding we get

(16) fix + XViy, x)) < Xf(y) + (1 - A)/(a;). Q

Now the natural question is: 'Under what conditions will a pre-invex function be

semi-invex?' This remains open.

It is interesting to note that even if / : Rn —>• R is a differentiable semi-invex

function the gradient need not belong to the 77-subdifferential. The following example

illustrates this fact.

EXAMPLE 2.3. Consider / : R —> R defined by fix) — x2. This function is a semi-

invex function with respect to ri(y,x) — x2 for all y G R, since - 1 G dnfix) for any

xeR. Here 2 g d V ( l ) .
We shall now present a sufficient condition for an element of Rn to be an element

of the 77-subdifferential of a differentiable semi-invex function. For this we need the
following definition due to Yang and Craven [8].

DEFINITION 2.1: Let S C Rn and 77 : Rn x Rn ->• Rn. The 77-normal cone N%(x)

at x G 5 is defined as

(17) N%{x) = {teRn:(Z,viy,x))<0 for all y e S}.
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REMARK. It is clear that 0 € N]l(x). US- Rn the //-normal cone need not be a
singleton set containing the zero element alone, unlike the usual normal cone in convex
analysis. For example, if S = R and rj(y, x) = (y - x)2, then N%(x) = {£ <E R : £ < 0}.

PROPOSITION 2 . 5 . Let f : Rn -> R be a differentiable semi-invex function
with r\ satisfying Condition C. Let £ € Rn. If

(18)

then £ e

PROOF: Let f - V/(z) e N%n(x). Then

(£ - V/(x), n(y, x)) ^ 0 for all y e Rn.

That is,

Now from the Taylor's theorem we have

/ ( * + \ri(y,x)) = f{x) + ( V / ( x ) , XV(y,x)) + o(\\XV(y,x)\\).

By the above inequality,

f(x + \r)(y, x)) > f{x) + ($, \n{y, x)) + o(X \\V(y, x)\\).

Since / is semi-invex with 77 satisfying Condition C, by Proposition 2.4 we know that
/ is pre-invex with the same r\. Hence we have

\f(y) + (1 - X)f(x) > f{x) + \(S, rjiy, x)) + o(A \\V(y, x)\\).

Dividing by A and letting A —• 0+, we get

Since y is arbitrary, £ € dvfix). D

REMARK. Note that by the above theorem V/(x) € dvf(x), since V/(x) - V/(a;) =
0 £ ^^n (a;). Hence every differentiable semi-invex function with 77 satisfying Condition
C is invex.

ASSUMPTION A. (Yang and Craven [8].) A locally Lipschitz function / : Rn -> R is
said to satisfy Assumption A at i 0 £ Rn if it is semi-invex at XQ and the following
holds:
nn\ r f(x0 + th)-f(x0),o, .
(19) hmsup -^ f i ^ fZ(xo, h).

t-o+ t

PROPOSITI ON 2 . 6 . Let f : Rn —> R be a locally Lipschitz, semi-invex function
with rj satisfying Condition C. Let XQ S Rn be such that equality holds in (19). Then
f satisfies the generalised invex condition of Yang and Craven [8], at XQ, that is,

(20) fix)- fix0)^ f°ix^ix,xQ)) for all x 6 Rn.

The proof follows easily from Proposition 2.4.
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3. OPTIMISATION WITH SEMI-INVEX FUNCTIONS

If / : Rn -> R is semi-invex at i 0 , a global minimum of / , then 0 € dvf(x0) is
both a necessary and a sufficient condition for optimality. But if XQ is a local minimum,
then it is not necessary that 0 € dvf(xo) • The following example illustrates this fact.

EXAMPLE 3.1. Let / : R -> R be defined as follows:

1 1
- - : o o < a ; < -

\-x : i
. x — 1 : 1 ^ a; < oo

and 77 be given as follows:

Note that x = 1 is a local minimum of / and dvf(l) = {v : v ^ —1/2}. Now we shall
show that under certain assumptions the condition that 0 G dn f(x) where a; is a local
minimum of / becomes necessary.

Penot [4] has introduced the notion of a lower subdifferential dif(x) for a function
/ : Rn -> R at x as follows:

(21) dif{x) = {£ € Rn : f'{x, v) > (£, v) for all v € Rn}

where f'(x,v) = lim (f(x + Xv) — f(x))/\ which is assumed to exist.

If x £ Rn is a local minimum then f'(x,v) ^ 0 for all v € Rn and hence the
condition that 0 G dif(x) turns out to be a necessary condition for a local minimum.
We further note that when / is convex, dif(x) coincides with the subdifferential of
convex analysis [6]. Following Penot, we now introduce the lower 77-subdifferential of /
with respect to a given 77 as follows:

(22) d?f(x) = {HeRn: f'{x, V(y, x)) 2 (£, V(y, x)) for all y e Rn}.

By definition, if x is a local minimum of / , then 0 € d? f(x). Thus at a local minimum
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THEOREM 3 . 1 . Let f : Rn —> R be a semi-invex function with respect to a

given 7] satisfying Condition C. Let x0 E Rn be a local minimum of / . Suppose that

f'(x0,7]{y, x0)) exists for all y G Rn. Then 0 G d 7 7 / ^ ) •

P R O O F : Since x0 is a local minimum, 0 G d?f(x). It is enough to show that
d?f{x0) C dT)}{x0). By Proposition 2.4, / is pre-invex with the same rj. Hence for all

A e ( o . i )

f(x0 + Xv(x,x0)) ^ \f(x)
\r,(x,xo))-f(xo) ^ f{x)^ f{x)

A

Letting A —» 0+, we have

f'{xo,n(x,xQ)) ^ f(x) - f{x0).

If ^ G d?f(x0), it follows that

which implies that ^ G dvf{x0) and hence d^{x0) C ^ / ( l o ) . D

We note that if / : Rn —> R is a locally Lipschitz function which is semi-invex at
a local minimum XQ G i?" and if Assumption A is satisfied at x$ then f%{xo, h) ^ 0
for all heRn.

We next consider the following constrained minimisation problem (P).

Minimise f{x) subject to g%(x) sJO, i = 1, 2, ... , m i G Rn.

where / and the gi 's are scalar-valued locally Lipschitz functions which are semi-invex
with the same 77. It is well known [1] that if / and the g^ 's are locally Lipschitz, then the
Generalised Kuhn-Tucker conditions, involving Clarke's subdifferential, will necessarily
follow. But these conditions are not sufficient even if the functions are assumed to be
semi-invex since Clarke's subdifferential in general differs from the 77-subdifferential.
But conditions involving the 77-subdifferential can be established with are sufficient for
optimality.

Let AQ denote the set of feasible solutions for the problem (P).

THEOREM 3 . 2 . Consider (P), where f and the gi's are semi-invex with the same

i] : Rn x Rn —¥ Rn. Let XQ G AO . Then xo is an optimal solution to (P) if there exists

A G i?" such that
m

(i) oean/M+E^"fliW,
(ii) \igi(xo) = 0 for all i = 1, 2, . . . , m.
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P R O O F : By (i) there exist a e dnf{xQ) and /% e d^g^xo) such tha t

(23) O = a

Therefore by the semi-invexity of the gt 's, we have for all x € AQ ,

(24) 5 1 Mffi(z) - 5i(a;o)) ^ < - a, v(x, x0)).

From (ii),

m

(25) 0 ^ ^ A i 5 i ( a ; ) ^ < - a . i j ^ . i o ) ) .

Now the result follows by the semi-invexity of / . D

We note that the conditions given here are not in general necessary. For example,

consider the problem, M i n / ( i ) , subject to g(x) ^ 0, where f(x) and g(x) are as in

Example 2.2. Here x - 0 is the optimum but 0 0 dvf(O) + Xd^giO), where A > 0.
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