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Abstract 

Selecting right positions for composite-integrated sensors for monitoring cure during manufacturing and loads 

during product use presents challenges for engineering design. Since an optimal sensor placement (OSP) 

methodology for both phases is not emphasised enough in literature, a new methodology is proposed. This 

methodology is based on a Genetic Algorithm and strain gauges, temperature sensors and interdigitated 

electrode sensors for cure monitoring and physics-informed neural network-based load detection. 

Additionally, it includes sensor node positions optimization in a sensor network. 

Keywords: design methods, data-driven design, optimal sensor placement, wireless sensor networks, 
artificial intelligence (AI) 

1. Introduction 
Integrating sensors into structural components can enhance the digitalisation to load carrying structures, 

resulting in smarter products. From a product development point of view, these integrated sensors enable 

a robust data acquisition for the product generation development (Welzbacher et al., 2023). Those 

sensor-integrated structural components for product generation development could be described as 

"gentelligent" components in context of technical inheritance, where new product generations are 

optimized for the loads during the use phase of data from previous product generations (Lachmayer et 

al., 2014; Lachmayer et al., 2016). Especially composite materials, which are often used in the aircraft 

industry, and their layup are well suited for the integration of sensors into the material itself like it is 

shown in Klein and Middendorf (2016) and Damm et al. (2020). On the other side, the use of composite 

structural components brings different challenges with it. For example, the manufacturing of those 

composite parts requires a high amount of energy and time. Furthermore, it directly defines the 

mechanical characteristics (Mirzaei et al., 2021; Hasselbruch et al., 2015). The assembly of composite 

parts can also be difficult due to available joining technologies and requirements regarding a stress-free 

assembly. This leads to the need for a holistic view on the manufacturing, assembly, and use of 

composite components. For example, during the manufacturing process, structure integrated sensors 

have the potential to monitor the curing process in an autoclave by sensor measurements. This cure 

monitoring allows to reduce residual stresses in the part (Prussak et al., 2019; Wiedemann et al., 2022). 

In assembly, the sensor measurements could be used to adjust the process in order to achieve minimal 

stresses in the assembled product. Besides, the sensors are applicable for the detection of damages 

(application in structural health monitoring, SHM) besides of the data acquisition for the product 

generation development (Teimouri et al., 2016; Bergmayr et al., 2023) during the product use-phase. 
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Furthermore, the sensors are useable to monitor external loads on the corresponding part (Altun et al., 

2020; Esposito et al., 2021). Besides, instead of monitoring external loads, the deformation of a part 

could be reconstructed with different shape sensing techniques (Gherlone et al., 2018). However, 

choosing the right sensors for the measurement task and placing them in the right position is a 

challenging task, since the choice cannot be changed after the integration. Therefore, the optimal sensor 

placement (OSP) has to be considered methodically to ensure a reliable data acquisition process (Meyer 

zu Westerhausen et al., 2023). 

In literature, different OSP methodologies are presented, but few publications address more than one 

product lifecycle phase, e. g., the product creation with manufacturing and assembly, or product use in 

a holistic approach. Therefore, in this paper a methodology is proposed with focus on the OSP for cure 

monitoring in manufacturing as well as the monitoring of external loads during assembly and product 

use on the example of an aircraft wing box. The validation of the methodology is another work and will 

be the aim of a future paper. For the load monitoring, a physics-informed neural network (PINN)-based 

approach is used for a near real-time load detection, which could not be reached with numerical methods, 

e. g. simulations using the finite elements method (FEM) (Hoffer et al., 2021). To fulfil this, the paper 

is structured as follows. In Section 2, an overview on related works in the field of OSP for load detection, 

Wireless Sensor Network (WSN) configuration and cure monitoring is given. In Section 3, a comparison 

of the works presented in Section 2 is shown, underlining the research gap for this paper. Next, the 

methodology of this paper is proposed and described in Section 4. Finally, Section 5 concludes this 

paper and gives an outlook on future research. 

2. Related works to OSP for shape sensing and manufacturing 
monitoring of composite parts 

In literature, different methodologies for OSP are found. For example in Ostachowicz et al. (2019), 

the optimization of sensor placement for SHM is reviewed. The authors classified OSP literature in 

this area into "SHM techniques", "optimization algorithms" and "application demands". Regarding 

the optimization algorithms, especially biology-based algorithms appear very often in literature 

(Ostachowicz et al., 2019). Furthermore, the authors derived from their analysis a general framework 

for OSP problems based on the following eight steps: (1) Define application demands, (2) choice of 

sensor types, (3) define operational parameters, (4) determine cost function, (5) choice of optimization 

algorithm, (6) define inputs, (7) optimal Sensor placement and (8) deployment. This framework is not 

specific for SHM and could be applied on various kinds of OSP problems. For example, in the first 

step, application demands specific for WSNs could be defined (e. g. a specific maximal energy 

consumption) as well as for the sensors itself. These demands on the other hand influence the choice 

of sensors in the next step. For the focus of this paper, especially the steps 4 to 7 ("determine cost 

function" to "optimal sensor placement") are of interest, since the design methodology begins after 

the sensors and operational parameters are chosen regarding manufacturing and loads. Furthermore, 

step 8 "deployment" requires practical activities, so the proposed methodology ends after the optimal 

sensor placement. Therefore, the following presented works are mainly focussed on these steps in the 

OSP framework. 

In the field of shape sensing using the inverse FEM (iFEM) method of Tessler and Spangler (2005), a 

genetic algorithm (GA) as biology-based optimization algorithm for the problem of OSP is used by 

Esposito and Gherlone (2020) and Ghasemzadeh and Kefal (2022). The cost function in these works is 

the error between the reconstructed displacements from discrete, simulated strain measurements and the 

FEM reference solution at different points of their models. So, the goal of the optimization algorithm is 

to minimize this error and choose the configuration as optimal, which has the least deviation to the 

reference solution. Special about the work of Esposito et al. (2021) is the application of the iFEM 

method to identify loads applied on the structure. In comparison to other shape sensing techniques, such 

as Ko's displacement theory (Ko et al., 2007), the iFEM method necessitates a greater number of sensors. 

For example, in the study by Esposito and Gherlone (2020), the OSP for shape sensing on a composite 

wing box required 324 for the application of iFEM. In contrast, in this study a number of 28 strain 

gauges is required for the application of Ko's displacement theory (Esposito and Gherlone, 2020). 

Besides, PINNs, which were introduced by Raissi et al. (2019), have piqued interest 
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as they may provide another solution to this challenge. This is because a relatively small number of 

sensors is required and the PINN's applicability for shape sensing is less dependent on the training data 

then for conventional artificial neural networks (Qiu et al., 2023). Finding optimal sensor positions for 

shape or load reconstruction tasks with a PINN is addressed by Zhu et al. (2023) on the example of 

pressure sensors for reconstruction of the pressure profile on a wind energy application. The OSP 

problem for pressure identification with a PINN is also focussed by Ye et al. (2022) on the example of 

a pipeline system. However, all these also do not consider the optimization with respect to the 

manufacturing process or the in the use-phase configuration of a whole WSN. 

Taking a wider look at the topic of SHM itself, further OSP methodologies could be observed. For 

example, (Bhuiyan et al., 2014) proposed a three-phase sensor placement methodology for damage 

detection in SHM. In the first two steps, a whole WSN is created and divided into subnetworks with 

high-end and low-end sensor nodes. The classification is performed on the basis of availability of 

resources (e. g. battery lifetime and communication abilities). In the third phase, redundant nodes are 

placed to enhance the networks' reliability. The optimization is constrained regarding connectivity, 

transmission load and data delivery in the network and the placement quality is measured by use of 

Fishers Information Matrix. The approach of Thiene et al. (2016) has a similar look on the optimization 

problem and is also more focussed on connectivity and coverage issues of sensor networks for damage 

detection. Both methodologies have in common that they are mainly network reliability and data 

transmission focussed as well as damage detection focussed. 

Besides the applications of OSP in the field of shape sensing and load and damage detection, there were 

no publications found addressing the OSP topic directly related to the curing of fibre reinforced plastics 

in an autoclave during the manufacturing process. It could be observed that in each publication with 

suitable content, the OSP was performed with focus on the use of the sensors for SHM purposes. For 

example in Ruzek et al. (2017), Fiber Bragg Gratings (FBGs) were integrated into the structure for 

monitoring the compressive behaviour of a composite component with respect to the cure of the 

component, but without measuring it and without addressing the sensor placement for this purpose. 

Hudson et al. (2019) on the other side focus on the use of piezoelectric sensors and FBGs for cure 

monitoring, but also didn't focus on OSP for this task. In Kyriazis et al. (2022), different cure monitoring 

techniques (a kinetic curing model supplied with thermal data, an integrated interdigitated electrodes 

sensor, a structure-borne acoustic measurement system, a refractive index measurement technique, and 

a strain gauge) are analysed regarding their limits and compatibilities. The results show, that a 

combination of strain gauges and interdigitated electrode sensors could yield good information of the 

curing reaction. However, even this specific publication on the topic of cure monitoring does not 

consider, where sensors should be placed optimally. 

3. Comparison of related works 
In Table 1, the different presented works are compared to one another regarding their applications for 

OSP and WSN optimization for the product creation and the product use phase for cure monitoring in 

manufacturing as well as load detection and identification. For comparison, the Harvey-balls analysis 

is used. There are many different approaches and methodologies in literature, which are more focussed 

on the monitoring and reconstruction of loads, shapes and damages. Just a few publications are 

focussed on the cure monitoring process. Furthermore, these publications are mainly addressed on 

how to monitor and are not taking a look on the optimization of sensor positions for this task. This 

shows that most of OSP methodologies are mainly focussed on the use-phase of composite parts. 

Besides, the optimization of the positions of many sensors is considered in different publications, but 

the configuration of a whole WSN is not. On the other hand, publications that focus on optimizing the 

network configuration do not always cater to the use of WSNs themselves, such as for cure monitoring 

or shape sensing. Notably, the optimization of WSN configurations often involves heuristics rather 

than optimization algorithms. When optimization algorithms are employed, the use of biology-based 

algorithms is commonplace, as observed in Bhondekar et al. (2009). A comparison of related works 

highlights the need for a methodological approach that takes into account the OSP and its linkage to 

a complete WSN. 
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Table 1. Comparison of the presented works regarding their focusses and use 

 

4. Proposal for a methodological approach for OSP 
Picking up the need to define a methodology for OSP for product creation and product use, a first 

approach will be presented in the following. For presenting this approach, we follow the steps of the 

framework defined by Ostachowicz et al. (2019). 

Regarding the application demands of the sensors, the product creation and product use are focussed. 

Furthermore, the sensors should be applied for cure monitoring and load detection and identification. 

Therefore, the integration of the sensors into the composite layup should be achieved. Concerning cure 

monitoring, the results of Kyriazis et al. (2022) show that integrated interdigitated electrodes sensors 

(IDS) and strain gauges (SG) are well suited for the use in cure monitoring. Besides, the use of thermo 

elements as temperature sensors (TS) is a good enhancement to yield a whole picture of the curing 

process. For the purpose of load detection and identification, the results presented in Section 2 have 

shown that most publications rely on strain gauges for the application in shape sensing. It is worth 

mentioning, that FBGs could be used as well instead of SG. However, since SG will already be 

integrated into the part, there is no need to integrate another kind of sensor which would result in a 

higher weight of the part. To allow a robust data acquisition, the SG are selected as full bridges to have 

a better temperature compensation during measurement. Regarding the third step in the OSP framework, 

the operational parameters have to be defined. Therefore, the component considered has to be chosen 

first. In case of this paper, a part of a scaled airplane wing box is considered. It should be manufactured 

from a prepreg material of carbon fibre reinforced plastics (CFRP) with dimensions of 

120 x 50 x 2,000 mm. In our case, the sensors should operate from the inside of the CFRP layup during 

manufacturing, assembly and use. Furthermore, they should operate during the curing process in the 

autoclave for temperatures up to 180 °C. During assembly and use, the sensors have to operate in a wide 

temperature range (e. g. from 60 °C in direct sunlight on the ground and -60 °C at travel altitude) and 

have to work for high deformations of the composite parts. Last, the sensors should be connected to a 

WSN after manufacturing of the component which should enable the online load detection and 

identification with use of a PINN. The choice of a PINN is made due to the recent advantages in this 

research area and the little computational effort for shape sensing applications in comparison to 

numerical methods (Qiu et al., 2023; Xu et al., 2023; Hoffer et al., 2021). 

After these steps are considered, the OSP framework requires the definition of a cost function, the choice 

of an optimization algorithm, the definition of inputs, the optimal sensor placement and last the 

deployment. Since the following proposal of an OSP methodology is only for cure monitoring and 

PINN-based load detection and identification, it will be presented only for these purposes. Furthermore, 

the deployment-step is not considered yet. 
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The methodology in this paper could be divided into a procedure of three main steps, following each 

other linearly: (1) Calculate the maximum number of sensors, (2) find optimal sensor positions and 

(3) conceive a sensor network architecture. These steps will be explained in the following in more detail. 

4.1. Calculation of the maximum number of sensors 

The process of finding the maximum number of sensors is shown in Figure 1. It begins by loading the 

FE-models of the part, like in this example the CFRP wing box. For this task, three FE-models are 

needed. The first model results from the analysis of the manufacturing process with the change of 

temperature, degree of cure, and the strains due to residual stresses. Besides, a conventional, structural 

analysis is performed to get the second model with the resulting strains during assembly. Last, the third 

model is a structural analysis of a load case during the use-phase. The second and the third FE-model 

are based on the results of the first model, since the residual stresses and strains are exported and mapped 

to them before starting the simulations. 

 
Figure 1. Process of finding the maximum number of sensors required for the measurement 

task of cure and load monitoring 

For each of the FE-models, a region analysis is performed. In this analysis, the models are used to 

identify potential measurement regions. For example, areas with elements close to one another with 

similar strains will form a measurement region, where a sensor could be placed. This procedure allows 

to identify areas, where sensors would measure very similar values and where therefore only one sensor 

will be needed with a measurement without redundancy. For the distinction of values from each element, 

a tolerance has to be defined, which is equal to the measurement tolerance of the chosen sensor. The 

region analysis makes it possible to find out how many sensors would be needed at maximum. 

Therefore, it will be performed on the first FE-model to identify measurement regions for TS and IDS 

to monitor the temperature and degree of cure. The second and third FE-model are used to identify 

potential measurement regions for SG regarding the strains during assembly and use. 

After the regions are built, two parallel sensor lines are generated. This idea is based on the shape sensing 

performed based on Ko's displacement theory by Valoriani et al. (2022), where two parallel lines of SGs 

are used to reconstruct the displacement of a wing according to beam bending. The use of two lines is 

chosen because it allows to calculate the distortion between the two lines as well as the displacement of 

each. These calculations are then used to estimate the shear force, bending moment, and torque for 
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detecting and identifying applied loads and their application areas, like in Richards and Ko (2010). 

Besides the load detection and identification, the measurement lines should yield the distribution of cure 

and temperature relevant measurements along the wing box. 

For the first sensor line, two requirements have to be fulfilled: The line has to reach from root to tip of 

the wing box and has to include a maximum number of measurement regions along its path. These 

requirements are chosen to generate a measurement line with a maximum number of sensors due to the 

high number of regions and to acquire data along the whole part. This allows to choose the optimal 

positions along the line from a high number of possibilities. After the first line, a second line is 

generated, which has to be parallel to the first one and has to reach from the root to the tip of the wing 

box and should share no common region with the first line. If this is not the case, the process of line 

generation is repeated. In case the two lines are generated correctly, results are calculated by assuming 

a sensor in the middle of each region section along the corresponding line. In Figure 1, for example, the 

bending deflection is calculated on the basis of strains as well as the corresponding bending force by the 

use of a PINN. The PINN is used in this optimization since it should be applied in the real-world load 

detection and identification as well. Therefore, the sensor positions should be optimized by considering 

how well it works for the simulation results. The calculated results are then compared to the FEM 

reference solution. For this comparison, the user has to define a limit for the error between the solutions, 

which can vary from one application to another. If the error limit is not exceeded, the found sensor 

positions in the regions along the two lines are used as maximum number of sensors needed for the 

measuring task for the minimization of sensor numbers and their OSP in the second step of the 

methodology. In case the error limit is exceeded, the settings for the region analysis have to be adjusted 

to find more regions for a higher number of sensors and therefore a higher accuracy between the 

reference and calculated results. 

4.2. Optimization of the sensor placement 

The second step of the OSP methodology is directly focussed on the optimization of the arrangement 

and quantity of the sensors and is shown in Figure 2. In the beginning, the solution with a maximum 

of sensors is used as reference solution, since none of the solutions should exceed this number of 

sensors. 

 
Figure 2. Process of finding the optimal number and position of sensors for the measuring task 

of cure and load monitoring 

After the maximal number of sensors is defined as a first constrain for the optimization, the sensor 

positions in the middle of each region on the measurement line are used for the sensor placement in 

the optimization. This is results in a geometrical constraint for the OSP. For the optimization process, 
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a GA is used for a multi-objective optimization with the goal to minimize the number of sensors 

𝑛𝑆𝑒𝑛𝑠𝑜𝑟𝑠 used and to minimize the error to the reference solutions, in our case the root mean square 

percentage error (%ERMS) from the FE simulation reference solution (see Equation 1). For this 

purpose, the NSGA-II optimization algorithm is suitable due to its performance in terms of finding a 

diverse set of Pareto-optimal solutions and converging near the true Pareto-optimal set (Deb et al., 

2002). 

𝑓1 = min(%𝐸𝑅𝑀𝑆)    and    𝑓2 = min(𝑛𝑆𝑒𝑛𝑠𝑜𝑟𝑠) (1) 

From the values of the maximum number of sensors from the first step, a population of individuals is 

generated for the GA, like it is shown in Figure 2. Therefore, 𝑛𝑆𝑒𝑛𝑠𝑜𝑟𝑠 for each measurement 

(temperature, cure and strain) is reduced to half and the sensors are placed along the lines randomly. If 

a sensor is included or not is shown with a zero or one exemplarily by the table in Figure 2  

on the example of the number of strain gauges. 

Each of the sensor configurations depicts an individuum of the population in the GA. Therefore, for 

each individuum, the temperature and degree of cure distribution is calculated as well as the loads and 

their application points by use of the PINN. Afterwards, the results are checked for each individuum at 

discrete points 𝑖 of the model. If the maximum number of iterations 𝑛Limit,It. of the GA is not exceeded, 

the %ERMS is calculated according to Equation 2. In this equation, 𝑘 is the number of points, for which 

the reconstructed or identified quantity 𝑔 (𝑔 = 𝐹 for load detection, 𝑔 = 𝐷𝑜𝐶 for identifying the degree 

of cure and 𝑔 = 𝑇 for identifying the temperature) is calculated. Therefore, 𝑔 is calculated at each 

reconstruction point 𝑖 and is compared to the reference solution at this point 𝑔𝑖
𝑟𝑒𝑓

 and the global 

maximum of the corresponding quantity 𝑔𝑚𝑎𝑥
𝑟𝑒𝑓

. 

%𝐸𝑅𝑀𝑆 = 100 ∙ √
1

𝑘
∙ ∑ (

𝑔𝑖−𝑔𝑖
𝑟𝑒𝑓

𝑔𝑚𝑎𝑥
𝑟𝑒𝑓 )

2

𝑘
𝑖=1  (2) 

If %ERMS is less than the defined limit, a new population is generated from the individuals with the 

best results. From this crossover of the parents' genes, which are the positions of the sensors, a new 

offspring generation is created. Furthermore, mutation occurs during this process by adding and 

dismissing sensors randomly inside the offsprings (Ghasemzadeh and Kefal, 2022). Besides, in the new 

generation, the number of sensors is reduced to half of the number of the parent-generation. This is 

performed only for the types of sensors whose %ERMS in the calculation was smaller than the limit. 

Otherwise, if %ERMS exceeds the defined limit, a new generation is created from the individuals with 

best results and the number of sensors is increased by half of the number of the old generation. Therefore, 

the number of sensors is minimized with respect to the accuracy of the calculated solution. This process 

is repeated until the limit of iterations 𝑛Limit,It. is reached. This number could be defined by the user and 

be for example around 50 iterations, since (Ghasemzadeh and Kefal, 2022) showed a convergence of 

the cost function in the optimization to a minimum around this value. Then, the optimization algorithm 

stops and the configuration with the minimal deviation to the reference solution is chosen as the optimal 

solution for the positions. 

4.3. Conception of a WSN architecture 

After finding the optimal number and position of sensors for the monitoring of the autoclave process 

and the loads in assembly and use, the position of the sensor nodes has to be defined for building a 

sensor network. The process for finding optimal node positions is shown in Figure 3 and requires a 

definition of a permitted number of sensors nodes by the engineer. The optimization of the node 

positions is based on the Iterative Relocation heuristic for optimizing the position of warehouses 

regarding customer demands in the field of production management (Thonemann, 2015). This heuristic 

is chosen since the computational effort is very low in comparison to an optimization algorithm and is 

well suited to minimize distances between a clustering node as "warehouse" and the sensors as 

"customers". 
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Figure 3. Optimal configuration process for a sensor network on the basis of optimizing sensor 

node positions by SNR-weight for each sensor 

At first, a random solution is created for the 𝑥- and 𝑦-coordinates of the nodes. Afterwards, the sensors 

are clustered to the node by finding the node with the minimal Euclidian distance to the corresponding 

sensor. Since the goal of the optimization of node positions is to minimize the overall distance to the 

sensors to reduce cable lengths and negative influences on the signal quality, the distance between 

sensors and corresponding nodes has to be minimized. Therefore, the requirement in Equation 3 is used 

for each sensor. In this equation, the distance 𝑍(𝑥, 𝑦) of a sensor node to all the sensors should be 

minimized. Therefore, the distance between each sensors coordinate 𝑥𝑖 and 𝑦𝑖 to the corresponding 

nodes coordinate 𝑥𝑁𝑜𝑑𝑒,𝑖 and 𝑥𝑁𝑜𝑑𝑒,𝑖 is calculated and weighted with each sensors weight 𝑤𝑖. 

min
𝑥,𝑦

[𝑍(𝑥, 𝑦)] = min
𝑥,𝑦

[∑ 𝑤𝑖(|𝑥𝑖 − 𝑥𝑁𝑜𝑑𝑒,𝑖| + |𝑦𝑖 − 𝑦𝑁𝑜𝑑𝑒,𝑖|)𝑖 ] (3) 

In the presented approach, the SNR of each sensor is used for weighting. Therefore, sensors with better 

SNR are weighted less than such with bad SNR. This reduces the distance to sensors with an already poor 

signal quality, so that further influences on them are minimized. From this approach, new node coordinates 

are derived. This process is repeated as long as the node coordinates change. If the resulting coordinates 

remain unchanged, the node positions are considered as optimal for the found sensor positions. 

5. Conclusion and future work 
Structure integrated sensors in composite parts can fulfil different functions during the product life, like 

the monitoring of an autoclave-based manufacturing process (cure monitoring) or load detection and 

identification during assembly and product use. To ensure reliable data acquisition in these tasks, it is 

crucial to have optimal sensor placement (OSP) during product development. Since in literature there is 

a gap in addressing OSP for both, the cure monitoring and the load detection and identification with the 

same sensors, a new methodology for this purpose is proposed in this paper. This methodology consists 

of three steps, involving the minimization of sensor quantity, finding optimal sensor positions and 

determining optimal positions of sensor nodes to minimize cable length and optimize the overall signal-

to-noise-ratio (SNR). As an use case for the methodology development, a CFRP wing box is used. 

In future work, the proposed methodology has to validated on the basis of FEM simulations and tests 

with a real CFRP wing box. To do so, a first characterization of the resins cure properties to derive a 

FE-cure-model, yielding the degree of cure, the temperature distribution and residual stresses is needed. 

Afterwards, an assembly process should be simulated with parameter variations as well as an exemplary 
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load-case in the use-phase. On this data, a PINN could be trained for load detection and identification 

based on strain measurements. To take measurement uncertainties due to changing measurement 

properties after the manufacturing process into account, a variation of the SNR should be performed. In 

the end, the methodology has to be validated on a real demonstrator, based on data gathered before from 

tests on simple specimens, like for example CFRP plates with thickness variations. 

References 

Altun, O., Zhang, D., Siqueira, R., Wolniak, P., Mozgova, I. and Lachmayer, R. (2020   “Identification of dynamic 

loads on structural component with artificial neural networks”  Procedia Manufacturing, Vol. 52, pp. 181–

186. https://doi.org/10.1016/j.promfg.2020.11.032. 

Bergmayr, T., Höll, S., Kralovec, C. and Schagerl, M. (2023   “Local residual random forest classifier for strain-

based damage detection and localization in aerospace sandwich structures”  Composite Structures, Vol. 304, 

p. 116331. https://doi.org/10.1016/j.compstruct.2022.116331. 

Bhondekar, A.P., Vig, R., Lal Singla, M., Ghanshyam, C. and Kapur, P. (2009   “Genetic Algorithm Based Node 

Placement Methodology For Wireless Sensor Networks”  Proceedings of the International MultiConference 

of Engineers and Computer Scientists 2009, IMECS 2009. 

Bhuiyan, M.Z.A., Wang, G., Cao, J. and Wu, J. (2014   “Sensor Placement with Multiple Objectives for Structural 

Health Monitoring”  ACM Transactions on Sensor Networks, Vol. 10 No. 4, pp. 1–45. 

https://doi.org/10.1145/2533669. 

Damm, A.M., Spitzmüller, C., Raichle, A.T.S., Bühler, A., Weißgraeber, P. and Middendorf, P. (2020   “Deep 

learning for impact detection in composite plates with sparsely integrated sensors”  Smart Materials and 

Structures, Vol. 29 No. 12, p. 125014. https://doi.org/10.1088/1361-665X/abb644. 

Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T. (2002   “A fast and elitist multiobjective genetic algorithm: 

NSGA-II”  IEEE Transactions on Evolutionary Computation, Vol. 6 No. 2, pp. 182–197. 

https://doi.org/10.1109/4235.996017. 

Esposito, M. and Gherlone, M. (2020   “Composite wing box deformed-shape reconstruction based on measured 

strains: Optimization and comparison of existing approaches”  Aerospace Science and Technology, Vol. 99, 

p. 105758. https://doi.org/10.1016/j.ast.2020.105758. 

Esposito, M., Gherlone, M. and Marzocca, P. (2021   “External loads identification and shape sensing on an 

aluminum wing box: An integrated approach”  Aerospace Science and Technology, Vol. 114, p. 106743. 

https://doi.org/10.1016/j.ast.2021.106743. 

Ghasemzadeh, M. and Kefal, A. (2022), “                                                                     

U                                                        ”  Sensors (Basel, Switzerland), Vol. 22 No. 23. 

https://doi.org/10.3390/s22239252. 

Gherlone, M., Cerracchio, P. and Mattone, M. (2018   “Shape sensing methods: Review and experimental 

comparison on a wing-shaped plate”  Progress in Aerospace Sciences, Vol. 99, pp. 14–26. 

https://doi.org/10.1016/j.paerosci.2018.04.001. 

Hasselbruch, H., Hehl, A. von and Zoch, H.-W. (2015   “Properties and failure behavior of hybrid wire 

mesh/carbon fiber reinforced thermoplastic composites under quasi-static tensile load”  Materials & Design, 

Vol. 66, pp. 429–436. https://doi.org/10.1016/j.matdes.2014.07.032. 

Hoffer, J.G., Geiger, B.C., Ofner, P. and Kern, R. (2021   “Mesh-Free Surrogate Models for Structural Mechanic 

FEM Simulation: A Comparative Study of Approaches”  Applied Sciences, Vol. 11 No. 20, p. 9411. 

https://doi.org/10.3390/app11209411. 

Hudson, T.B., Auwaijan, N. and Yuan, F.-G. (2019   “Guided Wave-based System for Real-time Cure Monitoring 

of Composites using Piezoelectric Discs and Phase-shifted Fiber Bragg Gratings”  Journal of composite 

materials, Vol. 53 No. 7, pp. 969–979. https://doi.org/10.1177/0021998318793512. 

Klein, L. and Middendorf, P. (2016   “                                                 L                       

                                        ”     21–25 September 2015, Graz, Austria, Author(s), p. 90001. 

Ko, W.L., Richards, W.L. and van Tran, T. (2007   “Displacement Theories for In-Flight Displacement Theories 

for In-Flight Deformed Shape Predictions of Aerospace Structures”  NASA/TP-2007-214612, October 2007. 

Kyriazis, A., Pommer, C., Lohuis, D., Rager, K., Dietzel, A. and Sinapius, M. (2022), “                        

                      q   ”  Sensors (Basel, Switzerland), Vol. 22 No. 19. 

https://doi.org/10.3390/s22197301. 

Lachmayer, R., Mozgova, I., Reimche, W., Colditz, F., Mroz, G. and Gottwald, P. (2014   “Technical Inheritance: 

A Concept to Adapt the Evolution of Nature to Product Engineering”  Procedia Technology, Vol. 15, pp. 178–

187. https://doi.org/10.1016/j.protcy.2014.09.070. 

Lachmayer, R., Mozgova, I. and Scheidel, W. (2016   “An Approach to Describe Gentelligent Components in 

their Life Cycle”  Procedia Technology, Vol. 26, pp. 199–206. https://doi.org/10.1016/j.protcy.2016.08.027. 

https://doi.org/10.1017/pds.2024.70 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2024.70


 
682  DESIGN METHODS AND TOOLS 

Meyer zu Westerhausen, S., Schneider, J. and Lachmayer, R. (2023   “RELIABILITY ANALYSIS FOR SENSOR 

NETWORKS AND THEIR DATA ACQUISITION: A SYSTEMATIC LITERATURE REVIEW”  

Proceedings of the Design Society, Vol. 3, pp. 3065–3074. https://doi.org/10.1017/pds.2023.307. 

Mirzaei, S., Krishnan, K., Al Kobtawy, C., Roberts, J. and Palmer, E. (2021   “Heat transfer simulation and 

improvement of autoclave loading in composites manufacturing”  The International Journal of Advanced 

Manufacturing Technology, Vol. 112 No. 11-12, pp. 2989–3000. https://doi.org/10.1007/s00170-020-06573-3. 

Ostachowicz, W., Soman, R. and Malinowski, P. (2019   “Optimization of sensor placement for structural health 

monitoring: a review”  Structural Health Monitoring, Vol. 18 No. 3, pp. 963–988. 

https://doi.org/10.1177/1475921719825601. 

Prussak, R., Stefaniak, D., Kappel, E., Hühne, C. and Sinapius, M. (2019), “                                  

                                                    ”  Composite Structures, Volume 213, pp. 252–260. 

https://doi.org/10.1016/j.compstruct.2019.01.079. 

Qiu, Y., Arunachala, P.K. and Linder, C. (2023   “SenseNet: A Physics-Informed Deep Learning Model for Shape 

Sensing”  Journal of Engineering Mechanics, Vol. 149 No. 3. https://doi.org/10.1061/JENMDT.EMENG-

6901. 

Raissi, M., Perdikaris, P. and Karniadakis, G.E. (2019), “       -informed neural networks: A deep learning 

                                                                                             q       ”  

Journal of Computational Physics, Volume 378, pp. 686–707. https://doi.org/10.1016/j.jcp.2018.10.045. 

Richards, W.L. and Ko, W.L. (2010), PROCESS FOR USING SURFACE STRAIN MEASUREMENTS TO 

OBTAIN OPERATIONAL LOADS FOR COMPLEX STRUCTURES No. US 7,715,994 B1. 

Ruzek, R., Kadlec, M., Tserpes, K. and Karachalios, E. (2017   “Monitoring of compressive behaviour of stiffened 

composite panels using embedded fibre optic and strain gauge sensors”  International Journal of Structural 

Integrity, Vol. 8 No. 1, pp. 134–150. https://doi.org/10.1108/IJSI-11-2015-0052. 

Teimouri, H., Milani, A.S., Seethaler, R. and Heidarzadeh, A. (2016   “On the Impact of Manufacturing 

Uncertainty in Structural Health Monitoring of Composite Structures: A Signal to Noise Weighted Neural 

Network Process”  Open Journal of Composite Materials, Vol. 06 No. 01, pp. 28–39. 

https://doi.org/10.4236/ojcm.2016.61004. 

Tessler, A. and Spangler, J.L. (2005   “A least-squares variational method for full-field reconstruction of elastic 

deformations in shear-deformable plates and shells”  Computer Methods in Applied Mechanics and 

Engineering, Vol. 194 No. 2-5, pp. 327–339. https://doi.org/10.1016/j.cma.2004.03.015. 

Thiene, M., Khodaei, Z.S. and Aliabadi, M.H. (2016   “Optimal sensor placement for maximum area coverage 

(MAC) for damage localization in composite structures”  Smart Materials and Structures, Vol. 25 No. 9, p. 

95037. https://doi.org/10.1088/0964-1726/25/9/095037. 

Thonemann, U. (2015), Operations Management: Konzepte, Methoden und Anwendungen, Pearson Studium - 

Economic BWL, 3rd ed., Pearson Studium. 

Valoriani, F., Esposito, M. and Gherlone, M. (2022   “Shape Sensing for an UAV Composite Half-Wing: 

                                              K ’                     ”  Aerospace, No. 9, pp. 1–

18. https://doi.org/10.3390/aerospace9090509. 

Welzbacher, P., Geipl, A., Kraus, B., Puchtler, S. and Kirchner, E. (2023   “A FOLLOW-UP ON THE 

METHODICAL FRAMEWORK FOR THE IDENTIFICATION, ANALYSIS AND CONSIDERATION OF 

UNCERTAINTY IN THE CONTEXT OF THE INTEGRATION OF SENSORY FUNCTIONS BY MEANS 

OF SENSING MACHINE ELEMENTS”  Proceedings of the Design Society, Vol. 3, pp. 141–150. 

https://doi.org/10.1017/pds.2023.15. 

Wiedemann, J., Prussak, R., Kappel, E. and Hühne, C. (2022), “  -situ quantification of manufacturing-induced 

                                                  ”  Composite Structures, Volume 297. 

https://doi.org/10.1016/j.compstruct.2022.115967. 

Xu, C., Cao, B.T. and Meschke, G. (2023), “                        physics-informed neural networks for solving 

                                                                            ”  Computer Methods in Applied 

Mechanics and Engineering, Volume 405 No. 115852. https://doi.org/10.1016/j.cma.2022.115852. 

Ye, J., Do, N.C. and Lambert, M. (2022), “       -informed neural networks for hydraulic transient analysis in 

                ”  Water Research, Volume 221 No. 118828. https://doi.org/10.1016/j.watres.2022.118828. 

Zhu, Q., Zhao, Z. and Yan, J. (2023   “Physics-informed machine learning for surrogate modeling of wind pressure 

and optimization of pressure sensor placement”  Computational Mechanics, Vol. 71 No. 3, pp. 481–491. 

https://doi.org/10.1007/s00466-022-02251-1. 

 

https://doi.org/10.1017/pds.2024.70 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2024.70

