A New Proof of the Formulae for Right-Angled Spherical Triangles.

By Professor John Jack.

It is assumed that the sines of the sides are proportional to the sines of the opposite angles.
ACB (Fig. 9) is a spherical \triangle, with C a right angle.
Produce AC, AB to D and E so that $\mathrm{AD}=\mathrm{AE}=\frac{\pi}{2}$.
Draw the great \odot DEF and produce CB to meet it in F .
Then F is the pole of $A D$ and A the pole of $D F$.
Then sides and angles of ABC are $\quad a \quad c \quad b \quad c \quad c \quad \mathrm{~A} \quad \mathrm{~B}$
BEF are $\frac{\pi}{2}-\mathbf{A} \quad \frac{\pi}{2}-c \quad \frac{\pi}{2}-a \quad \mathrm{~B} \quad \frac{\pi}{2}-b$.
$\therefore \quad \frac{\sin a}{\sin A}=\frac{\sin b}{\sin B}=\frac{\sin c}{1} . \quad$ I.
and

$$
\begin{equation*}
\frac{\sin \left(\frac{\pi}{2}-\mathrm{A}\right)}{\sin \mathrm{B}}=\frac{\sin \left(\frac{\pi}{2}-c\right)}{\sin \left(\frac{\pi}{2}-b\right)}=\frac{\sin \left(\frac{\pi}{2}-a\right)}{1} \tag{II.}
\end{equation*}
$$

that is $\quad \frac{\cos A}{\sin B}=\frac{\cos c}{\cos b}=\frac{\cos a}{1}$
and $\therefore \quad \frac{\cos B}{\sin A}=\frac{\cos c}{\cos a}=\frac{\cos b}{1}-.-$ III.
by interchange of $a, \mathrm{~A}$ and $b, \mathrm{~B}$.
$\left.\therefore \quad \begin{array}{l}\sin a=\sin c \sin A \\ \sin b=\sin c \sin B\end{array}\right\}$ from $\mathrm{I} . \quad . \quad-\quad 1$.
$\left.\begin{array}{ll}\text { and } & \cos A=\cos a \sin B \\ \text { and } & \cos B=\cos b \sin A\end{array}\right\}$ from II., III. - $\quad 2$.
and $\cos c=\cos a . \cos b$ from II, or III. - 3.
From $2 \quad \cos A \cos B=\cos a \cos b \sin A \sin B$

$$
\begin{equation*}
\therefore \quad \cot A \cot B=\cos a \cos b=\cos c \text { by } 3 . \tag{4.}
\end{equation*}
$$

$$
\begin{aligned}
& \text { Again } \quad \sin c=\frac{\sin b}{\sin B} \quad \text { by } I \text {. } \\
& \cos c=\frac{\cos A \cos b}{\sin B} \text { by II. Divide } \\
& \left.\therefore \quad \tan c=\frac{\tan b}{\cos A} \quad \begin{array}{l}
\therefore \tan b=\tan c \cos A \\
\text { and } \tan a=\tan c \cos B
\end{array}\right\}-\quad-\quad 5
\end{aligned}
$$

Again $\quad \sin a=\frac{\sin b \sin A}{\sin B}$ by I.
and

$$
\left.\begin{array}{rlrl}
\cos a & =\frac{\cos A}{\sin B} \quad \text { by II. } \quad \text { Divide } \\
\therefore \quad \tan a & =\tan A \sin b \\
\text { so } \quad \tan b & =\tan B \sin a
\end{array}\right\} \quad . \quad-\quad-\quad-\quad 6 .
$$

Note on Napier's Rules.

By Professor John Jack.
Denote the parts

$$
\begin{array}{cccccc}
b & \mathrm{~A} & c & \mathrm{~B} & a & \text { of } \triangle \mathrm{ABC} \quad \text { (Fig. 9) } \\
1 & 2 & 3 & 4 & 5 &
\end{array}
$$

by
then the parts corresponding of the $\triangle \mathrm{BEF}$, namely,
will be denoted by $\begin{array}{lllll}\frac{\pi}{2}-c, & \mathrm{~B}, & \frac{\pi}{2}-a, & \frac{\pi}{2}-b, & \frac{\pi}{2}-\mathrm{A} \\ \frac{\pi}{2}-3, & 4, & \frac{\pi}{2}-5, & \frac{\pi}{2}-1, & \frac{\pi}{2}-2 .\end{array}$
Now a third \triangle can similarly be derived from this second, a fourth from the third, and a fifth from the fourth. But when the process is applied to the fifth, the first \triangle is obtained. Hence only 5Δ s can be obtained, which are the following :-

1	2	3	4	5
$\frac{\pi}{2}-3$	4	$\frac{\pi}{2}-5$	$\frac{\pi}{2}-1$	$\frac{\pi}{2}-2$
5	$\frac{\pi}{2}-1$	2	3	$\frac{\pi}{2}-4$
$\frac{\pi}{2}-2$	3	4	$\frac{\pi}{2}-5$	1
$\frac{\pi}{2}-4$	$\frac{\pi}{2}-5$	$\frac{\pi}{2}-1$	2	$\frac{\pi}{2}-3$
1	2	3	4	5

where the mid-column contains the hypotenuse, the two next to it contain the angles, and the extreme columns the sides of the several right-angled triangles.

