A New Proof of the Formulae for Right-Angled Spherical Triangles.

By Professor JOHN JACK.

It is assumed that the sines of the sides are proportional to the sines of the opposite angles.

ACB (Fig. 9) is a spherical \triangle , with C a right angle.

Produce AC, AB to D and E so that $AD = AE = \frac{\pi}{2}$. Draw the great \odot DEF and produce CB to meet it in F.

Then F is the pole of AD and A the pole of DF.

Then sides and a	ngles of ABC	are	a	b	c	\mathbf{A}	в	
	BEF	are	$\frac{\pi}{2} - A$	$\frac{\pi}{2}-c$	$\frac{\pi}{2}-a$	В	$\frac{\pi}{2}-b.$	
.:.	$\frac{\sin a}{\sin A} =$	$rac{\sin b}{\sin \mathbf{B}}$	=	sinc 1		-	I.	
and	$\frac{\sin(\frac{\pi}{2} - \mathbf{A})}{\sin \mathbf{B}} = \frac{s}{s}$	$\frac{\ln\left(\frac{\pi}{2}-c\right)}{\ln\left(\frac{\pi}{2}-b\right)}$	$\frac{1}{2} = \frac{\sin \theta}{2}$	$\frac{1}{1}\left(\frac{\pi}{2}-a\right)$				
that is	$\frac{\cos A}{\sin B} =$	$\frac{\cos c}{\cos b}$	=	$\frac{\cos a}{1}$	• •	-	11.	
and	$\frac{\cos B}{\sin A} =$	$\frac{\cos c}{\cos a}$	-	$\frac{\cos b}{1}$	· _	-	111.	
by interchange of a , A and b , B.								
	$\sin a = \sin c s$ $\sin b = \sin c s$		from	I		-	1.	
and and	$\cos \mathbf{A} = \cos a \mathbf{a}$ $\cos \mathbf{B} = \cos b \mathbf{a}$		from	II., I	II	-	2.	
and	$\cos c = \cos a$.	$\cos b$	from	II. or	III.	-	3.	
From 2	$\cos A \cos B =$	cosa cos	b sinA	sinB				
$\therefore \cot \mathbf{A} \cot \mathbf{B} = \cos a \cos b = \cos c \text{by } 3 - - 4.$								
Again	$\sin c =$	$\frac{\sin b}{\sin B}$	by	I.				

$$\cos c = \frac{\cos A \cos b}{\sin B} \quad \text{by II. Divide}$$

$$\therefore \quad \tan c = \frac{\tan b}{\cos A} \quad \therefore \quad \tan b = \tan c \cos A \\ \text{and } \tan a = \tan c \cos B \end{cases} \quad . \quad . \quad 5$$

Again
$$\sin a = \frac{\sin b \sin A}{\sin B}$$
 by I.
 $\cos a = \frac{\cos A}{\sin B}$ by II. Divide
 $\therefore \tan a = \tan A \sin b$
so $\tan b = \tan B \sin a$ \Rightarrow - - - 6.

Note on Napier's Rules.

By Professor John Jack.

Denote the parts $b \ \mathbf{A} \ c \ \mathbf{B} \ a \ \text{of} \ \Delta \ \mathbf{ABC}$ (Fig. 9) by $1 \ 2 \ 3 \ 4 \ 5$

then the parts corresponding of the \triangle BEF, namely,

 $\frac{\pi}{2} - c, \quad \mathbf{B}, \quad \frac{\pi}{2} - a, \quad \frac{\pi}{2} - b, \quad \frac{\pi}{2} - \mathbf{A}$ will be denoted by $\frac{\pi}{2} - 3, \quad \mathbf{4}, \quad \frac{\pi}{2} - 5, \quad \frac{\pi}{2} - 1, \quad \frac{\pi}{2} - 2.$

Now a third \triangle can similarly be derived from this second, a fourth from the third, and a fifth from the fourth. But when the process is applied to the fifth, the first \triangle is obtained. Hence only 5 \triangle s can be obtained, which are the following :—

1	2	3	4	5
$\frac{\pi}{2} - 3$	4	$\frac{\pi}{2} - 5$	$\frac{\pi}{2}-1$	$\frac{\pi}{2} - 2$
5	$\frac{\pi}{2} - 1$	2	3	$\frac{\pi}{2} - 4$
$\frac{\pi}{2} - 2$	3	4	$\frac{\pi}{2} - 5$	1
$\frac{\pi}{2}-4$	$\frac{\pi}{2}-5$	$\frac{\pi}{2} - 1$	2	$\frac{\pi}{2} - 3$
1	2	3	4	5

where the mid-column contains the hypotenuse, the two next to it contain the angles, and the extreme columns the sides of the several right-angled triangles.

and