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ON MODULI OF STABLE QUASI ABELIAN VARIETIES

IKU NAKAMURA

Introduction

In [4] Deligne-Mumford introduced a concept of stable curves and
proved the existence of the coarse moduli space of stable curves of given
genus in the category of algebraic stacks. Thereafter Mumford has
shown this coarse moduli space is a protective scheme. We can consider
the coarse moduli space of stable curves as a geometric compactification
of the coarse moduli space of non-singular curves.

On the other hand Mumford showed the existence of the fine moduli
scheme (λ ;> 3), the coarse moduli scheme (λ = 1,2) of polarized abelian
schemes with degree d and level ^-structures as a consequence of his
general theory on the existence of the quotient. ([12]) Also Igusa ob-
tained the same result in the case of dimension one before Mumford.
([10]) Recently Deligne-Rapport has proved that the fine moduli scheme
of generalized elliptic curves with level λ structures exists if λ ^ 3 and
becomes a protective scheme. ([5]) A generalized elliptic curve with level
λ structure is one of the following, a nonsingular elliptic curve with level
λ structure, a chain of λ lines with level λ structure. In this case the
moduli of generalized elliptic curves with level λ structures is considered
as a geometric compatification of the moduli of elliptic curves with level
λ structures.

The main purpose of the present paper is to construct a geometric
compactification of the moduli space of principally polarized abelian
schemes with level ^-structures over the complex number field in the
lower dimensional cases. Namely we define a principally polarized stable
quasi-abelian scheme (or variety) with level λ structure (abbr. SQAS or
SQAV) (§2) and construct a compactification of the moduli of princi-
pally polarized abelian schemes by adding the isomorphism classes of
SQAS. A principally polarized non singular stable quasi abelian scheme

Received February 8, 1975.

149

https://doi.org/10.1017/S002776300001672X Published online by Cambridge University Press

https://doi.org/10.1017/S002776300001672X


150 IKU NAKAMURA

with level ^-structure is by definition a principally polarized abelian
scheme of the same level.

Our main theorem can be stated as follows,
Theorem 6.2. (g = 2,3)
(i) The functor <&g(λ), (more precisely the sheafification of the func-

tor) of principally polarized stable quasi abelian schemes with level λ-
structures over C of dimension g is represented by a non singular non-
separated algebraic space S*(λ) locally of finite presentation if λ ^ 3. The
greatest separated quotient Sg(λ) of Sf(λ) exists and is isomorphic with
the Igusa monoidal transform ©*(Λ) of Satake compactification of the
Siegel modular space <5g(λ) of level λ.

(ii) @*(;0 (λ = 1,2) has the following property,
(1) Given a SQAS over a scheme S of finite type over C there ex-

ists a unique morphism from S to ©*G0 in the category of algebraic
spaces.

(2 ) For any separated algebraic space N enjoying the property (1),
a unique morphism g from &f(λ) to N is defined in such a way that
the following diagram commutes for any SQAS over S,

@α*G0

g

N

where h is morphism defined by the property (1).
We remark that &f(X) is known to be compact. A remarkable fact

is that the moduli space S*(λ) is not separated, contrary to the cases of
stable curves, generalized elliptic curves. It comes mainly from the fact
that a SQAS of level 1 is not necessarily irreducible and an ample in-
vertible sheaf on a SQAS does not seem to be determined canonically.
A concept of a stable quasi abelian variety was first obtained by Ueno
in case of g = 2 in his unpublished manuscript [30]. He constructed the
degenerate fibers of principally polarized abelian varieties by using theta
functions. After Ueno the author obtained stable quasi-abelian varieties
as a consequence of properfication of analytic Neron model in case of
g = 2,3. After their works Namikawa gave two definitions of SQAS,
one of which the author also obtained around the same time time inde-
pendently. Two definitions of SQAS are proved to coincide with each
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other if a certain arithmetic condition (A) is satisfied, (proposition 2.2.)
If g is not greater than four, (A) holds always true, (lemma 1.5.) If
g is greater than four, this may not be the case. Therefore we shall
give a precise definition of SQAS only under the condition (A). If this
condition (A) fails, then our SQAS is not reduced, (proposition 2.4.) It
seems to the author that there is no reason to determine which defini-
tion of SQAS is better when the condition (A) fails. So we have only
candidates for a genuine SQAS in the general case. Our definition of
SQAS is greatly indebted to Mumford [13]. (definition 2.3.) On the
other hand in the analytic case, the fine (or coarse) moduli of principal-
ly polarized abelian varieties with level λ structures is known to be the
Siegel space <&*(%) of level λ. The compactification of it was considered
by many people. The most famous compactification is due to Satake,
which is often called the Satake compactification. Igusa investigated
the structure of the blowing up ©~U) of the Satake compactification by
the ideal of cusp forms and showed that the blowing up is non-singular
when g <L 3, singular when g > 3. In this article we call the last com-
pactification S*U) of &g(λ) the Igusa monoidal transform of the Satake
compactification in accordance with [16]. Recently a new method of
compactifying symmetric domains has been found by Mumford [14] and
Satake [28]. Mumford has shown a general idea of compactifying the
Siegel space in the former half of [14]. In [18], as he himself stated at
the end, Namikawa gave a false proof of a theorem that a canonical
morphism from the coarse moduli space of nonsingular curves to the
Siegel space can be extended to a morphism from the coarse moduli space
of stable curves to the Igusa monoidal transform. Mumford told
Namikawa in his letter that Namikawa's theorem and proof can be modi-
fied into correct ones by taking a partial compactification of the Siegel
space associated with DV cones instead of the Igusa monoidal transform.
We notice that the original theorem in [18] has not been known to be
true or not yet. Stimulated with this Namikawa gave a precise con-
struction of a new compactification of the Siegel space associated with
DV cones which was named the Voronoi compatification. The Voronoi
compactification is the same as the Igusa monoidal transform for g <^ 3.
The Voronoi compatification is deeply related with our stable quasi-
abelian varieties. In fact, our main theorem states that if g ^ 3, the
Voronoi compactification is in a wide sense the moduli space of SQAS.
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Moreover Namikawa has succeeded in constructing a polarized family
of SQAV's of level λ over the Voronoi compactification of level 2λ. From
these facts it is conjectured that the functor Sfg(λ) (possibly with a slight
modification) is represented by an algebraic space S*(X) of finite type
and its greatest separated quotient Sg(X) exists and is isomorphic with
the Voronoi compactification even for g greater than three. Now we
shall explain an outline of this article.

In § 1, we prepare definitions, some lemmas and propositions. The
results in this section are quite elementary. In §2 we shall define
SQAS X under an arithmetic condition (A) and prove the fundamental
properties of SQAS. For instance, X is reduced and Cohen-Macaulay
under the condition (A). Moreover we shall see that the configuration
of X is given by a certain kind of a polyhedral decomposition of g di-
mensional Euclidean space, which is called Delone decomposition. Most
of the properties of X can be described by this Delone decomposition
associated with X. Furthermore we shall give two important exact
sequences of coherent sheaves on X, and calculate the automorphism
group of X under the conditions (A) and (B). Then the connected com-
ponent of the automorphism group of X has dimension g (theorem 2.1.).
We remark that the conditions (A) and (B) do hold if g <; 4. (lemma 1.5.)

In § 3 we shall give an outline of the construction of the Voronoi
compactification and Namikawa's polarized family of SQAV over the
Voronoi compactification. In the rest of this section we shall make a
short investigation of the boundary of the Voronoi compactification in
the lower dimensional cases from the view point of troidal embeddings.

In § 4, § 5, we shall calculate Ext1 (Ωι

x ΘΣ) for a SQAS of level 1 (g =
2,3) which is the tangent space of the deformation functor of X because
I is a reduced proper scheme. ([24]) For that purpose we use a spec-
tral sequence Eψ = H*> (X £xtq {Ω\ ΘΣ)) converging to Λ**+« (Ωx Θx).
Using the results in §2, we can compute the terms EY and El*1. For
a SQAS of dimension 3 whose corresponding Delone decomposition is not
the composite of Delone decompositions of lower dimension we have an
interesting formula, dim EY = 3 + No — N, + 2N2 - 3iV3 where Nv de-
notes the number of v dimensional Delone cells modulo translations by
integral vectors. ((5.6.) Remark)

In order to compute the term E°2

A we introduce a concept of the
graph of X, which should be called the graph of the singular loci of X.
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If g is not greater than three we have dim E^1 = the number of connected
components of the graph of X. (Corollary of Lemma 5.3.)

From these calculations, the spectral sequence mentioned above im-
plies an inequality dim Ext1 (ΩΣ Θx) <; g2 if g = 2,3. On the other hand
we can construct a flat family of deformations of X depending on g2

effective parameters so that we have dim Ext1 (Ωx Θx) = g2 (g = 2,3).
In §6, we shall define a functor £fg(λ)9 i.e., the sheafification of the

functor of SQAS of level λ, and show our main theorem. For this
purpose we shall consider a functor DL, in short, the deformation func-
tor with polarization, (lemma 6.4.) With the aid of lemma 6.4. and
Wavrik's theorem, we shall prove that Sfv(X) is locally effectively pro-
representable by complete regular local rings of dimension \g(g + 1).
From these results we infer our main theorem along the same line of
arguments as that of Deligne-Rapoport [5]. The representability is
shown by using a generalization of a theorem of Artin by Deligne-
Rapoport [5].

In § 7 we shall give a brief account of the reason why we have taken
our definition of SQAS instead of degenerate fibers appearing in Deligne's
example [13]. Moreover we shall show an example of a construction of a
local family of stable curves. On the last topic we shall discuss in full
details in the subsequent paper [16]. In fact the subsequent paper [16] was
the starting point of the present paper.

The author would like to express his hearty thanks to Dr. Namikawa,
Dr. Umemura, Dr. Ueno and Dr. Kashiwara and other mathematicians
in Nagoya University for their valuable advices and encouragements. Dr.
Namikawa has kindly shown the author his handwritten manuscript.

Notations.

Let E be a real vector space of dimension N with a fixed isomor-
phism E ^ RN. Define Ez = ZN through this isomorphism. E is equipped
with the inner product (xx, x2y = x[x2(Xie E). Let C be a cone in £7.
6: = {x e E <x, x;) ^ 0 for any xr e C)
(6)z: - 6 Π Ez

R+D: ={rx;reR+,xeD} (D c E)
Q+D: = {rx ;reQ+,xe D}
g)+: the cone of real symmetric positive definite matrices of degree g.
Σ: D-V cone (1.1.)
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σ: Delone cell (1.1.)

VΣσ: a mixed D-V cone associated with Σ and σ (3.2.)

(VΣσ)z: = {(y,x)e$ϊ X 2?g; y: half integer, x: integral} Π VΣσ where y is

called a half integer matrix if yu e Z, 2τ/^ e Z(i Φ j).
ιu: the transposed matrix of u.

ZQ : non negative integers

Φg\ the set of Delone g cells containg the origin

Φ: the set of Delone 1 cells containg the origin

τ < σ: τ is a face of σ

[σ: τ]: the incidence number, where τ is a one codimensional face of σ

Mg(Z): the ring of integral matrices of degree g.

GL(gZ): the group of integral matrices of degree g with determinant

± 1

Γg or Sp(g Z): = {Me M2g(Z) MJ'M - J} where J = ^ χ JΛ, Γ,G0 or

Sp to Z)U) : - { I e Sp to^) M = l2g mod Λ}

©^: the Siegel upper half plane of degree g (2.1.)

©*(#: = <5g/Γg(λ) the Siegel space of level ^

@*00: the Voronoi compactification of level λ

e(x): = exp (2πV~ΞΛx)

C: = (Ci> »ζ0) variable

m: = (m19 , mg) e Z6'

Λ(r): = «[f» β m e Z°] ξm = e ί i m r ^ m + m'O (2.1.)

Λ(τ): = Θ[ξm β m e Z9] | m = e(imτ(sym + m£(ζ + Jr(β))) where r(s) =

(ri(β)), n(s) = τ«(s) (2.4. Remark)

B*(τ): (2.4.)

(S,+)z: = {» e ψg y: half integer}

D+: the convex hull of all symmetric positive semi-definite integral

matrices of degree g over R+

Table of Contents

§ 1. Delone cell, Voronoi cell, D-V cone and a semigroup So

§ 2. SQAV

§3. The Voronoi compactification and Namikawa's polarized family of

SQAV over it

§4. Infinitesimal deformations of SQAV (1)

§ 5. Infinitesimal deformations of SQAV (2)

§ 6. Moduli of SQAV to ^ 3)
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§7. Further remarks

§ 1 Delone cell, Voronoi cell, D-V cone and a semigroup So.

(1.1) For a matrix y of fj+, w e define two decompositions of Rg as

follows,

DEFINITION 1.1. ([18]) A subset σ of R9 is called a Delone cell w.r.t.

y if there exist integral vectors aό (e Z9) and ae Rg such that

(0) a = {Σϊ=i Λ&u 1 ^ ^ ^ 0, Σί- i i < = ; l , } i 6 / , r = l ,2, . . . }

(1) (α — a)y{(a — a) ^ c for some constant c

(2) in (1), equality holds if and only if a — a3 for some j .

DEFINITION 1.2. ([18]) A subset Δ = Δ(σ) of Rg is called a Voroni cell

(corresponding to σ) w.r.t. 2/ if

Δ(σ) = {~2ay; (0), (1), (2) hold for a and σ) .

DEFINITION 1.3. All Delone cells (resp. Voronoi cells) w.r.t. y give

a polyhedral decomposition of R9 (resp. R°y), which is called Delone de-

composition (resp. Voronoi decomposition) w.r.t. y.

We recall the fundamental properties of Delone or Voronoi decompo-

sition.

PROPOSITION 1.1. ([18]) The Delone (or Voronoi) decomposition has

the following properties.

(1) Each cell has a finite number of faces, each of which is also

a cell.

(2) The translation by an integral vector (resp. an integral vector

times —2y) transforms a Delone cell (resp. a Voronoi cell) to another.

The number of cells modulo translations is finite.

(3) // y > 0, σ is bounded and Delone cells of dim 0 are Z°. Δ is

always bounded.

(4) // y = (jj ^ , y" > 0 rank y" - g", then a = R9 X σ", Δ = 0 X Δ"

where a" (resp. Δίr) is a Delone (resp. Voronoi) cell w.r.t. yff, g = gf + g"*

And σ corresponds to Δ if and only if a" does to Δ".

(δ) dim a + dim Δ(σ) = g

(6) σ (resp. Δ) is a Delone (resp. Voronoi) cell w.r.t. y if and only

if au~λ (resp. Διu) is so w.r.t. uyιu. (u e GL(g Z))
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Proof. See Namikawa [18].

Now we introduce two conditions (A) and (B) about the Delone de-

composition w.r.t. y > 0 as follows,

For a Delone cell σ containing the origin, we define R+σ = {λa aeσ,

λ > 0}.

(A) For any Delone cell σ, the vertices of σ distinct from the origin

generate R+σ Π Z° as a semigroup.

(B) Let σx and σ2 be any pair of adjacent Delone cells of dimension

g i.e. σx Π σ2 = τ (τ: a Delone (g — 1) cell).

Then there exists a translate σ[ of σλ by an integral vector such that

σ[ Π σ2 contains at least a Delone 1 cell not lying on τ.

Remark. As we see later, two conditions (A) and (B) hold at least

if fir ^ 4.

DEFINITION 1.4. A subset Σ of f)+ is called a Delone-Voronoi cone

(abbr. D-V cone) if there exists yoe^

Σ = {ye®ϊ;y is equivalent to y0}

where "equivalent" means that y determines the same Delone decompo-

sition as yQ does.

THEOREM 1.1 (Voronoi [26]). All D-V cones form a cone decompo-

sition of D+ which is admissible, namely, satisfies the following condi-

tions,

(0) fj+ = U Σ€ (disjoint union)
(1) Σi is a rational convex cone, i.e., a convex cone generated by

a finite number of integral matrices,

(2) every face of Σt is also a D-V cone

(3) this decomposition is invariant under the action of GL(g Z)

(4) the number of cosets w.r.t. GL(g Z) if finite.

EXAMPLE. In case of g = 2, all V-D cones modulo GL(2 Z) are listed

as follows

( 0 ) ( 0 ) , ( i ) {(I ^ > o } , ( 2 ,

( 3 ) ί(Vl + Vs -#3 V 2/i > 0 \
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We list Delone decompositions determined by D-V cones shown above.

(1) (2) (3)

/

' /

' /

/ /

/

A
(1.2)

LEMMA 1.1. Assume Σ,Σ' to be D-V cones in g)+. Then the Delone

decomposition defined by Σ is a polyhedral subdivision of that defined

by Σf if and only if Σf is a face of Σ.

Proof. Let Φg be the set of all Delone g cells w.r.t. Σ containing

the origin. Take a g cell σ of Φg9 and let the vertices of σ be a0 = 0,

a19 •• ,α r . Let y be an element of Σ. Then there exists by definition

a vector a (eR9) such that

(1) (fli - aWiai - a) = (aQ — a)y\

(2) for an integral vector a Φ ai9

- a) ,r.

(a - ά)y\a - a) > (a0 - — a)

Hence we have,

(2)' ayιa > 2ayιa (a Φ at)

Since dim σ = g and y > 0, a is uniquely determined by σ and y. Put

βΣ(y) = 2ay. βΣ depends continuously on y over the closure Σ of Σ al-

though a is not in general defined over Σ. Any y in Σ satisfies (1)' and

(2)' for all σ e Φg. Conversely any y in g)+ satisfying (1)/ and (2); for

all σ e Φr

g is contained in Σ because the Delone decomposition w.r.t. y is

determined by Φg. Assume that the Delone decomposition defined by

another V-D cone Σ is a polyhedral subdivision of that defined by Σ\

Let Φ'g be the set of all Delone #-cells w.r.t. Σr containing the origin.

Then σ e Φ'g is covered with a finite number of <7-cells in Φg. For instance

assume σ to be covered with σ19 , σi9 and the vertices of σι to be α0,
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a? α<*\ Hence {a0, , ar) = {α0, αί**, , α^i = 1, , r}. Hence Σ' is

obviously a face of Σ. Hence only if part is proved.

Next we shall prove if part. If Σf is a face of Σ, then any y in

2ί/ satisfies (I)7, and some of (2)' may reduce to equalities. Since βΣ is

defined over Σ, βΣ<(y) = £*(#) for 2/ e 21'.

Hence the set of all a3 such that a^a^ = βΣ(yYaj9 contains a5 (j —

0, ,r) as a part, i.e. the Delone decomposition w.r.t. Σ is a polyhedral

subdivision of that w.r.t. Σf. Q.E.D.

LEMMA 1.2. Assume U to be an open cone in RN defined by a

fihite number of integral inequalities. Moreover suppose that there's

no line completely contained in U. Set Aut U — {ge GL(NZ); g-U = U}.

Then Aut U is a finite group.

Proof. By assumption U is the set defined by ajx > 0 (i = 1, ,w)
with integral vectors at. Since U has only a finite number of faces of
codimension 1, we may assume g e Aut U to transform any face of co-
dimension one into itself. However then we have g*(ai

tx) — a^gιx =
λiβiX with a positive rational number λim Hence λi is an eigen-value of
ιg e GL(g Z) so that we have λt = 1. By assumption there exist at least
N vectors at independent over R, therefore we conclude g = identity.

Q.E.D.

RROPOSITION 1.2. Assume Σ to be a D-V cone in g)+. Then Aut I'

is finite. Moreover Aut Σ Π GL(3 Z){λ) = 1 if A ̂  3.

Proof. The Delone decomposition w.r.t. 21 (21 c g)+) has at most a
finite number of integral polyhedral subdivisions invariant by transla-
tions, hence in view of Lemma 1.1. Σ is contained in at most a finite
number of open D-V cones. AutJ? induces a permutation on D-V cones
which contain Σ. According to Lemma 1.2., Aut I1' is finite for an open
D-V cone Σ\ because Σf is contained in JJ+, so does not contain any line.
Hence KvXΣ is finite. GL(g Z)(λ) contains no element of finite order
distinct from identity if λ Ξ> 3, so we are done. Q.E.D.

(1.3) Let δ be a positive semi-definite symmetric half-integer (g, g)

matrix. Up to GL(g Z) conjugate we may assume B = ί Q g,λ, B"
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DEFINITION 1.5. So is a semigroup in Z x Zg generated by {mBtm9m)

meZ9 and (l,0σ).

LEMMA 1.3. (i) So is finitely generated.

(ii) Assume the condition (A), then SQ is saturated.

Proof, (i) is a consequence of ([13] p. 242).

(ii) It suffices to prove our lemma in case that B is positive. We

define a function g by g(m) = Min{Λf; (N, m)eSQ}. Obviously we have

g(m) = Min {Σ(,ύmβtmj £j ^ 0, ΣSjmj = m, £j9 ms integral}. And (N, m)

belongs to SQ if and only if N ^ g(m). So it suffices to prove g(rm) =

rg(m) for a positive integer. Assume m e R+σ for a Delone g cell con-

taining the origin. Let a be a vector satisfying the conditions (0) ~ (2)

for σ. We shall prove #(m) = 2aBtm. Assume m — ΣSJTΠJ with integral

ls% TΠj (£s ^ 0). Then we have /miB
tτγιj ^ 2aBtmj, so that ΣίjmjB^j ^

2aBt(Σ£jmj) = 2aBtm. On the other hand, by the assumption (A) we can

write m = ifryii with vertices at of σ and positive integers r*. Since

Σrμβιaj = 2aBt(Σrjaj) = 2aBtτn, we have #(m) = 2aBtm, which completes

the proof.

DEFINITION 1.6. Sj,0

 i s a semigroup in (fk)z x Z^ generated by (α,0)

α e ί l ) ^ ^mm.m) meZg where Σ is a D-V cone in f)+.

LEMMA 1.4. S^,o is saturated and finitely generated under the as-

sumption (A).

Proof, (α, m) e (%)z X ^ g is contained in SΣt0 if and only if for any

yeΣ, t r (ay) — 2aytm ^ 0 with the notations in Lemma 1.3. Hence it is

obvious that SΣ>0 is saturated. Since (Σ)z is finitely generated ([11] p. 7),

the assertion follows.

LEMMA 1.5. In case of g ^ 4. the conditions (A) and (B) /&oZcί.

Proof. Obviously the condition (A) holds true for any D-V cone in

Dj if (A) holds for any open D-V cones. According to Lemma 1.1, the

condition (B) holds for Σ/ if Σf is a face of an open D-V cone Σ and

(B) holds for Σ. In view of Voronoi's results, (A) and (B) hold for any

open D-V cone if g <: 4. ([26])

(1.4) We introduce a stronger condition (A*) than (A).

(A*) Let a0 = 0, a19 -9ag be vertices of Delone g cell σ w.r.t. B.
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I f aί9 -9ag a r e l i n e a r l y i n d e p e n d e n t o v e r R . t h e n a19 9ag f o r m a b a s i s

of Zg.

LEMMA 1.6. // the condition (A*) is satisfied by B, then (A) is also

satisfied.

Proof. Let a be contained in R+σ Γ) Zg where σ is a Delone cell

containing the origin. Then there exist g vertices al9 , ag linearly in-

dependent over R such that a is contained in Σ?βijRjfα<. a is uniquely

written as a = 2]?=i r ^ > r ί ^ 0. Since α* is a basis of Zg

9 a is also a

linear combination of at with integral coefficients.

Remark. If # ^ 3, (A*) holds for any £ . In case of g = 4, many

examples satisfy (A*). The author does not known any counter-example.

§2. Stable quasi abelian varieties (SQAV)

(2.1) We write a disc D == {s e C; \s\ < ε}9 D* = D - {0}, 0 = <DOtD = the

local ring of holomorphic functions at the origin.

Let τ be a germ of a holomorphic mapping from D* to the Siegel

upper half plane (&g of degree g, <&g — {X + ίY X9 Y real, symmetric,

Y > 0}, surject to the unipotentcy condition,

τ(e2πίs) = τ(s) + B

with a positive semi-definite symmetric integral matrix B. Then we can

write τ(s) = τo(s) + B log s/2ττi with a holomorphic matrix τo(s) defined also

at the origin.

It is well known that τ(s) (s Φ 0) determines a principally polarized

abelian variety in a canonical manner.

The sympletic group Sp(g Z) operates on &g by,

M = (j- 5):r->(Aτ + B)(Cτ + D)~ι , M e Sp(g Z)

then τ and (Aτ + B)(Cτ + Z))"1 determine isomorphic principally polarized

abelian varieties.

DEFINITION 2.1. R = Θ[e(^mτ(s2ym + m%)e9meZg]9 where Θ is an

indeterminate. Here we consider R as an O graded ring by,
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degθ = 1 , deg(e(^mτ(s2Ym + m%)) = 0 , dega = 0 ( α e ί ) .

PROPOSITION 2.1. ( i ) Proj R is a locally noetherian analytic space

with a canonical projection m to Spec0.

(ii) P r o j β is covered with open affines Uk = SτpecRk,keZg where

Rk = (P[eQmτ(s2Ym - \kτ(s2Yk + (m - AOΌ, m β Z<>]

(iii) Under the assumption (A), Proj i? is normal, Cohen-Macaulay

and ΌS is flat, reduced^ Cohen-Macaulay.

Proof, (i) (ii) is obvious from the definition and (i) of Lemma 1.3.

(iii) Since Rk s JB0, we suffices to prove Ro is normal, Cohen-Macaulay

and tΰ\Uo is flat reduced, Cohen-Macaulay. Up to GL(g Z) conjugate, we

may assume B = (® ^ A B" > 0, rank B" = g", g = g' + g". Then we

have

RQ = 0\_smBtme{m%), m e Z f f]

= 0[sm"B"tme(m%), m = (mf, m") e Zg]

C'O, m 7 e Z ^ , m7 / e Zg"] (ζ =

The normality and Cohen-Macaulayness of Ro follow from the saturated-

ness of a semigroup SQ associated with B". ([11] p. 5 and p. 52) How-

ever SQ is saturated in view of Lemma 1.3. Next we turn to the proof

of the second assertion. Assume ® not to be reduced, then we have an

element / of Ro such that fr = sh9 with heRQ, f§ sR0. Viewing that

Ro is a graded ring in s, e(d) , e(ζg), we may assume / is a monomial,

say, sae(b%). Then (sae(b%))r = sh implies ra> g(rb). Since f$sR0,

a = g(b), which contradicts to the fact g(rb) = rg(b). Since Proj R is

Cohen-Macaulay and ΌS is obviously equidimensional (see 2.3), so ΌS is

flat. We shall prove later that ΌS is Cohen-Macaulay.

(2.2) Next we shall construct a troidal embedding corresponding to Proj R.

This construction is one parameter case of Namikawa [18], and of

course the idea is quite the same as his.

DEFINITION 2.2. A subset Δ of Rt X RgB is called a mixed V-cone

with respect to B if

Δ = interior of Δk or a face of Δk (k e Zg)

where Δk = {(y, x) e 2?0

+ X R9 imBιm — kBιk)y + (m — fc)4a? ̂  0, meZ f f } .
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Remark. {Δ} forms a convex rational polyhedral decomposition of

RQ x Rg, which we call mixed Voronoi decomposition of R£ x R9.

LEMMA 2.1. Under the assumption (A), So = (ΔQ)Z = {(α, m) e Z£ x Z°

α̂ / + mιx ^ 0 /or any (y, x) e ΔQ}.

Proof. It suffices to prove SQ = Jo since So is saturated, (lemma

1.3.) However this is obvious from the definition.

From Lemma 2.1., it follows by the theory of troidal embeddings [11],

PROPOSITION 2.2. Under the assumption (A), Proj R is a troidal

embedding associated with a mixed Voronoi decomposition of R% x Rg.

(2.3) PROPOSITION 2.3. We assume the condition (A) to be satisfied for

B > 0. Let P = Proj R, Po = the closed fiber of P by w. Then Po is

described as follows,

( i ) PQ is covered with open affine sets (Uk\, k e Z9.

(ii) each (Uk\ is isomorphic to (C70)0,

(Uk\ = Spec C[x%\ a e Φ] , x(

a

k) = s

aBta+2kBtae(a%)

where Φ denotes the set of all vertices of Delone 1-cells containing the

origin.

(iii) the fundamental relations between xa,aeΦ are given by

H χa. = 0 if no Delone g cell contains all at iel .
ίei

Y[ xtti = U κai if &i (isI U /') are contained in a Delone

g cell σ and moreover Σ at = J ] &%
iei iei'

(iv) (Z7o)o is a union of Zτ (τ: Delone cell containing the origin)

Zτ ^ Spec C[xa, xeτ] xa = x^

Zσi Π Zσz = Zσif]σ2 , Zτ C Zσ if τ < σ

( v ) ( £ / o ) o Π ( Z 7 ^ ) o Φ φ if a n d o n l y if k e Φ

(vi) Given a Delone g cell σ, the structure of the closure Zσ of

Zσ in P, is described as follows. For a vertex a0 of σ we define YaQ =

Spec C[saBta-aoBtaoe((a - αo)Ό, a e σ] and J'(α0) = {x - x0 x e A({aQ}), xQ e Δiσ)}

where Δ(τ) denotes a Voronoi cell corresponding to τ. Let Cao — R+Δ/(aQ)

— \λV\ yeΔXaQ),λ > 0}. Then V = {Cao,a0eσ and a face of Cao} gives a
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rational convex conical decomposition of Rg and Zσ is an equivariant

completion of an algebraic torus (C*)g w.r.t. ft. ([11], [21])

Proof, (i) and (ii) are direct consequences of the definition and the

proof of Lemma 1.3.

(iii) If all at are contained in the same σ and 2]ieiiαί = Σαΐe/a

α<>

then we have for some a e R9, aJB^i — 2aBtai ielx\j I2, hence g(Σίeiv &d

= Σieiv UiB^i = 2aBtQZi£lva1),v = 1,2. Thus we obtain \\iQi1xai =

Πiei2

χai> If there's no Delone cell containing all ai9iel, at the same

time, then g(ΣίeI at) < J ] a^a^ In fact, assume the contrary. Take

a Delone cell a such that m = ΣieI α* e R+σ. Then there exisits aeR9

such that aBιa >̂ 2^5^, equality holds if and only if a e σ. In view of

Lemma 1.3, g(m) = 2aBιm = 2]ie/2α#ία<. If #(m) — Y^a^a^ then

aiβσiie I) since α J S ^ = 2aBtai (i e /), which is a contradiction.

(iv) is obvious from (iii).

(v) If fee Φ, then it is obvious that (C70)0 Π (Uk\ Φ Φ. Conversely

assume (ί/o)o Π {Uk)Q Φ φ. Then there exists a point p such that xk(p) Φ 0,

αjfc - s ^ ' W O e Γ((C70)0).

This implies r̂(fc) = fcδ^fc, i.e. k — at for some i.

(iv) With loss of generality, we may assume α0 = 0. We have

already known

J({0}) = {x aBιa + aιx ^ 0 , for any a e Z°)

= {# α B ^ + αέ^ ^ 0 , for any aeΦ}

and J(σ) = {x0} = {ίc α^β*^ + α̂ a? = 0 (α< e σ), aBιa + α f^ ̂  0 for any α e Z9}.

In order to prove the assertion, we suffices to show that Yao is an

equivalent embedding of algebraic torus associated with Cαo. For that

purpose, it is sufficient to show that Cao = (R+σ)w = {x x\a — a0) ^ 0, for

any a e σ}. (a0 = 0) If x — x0 e J7(α0), (ίc e J({α0}), ^0 e J(σ)), then

(x — xQ)% = α ^ i — ίCô ί ^ —afi^i + aβ^i = 0 ,

so that we have Cao c (R+σ)v. Conversely let x' be contained in (R+σ)w,

i.e., ίc^αi ^ 0 for any α̂  e σ. Put iV = Minaφai>0 {aB^ + 0,%}. Obviously

N > 0. Take a positive number r such that lα'x'l < rN, for any α e Φ

a Φ aif 0. Put x = (x'/r) + x0. Then we have, aiB
tai + a/x = aβ^i +

a,i% + (afx'lr) ^ 0 (at e σ) αB^ + α^ = aBιa + α*^ + (a*x'/r) ̂  {aιxf/r)
+ N > 0 (aeΦ9aΦai90) so that α? is contained in Cαo. Hence we obtain
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xf = r(x — x0), x e Cao, %o e Δ{σ). Q.E.D.

(2.4) Now we define an action of a lattice Γ {— Z9) on P and construct

a quotient space si = P/λΓ, λΓ = {λn; ne Γ}, λe Z+. For an element n

of Γ we define 0-endomorphism of R by,

S*(a) = a , a e 0

β(|(m + ^ ( m + n) + (m + w)<ζ)0 .

Thus Sw transforms D* into Uk+n.

In order to prove that Γ acts on P properly discontinuously we take

a local analytic model P over De = {s eC;\s\ < ε}, a local representative

τ defined over De for a sufficiently small ε > 0. Our aim is to show that

for any point p in Po, there exists a small neighborhood U(p,ε) such

that Sn(U(p,ε)) Π U(p,ε) is empty except at most a finite number of n.

For brevity we assume the condition (A) is satisfied and B > 0. More-

over assume that Zσ is the minimal subvariety containing p where σ is

a Delone cell containing the origin. Then we may take a neighborhood

U(p,ε) of p defined by, U(p,ε) = {(s,#α) α e Φ ; |s| < ε1? |&α| < ε2 (a$σ),

\Xa — %a(P)\ < εs (βe<r)} ε = (ex,s2,ε3). Notice that ^α(^) ^ 0 (αeσ).

Assume Sn(U(p, ε)) Π ϋ(p, ε) ^ ^. Take a point α;0 from Sn(U(p, ε)) Π

U(p,ε), then we may assume #° to be given by (sQ, x°a), (s0 Φ 0) with finite

exception of n. (Recall that (C70)0 Π (Uk\ Φ φ if and only if k = at for

some i.) Hence we have,

0 < |so| < ε, , \x°a\ < ε2 \x°a - xa(p)\ < ε3

(a $ σ) (α e σ) .

Taking at first ε2, ε3 in such a way that 0 < ε2 < 1,0 < ε3 < Minα € σ \xa(p)\

and then ε1 < Min (ε2, ε3), we have

I Q2aBta + aBtn\ \QaBtn^\ I/y.0 I <s Λ

| S 0 I — | S 0 Xa\ \X-a\ ^ L

Iδθ I — l δ0 X-a\ \*Ό,\ ^ -1-

if a$σ or — αeσ, so that 2aBιa + α B ^ > 0, 2aBϋa — α β ^ > 0. On the

other hand σ does not contain both a and — a, i.e., a $ σ or —α $ σ. Hence

Sn(U(p, ε)) Π £7(p, ε) = φ except a finite number of n. Even in the gen-

eral case, since Ro is finitely generated, it is easy to check the action of

Γ on P is properly discontinuous and free along the same line of argu-

ments as above. Thus we have proved that the action of Γ on P is
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properly discontinuous and obviously free, (see footnote.)

On the other hand S*S* = S*S* = S*+n by the symmetry of τ, so

0(1) on P can be descended to an invertible sheaf which is also denoted

by 0(1). Then we have,

PROPOSITION 2.4. ( i ) The quotient space P/λΓ exists and has a

canonical proper projection m to Spec Θ.

(ii) (Namikawa) Under the assumption (A), 0(1) is relatively ample

on P/λΓ

(iii) Under the assumption (A), m is a reduced, flat, Cohen-Macaulay

morphism. P/λΓ is normal, Cohen-Macaulay.

Proof. The proof of (ii) should be refered to Namikawa [18]. The

other assertions follow from Proposition 2.1..

Next we investigate a section of P over Spec0 under the assump-

tion (A) and define a concept of level Λ-structure on P/λΓ.

Let τ = φ) + B log s/2τrv^I, «r = τ, B = ft ®,λ, B" > 0. Take a

Delone #"-cell σ w.r.t. Bn containing the origin. Set g' = g — g".

Let a$ (j = 0, , r) be all the vertices of a, aQ = 0. Then by defini-

tion there exists a vector a( e R°") such that a^aj — 2aBtaj (j = 1, , r).

By assumption (A), 2aB is an integral vector because {αj span R+σ Π Zg"

over ZQ, SO Zg" over Z where ZJ denotes nonnegative integers.

Then we define an 0-algebra i?* = 72*(τ) by,

β*(r) = 0[£* .0 m e ^ ] , f * = e(imφ2ym + m ί ζ ) s ^ ^ - ^ ^ .

β*(τ) is obviously isomorphic to Riτ) as (^-algebras. Γ operates on

Proj R*(τ) properly discontinuously and free and Proj R*(τ)/λΓ exists.

Since B = (J # „ ) , R*(?) = Θ[ξ*)±ι, ξ*J (e, j-th unit vector, m2 e Z O

We define a section ε, by f* = 1, f0* y = 1 (α, e σ) and εσ+TC by ξ*+n =

fίαi+n = l,ε f f+n (neZ9) is a section not only of P* = Proj 22*(r) but also

of P*/λΓ. On P*/^Γ, εσ+w = £,+„, if and only if w = n'mod^. On the

other hand Gσ = Spec^Kf^)*1,?*^1] is an 0-group scheme w.r.t. the usual

multiplication of a split torus with unity εσ9 and hence the image Gσ of

Ĝ  in P*/λΓ is an open subscheme and also an 0-group scheme. The

union G of all translations of Gσ by Γ forms a 0-group scheme and an

open subscheme of P*/λΓ. Let e$ — Σ]ϊ-i^*α*> (e* = M h unit, flr7 + 1 ^

This proof is valid only in the case τ0 = 0, B > 0. In a more general set-up we
can prove the existence of quotients ([15] §2).
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^ 9, njk e Z), and ηβJ = ξ* (1 ^ j £ g')> ηej = Π (£&)*jk W + 1 ^ f ^ 9).
Put

εv: ηej = eie^βj) (g + l^v^g + g;/)

εv = eσ+ev (9 + 9" + 1 ^ v ^ 2g) .

Then εy 1 <̂  v ^ 2^ forms a basis of the set of all ^-division points of G.

Obviously εv (g + 1 ^ v ^ 2#) operates on 0(1) invariantly.

Let H be the set of all ^-division points of G and W be the sub-

group scheme generated by εv (g + 1 ^ v ^ 2gr).

DEFINITION 2.3. f = (P*/λΓ, w, Spec &,G,H,H',ejy 0(1)) is called a

principally polarized stable quasi-abelian variety (or scheme) with level

^-structure over Spectf. (or abbr. SQAV or SQAS) The closed fiber of

ξ is called a SQAV (SQAS) over C.

Notice that our definition of level structure depends on the choice

of a Delone cell σ. Although Namikawa has defined this by the action

of Γ mod λΓ, it seems that our definition is better in order to prove the

existence of moduli (§ 6).

Next for later use (§ 6) we shall define over any algebraically closed

field K (char K = 0) a principally polarized stable quasi abelian variety.

Let Λ = X[[t]][fm 9,meZ f f ] , ξm= (Ui,ja?jim0tmBtmwm, B: a positive

semi difinite matrix, ιB = B, atj e K, aiό = ajt. We can define an action of

Γ(= Zg) in a similar manner. We assume that an action of Γ is free and

properly discontinuous, and Proj R/λΓ exists as a projective Jί[[ί]]-scheme

with an ample invertible sheaf 0(1).

Moreover we assume here the condition (A) for B holds. Then by

the same argument as above, an open subscheme G, sections εj9 H and

W are defined.

DEFINITION 2.4. (P/λΓ, ®, Spec #[[£]], G9H9H\ej9 0(1)) χ^[Cί]] Spec K

is called a principally polarized stable quasi abelian variety level λ

structure over K.

In the case where K = C, we may assume B = (~ g,Λ, B" > 0,

*B" = B", and atJ = e($(τQ)tJ). The existence of the quotient (P/λF), 0(1)

implies that the principal (g — gr'O-minor τ] of τ0 gives an abelian variety.

We may assume then with loss of generality τj is contained in the Siegel

upper half plane of degree (g — g"). So our second definition of SQAV
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is the same as the first one in case of K — C.

Remark. We give another construction of SQAV for later use. Let

τ be a period matrix as before, τ = τo(s) + B log S/2TΓΛ^Ϊ,
 ιB = B >̂ 0.

We define R(τ) = 0[fTO 0], | m = e(|mro(s)'m + mtζ)8

WmBtm-rtm) where r de-

notes the diagonal vector of B i.e. r$ = &«, 2? = (6<̂ ) /"*(= Zg) acts on

P = Proj JK(r) properly discontinuously and freely. The closed fibers of

P, P/λΓ are the same as before. Se we omit details.

(2.5) Let X be a SQAV, and B be a positive semi definite matrix,

«£ = £, B = (J ^ Λ S " > 0 , Γ e l ^ ) . We consider the Delone

decomposition associated with B. Let σk be a Delone cell of dimension

k of this decomposition (0 <̂  k <£ ̂ ). In what follows, we fix an orien-

tation of <7 in such a way that every pair of adjacent g cells have con-

verse orientations to each other along their common faces.

LEMMA 2.2. Assume the condition (A) for B. (or in this case we

say simply X satisfies the condition (A)). With the notations in 2.3) we

have an exact sequence

0 >ΘPo - A Θ ΘZσg -+± Θ ΘZaQ_x J l > . . . ̂  0 ΘZσg_gf, > 0

where Θγ denotes the structure sheaf of Y, g" — rank B and c* is a

homomorphism induced by the normalization of Po. ψk is defined by

Ψ*((<O) = (&r) , &ff = Σ > : * K .

Proof. Since each of Po, Zσ is reduced, the exactness follows from

that of the usual topological resolution

0 - Q(Po) -> Θ Q(Zσ) > Θ QίZ^.^) -> 0

where Q(Γ) denote the constant sheaf Q of rational numbers on Y.

Let X = PQ/λΓ, X = the normalization of X. Denote by Xa the in-

verse image of Zσ in X. Then we have

COROLLARY 2.1. Under the assumption (A) we

<τmod;Γ d^Γ d^

COROLLARY 2.2. Under the assumption (A) we have
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(i) dim H*(X 0X) =

(ii) a canonical homomorphism H\XC) —» H\XΘX) is surjective.

Proof, ( i ) Assume g = g", i.e. B > 0. Since J?*(Zσ, <PX,) = 0 i > 0

by the general theory ([11] p . 44), it follows from the above Corollary

t h a t

H\X Ox) = H\{® H\Xa, ΘXσ)})

)

= Hi(R°/2F, C) = C ( ? ) .

In the general case, noting that Xσ is a fiber bundle over a fixed abelian

variety A with fiber X'σ where X'σ is a variety corresponding to σ w.r.t.

B", B = (Q D//)> we infer easily our Corollary,

(ii) is obvious from the above proof.

Remark. Let B = β £Λ rank β7/ = g". Then we have H\X Z) =

Z2^"^" by the same argument noting that Z^ is simply connected.

COROLLARY 2.3. Under the assumption (A), X is Cohen Macaulay.

Proof. According to Proposition 2.3 (vi) ([11] p. 52) any Xσ is

Cohen-Macaulay, or equivalently ^ , ( 0 ^ ) = 0 (i < dim Xσ, x'o e Xσ). Using

Corollary 2.1 we can prove ^ 0 ( 0 x ) = 0 (i < g,xoeX) inductively.

(2.5) Next under the assumption (A) we shall give an explicit de-

scription of £χt* (Ωx Θx) and moreover compute dim Ext0 (Ωx Θx) in the

case where λ = 1 and the condition (B) holds for X. Assume B > 0,

consider the Delone decomposition associated with X, i.e., B. Let at be

an extremity distinct from the origin of a Delone 1-cell w.r.t. B con-

taining the origin. We put Φ = the set of all such α/s and

= U subset I a Φ; , . , . ^ , n f
I contained m any Delone g cell )

__ ^ . The union of I and c^ is not completely contained!
in any Delone #-cell for any / of Φia^ ί

LEMMA 2.3. Φ(α )̂ = at
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Proof. Assume ad Φ au a5 e Φ. Then there exists a Delone <7-cell σ

containing the origin such that σ a αj9 σ e αt (obvious !) Denoting the

set of vertices of σ distinct from the origin by /, we have / e Φ(α*), and

so αό § Φ(αt).

Obviously Φ{α^) = {I c Φ; xαiXi = 0} where xτ — \[ xα

eiαei

= {αό XαjCj = 0 for any I e

Any relation between #α/s in Γ(X0ΘXo) is induced from proposition 2.3.

(iii). So Ω\ is generated by dxα., αt e Φ, and dxα/s are subject to the

relations induced by Proposition 2.3. (iii). We denote Po Π Uk by Xh

(keZ°).

LEMMA 2.4.

-, f 0 m i /n Λ ί Σ fαt(x)*αtlr- i (*> Σ fαt = Σ Λ 4 CW Zσ Π
E x t 0 ( β ^ 0 , i?Xo) = j t dXαi tei iei

I for α pair (I,Γ) and σ satisfying (1)

where xai(β/dxa^ denotes an Θx-homomorphism of Ω1 to Θx defined by

(xai(d/dxa))(dxaj) = δijxat (flj e Φ), xa - e(ϊaτQ(θyΦaBtae(a%).

Proof. Assume ω is an element of Ext0 (ΩXo, ΘXo) defined by

ω(dxa.) = gai eΘXo, ateΦ .

For / G Φfe), %;rai = 0 hence xaidxj + Xidxai — 0. Consequently

0 = ωθ£α.ete7 + Xjdxa) = xa.ω(dXj) + xzgat .

Therefore x\gai = 0, hence we have # 7 # α ί = 0 for I e Φ(at). According to

Lemma 2.2., we obtain gai = xajai for some / α . e ̂ Z o . From the second

relation (iii) of Proposition 2.3., it follows ω(d l\ίeI xa) = ω(d Y[iei'χa%)>

and since ω(dxj) = 2] Xj_αί ω{dxa) = ̂ 7 ( 2 ] ί e 7 / α . ) . We have % ( Σ i e 7 / α ί

- Σ<67'/θi) = 0, which is equivalent to the equation Σ ί e 7 / α ί = Σ * e / Ά

on Zσ Π Z o . Conversely ω = Σχfa^aβl^χa) subject to (*) defines aΘXo

homomorphism of ΩXo to ΘXo in a canonical manner.

LEMMA 2.5. (i) 0 -* £xt° (ΩXo, Θx) - U ί«

(ii) Image of c = 0 ίP(Zσ )̂  where e(ω) = (π*/α< α̂  e σ)
oeσg

tations in Lemma 2.3., 7r,:Xσ—>X0 is an inclusion, Xo =
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normalization of Xo.

Proof. At first we must show c is well-defined. We take other /α/s
such that

ω = = LΛJ aflat— = = 2-iJaί^on—
oX oX

o = ( Σ (/«< - Λ
\ i

So we have f'aj — faj on Xσ if αy e <τ, which shows t is well-defined. It
remains to show c is injective. If c(ω) = 0, πffai = 0 for any pair at σ.
Therefore ω(dxa.) = /α ί^α ί = 0. We deduce the second assertion directly,
noting that Z^e/i/α* = Σatei*fat9 and σg has exactly g linearly inde-
pendent vectors xit Q.E.D.

LEMMA 2.6. The following sequence is exact,

where Θ(XσkY is the subsheaf 0{XJ»™ = f ( / β J ; ^€c7fe *}* \(N(σk) =

#(σfc Π Φ)) defined by

Σ /α<fσ = Σ Λi.σ if Σ α i = Σ aι
ίe/i ίe/2 ie/i ie/2

and ψ0 is defined by

Ψo((fa,σ)aeσ) = (/αr) > /α Γ — Σ t σ : rl/a<r

Proof. According to Lemma 2.4., it is shown that ψ0 is exact (i.e.,
injective) and the image of ψ0 is {(ττ*/α<) α̂  e σ, fai e (P(X0)}, which is
nothing other than Ker ψ1 because [σ: τ] = — W: τ\ for any (g — 1) cell
τ and adjacent pair σ, σf such that σ Π a' = τ. Q.E.D.

Any Xk is isomorphic, so there is the same kind of an exact sequence
on Xk. Patching them together we obtain a global exact sequence as
follows,

PROPOSITION 2.5. The following sequence is exact;

0 >gxt<(Ωl,Θz)-U © (9(XσgyJ^ 0 ag_t
σgmod Γ σg-im.od Γ

Proof. We remark that X0Γi Xk Φ φ(kΦθ) if and only if fe =
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On XQ Π Xk we shall investigate the relation between two homomorphism

Let k be an element of Φ, say ax. Let

Γ(XQ) = C[xao a,i e Φ] , α;αi -

and

Xo and Z α i are glued along Xo Π Xα i by the relation

x'a. = 0 if ad + ax 6 Φ

xaj = 0 if efy — α x 6 Φ

X-ai — Xax

%'aj-a,! = # ί X y if ^ - tti 6 Φ .

Hence we have

CίX-ai = Xai^Xa1

dXaj-a,! = -X£dXaj + X'alXajdXaj (βj - ^ G Φ) .

Let ω be an element of Ext0 ( f l^n^, OXonXjfc) given by

ΛiSΦ dXa. aiGΦ OXa.

Then computing ω(dx'_a)>ω(dx'aj_a^) we obtain,

/- α i = - / β l , ^ / / ^ - α i - / β y + / β l ) - 0 (^ - ax e Φ) ,

hence

**/ : β l = - ^ / α , , π*ff

aj-aι - π?/α y - π*/ β l (α, e α, α, - ^ e Φ) .

If we fix a Z-basis ed (j = 1, , g) of Zg and define

* V = π*faj, Faσ = J]< %π:*/α< for α = χj< ^ α £ (nt e Z), F'a likewise,

then the above isomorphism on XQ Π Xk reduces to the trivial identities

Feiσ = F'e.a. On the other hand the exact sequence thus obtained on

(Proj R\ can be descended to X because of the invariance under the

action of the lattice Γ. Q.E.D.

THEOREM 2.1. Under the assumption (A) and (B), dim Ext0 (Ωz, ΘΣ)

= g if λ = 1.

Remark. We prove here the above theorem in case that B is positive.
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But as easily shown, we infer from the fact of dim Ext0 {Ω\, ΦΛ) = g for

an nonsingular aberian variety that even in the general case our theorem

under the same assumption is true. On the other hand our theorm is

not true if λ Φ 1. For example, dim Ext°(βχ, Θ)) — n for a chain of lines.

(χ=zn,g = 1).

Proof of the Theorem. By virtue of proposition 2.5. we have only

to compute the kernel of ψ0: ®H°(0(X0)y^®H°(0(Xβg_1)y-1. A section

(Ca,σa e σg Π Φ) of Θ H%G(Xσ)y is mapped to (Caσ - Caσ,) for adjacent

pair a and σ', i.e. σ Π σf is a (g — 1) cell. (Caσ) is contained in Ker ψj

if and only if Caσ is independent of σ, i.e. Caσ = Ca. Moreover if at e σ,

ΣίeI at = 0 mod Γ, then Σ ί e Z Cα ί = 0. Since λ = 1, there are at most #

linearly independent solution by the assumption (B). (C*)g acts effectively

on X, so dim Ext0 (Ωx

x, Ox)) = ^. Q.E.D.

More precisely we obtain

THEOREM 2.2. Let Σ be a D-V cone corresponding to a SQAV X of

level 1, and Σa$)g. Then under the assumptions (A) and (B) we have

Aut1 X = Aut Σ where Aut1 X - Aut X\ Aut° Z, Aut Σ = {u e GL(g Z)

uΣιu = I7}.

Proof. By the assumption that ί C ^?

+, any irreducible component

Xσ is a compactification of an algebraic torus (C*)g. Fix a Delone #

cell σ0 and an embedding of (C*)g into Z σ o . Then assumption (B) implies

that for any g cell σ in a canonical way an embedding of (C*)*7 into Xσ

is uniquely determined. We fix a Z-basis of Zg. An automorphism /

of X induces a polyhedral automorphism / of the Delone decomposition

associated with Σ. If two g cells σx and σ2 are adjacent, then /(σx) and

f(σ2) are adjacent. / on σt is represented by a matrix ^ σ ί of GL(g Z)

w.r.t. the above basis of Zg and in view of the assumption (B), we have

uσi = t6σ2. By induction on the length of a chain of Delone g cells con-

necting σ and σ0, we have uσ — uσo, namely, / is induced from a linear

transformation u — uσo of Rg, and u e Aut Σ. Obviously u induces an

automorphism of X, so we consider an automorphism / ' = f ou~ι of X.

f transforms Xσ into itself, moreover, / / is a translation by a constant

vector aσ (e (C*)9) on X,. / ' is an element of Aut0 X = the connected

component of identity of A u t Z . Hence by the theorem 2.1., we obtain

aa — a independent of σ if λ = 1. Q.E.D.
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Remark. Notice that in the above theorems we mean by an
automorphism of X simply that as an algebraic variety, not as a SQAV.
Therefore an element u of Aut X may not preserve a section X over C.

§ 3. Voronoi compactification and Namikawa's polarized

family of SQAV over it.

(3.1) As stated in the introduction Namikawa gave a precise con-
struction of the Voronoi compactification in [18] by using the theory of
troidal embeddings [11]. The Voronoi compactification @*U) has been
already known as the Igusa monoidal transform of Satake compactifi-
cation of Siegel space if g <Ξ, 3. It is deeply related with our stable
quasi abelian varieties. In fact, Namikawa succeeded in constructing a
global polarized family of stable quasi abelian varieties over it. We
shall introduce an outline of his results in (3.1) (3.2). In (3.3) we shall
investigate the structure of the Voronoi compactification @*ϋ) along the
boundary, in particular, the fibering over ©jjLi(Λ) of an irreducible com-
ponent of the boundary of codimension one. We notice that a general
fiber of this fibering is a polarized abelian variety with level λ structure.
Therefore it seems natural to expect the fibers of this fibering are also
our stable quasi abelian varieties. However this is not the case. We
find that a reducible variety distinct from our stabel quasi abelian variety
appears as fiber. But this does not imply that our definition is improp-
er, on which we shall give a comment in §7. Set

B(λ) = \M = ί1 B\; B e Mg(Z),*B = B, B = Omodλ] ,

e(x) — exp (

Γg = Sv(gZ) , Γg(X) = Sp(^Z)U) = {MeSv(gZ);M = lmod^}

Tg = {W = (you) ;*W=W, wtJ ΦO}^ (C*)^+ 1 ) / 2

T°g = {W e Tg log W = (log \wίό\) is negative definite}

g)+(r) = {y e g)+ kyιk > r for any non zero integral vector k) .

We fix λ once for all. The mapping e(λ) from @g to Tg defined by

e(X)(τ) = (e((l/λ)τij))) induces an isomorphism between <5g/B(λ) and Tg.

We identify them through this isomorphism.

Let I7 be a D-V cone in D+. Then by an appropriate transforma-

tion u of GL(gZ),Σ is transformed into a D-V cone <(* ,Λ y"e Σ"\
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for a D-V cone Σ" in g)£,. (Notice that not only Σ" c g)+,,). Therefore
we assume

For brevity we write

or (ίt, ί12, ί2) instead of rw, where tx e ©„, ί2 e ©,„, ί12 e Mρ,β,,(C), 0 = 0' + 0".
Then we define 2£ τ, to be a troidal embedding of Tg.. associated

with Σ" i.e.

Sx» = Spec c[e(A tr (or)) α 6 (I"')ϊl

and

# , = Spec C"Γe(i- tr (or)) a e (2)^1 = TQ. X (C*)9'"" x £s»

Let

ΓJα~(r) = {if = ( e ( ί l ) ^ ) Im t2 - Ltl(tn) e g)^(

ZV = Γ»9,,(0) where Ltl(ί12) = ίIm (ί12)(Im ί,)"1 Im (ί12) .

DEFINITION 3.1. Sβ,,(.V, Σ", r) = the interior of the closure of T°gg,,(r)
in (V x (C*)9'"" x 3f£,') where F is an open set in

If 21" -< 21", then Sg»(V, Σ", r) can be canonically embedded into
Sg4V,Σ'2',r). If 7, c 72, then S ^ ^ , Jf, r) c S(7, ,^ , r ) . Gluing S(7,
Σ",r) together, we set Sft = \Jr S(V,Σ",r), Sg.,(V,r) = \JΣ,,Sg.,{V,Σ",r).
For a general Σ, we define S(V,Σ,r) to be the pull back by a tranfor-
mation of GL(g Z) of S(V, Σ", r). We set ίT° = Γ» Ur reM(,a> Γ-'SίV, 2"', r).
and GL(g Z) operates on «̂ °.

For a point tj in Tg, the stabilizer subgroup ίί(ίj) is finite. Hence
we can choose a sufficiently small neighborhood V of t? such that MXF Π 7
^ ^ if and only if Mx e ff(ίD, and MλV = V for any Mx e ff(Q). Then we
put,
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an

<hi

o

υ

0
0

On

621

(Xπ

0

&22

α12

d22
I n u 12Γ2 1 °T bf bf \eSp(gZ);(a»

\cn 0 dn dί2j \cn

d

Obviously Bg(λ) is a normal subgroup of Γgg»{f%)(Ji), so we set
Γgg»(tdtt) = Fgg,,(tϊ)(X)/Bg(X). If λ ^ 3, then ff(£?) = 1, hence we have an

= dn = 1, 6U = c u = 0 for an element M of Γgg,,(tl)(λ). Assume λ ^ 3,
M e Γgg,,(tl)(X), M Π S^CF, 2"', r) Π Sg,,{V, Σ", r)Φφ for a D-V cone 2"'(c g)+.)
and a sufficiently large r > 0. Let (t[ t[2 tβ = M-(^ ί12 ί2). Then we have

(Im f2 - Re (Lt,(tί2)) = a22 (Im t2 - Re ( L ^ t u ) ) ' ^ .

We notice α22 6 GL(g"Z). Moreover a general point (^ t1212) of Sg~(y, Σ", r)
satisfies

Im £2 - Re (Lh(t12)) e Σ" ΓΊ g)^r) .

Hence α22e A u t ^ . In view of Proposition 1.2., A u t ^ is finite, so that
α22 = 1 if λ ^ 3. Hence Γggr,(tl)(X) consists of elements such that an =
a22 = dn = d22 = 1, 6U = c u = 0. (λ ̂  3). Then it is easy to check Γgg»(fi)(λ)
operates properly discontinuously and freely. Therefore the quotient of
S(V, r) by Γgg,,(tl)(λ) exists and becomes a normal complex space. Notice
that if S(V, r) is nonsingular, so is the quotient. If λ = 1 or 2, then
rgg>,(tl)(kX) (kλ ̂  3) is of finite index in Γgg,,(tf)(λ), so in this case a quotient
space S(V,r) by Γggff(tl)(λ) exists and becomes a normal complex space.

Remark. The author does not know whether the following state-
ment is true, for g" < g

: For a point t\ in T°g, a sufficiently small neighborhood V of ί? and
a sufficiently large r > 0, Sp(g Z)-equivalence on Sg»(V, r) Π T°g reduces
to /^^(

THEOREM (Mumford [14], Namikawa [18]). The quotient space ©*ϋ)
= &°/Γg(λ) exists and is a normal compact complex space containing
<5g/Γg(λ) as a Zarίskί dense open subset.

(3.2) Next we shall introduce Namikawa's construction of a polarized
family of SQAV over the Voronoi compactification. As stated in § 1,
his method is an application of troidal embeddings.

DEFINITION 3.2. 7 I f f is a mixed D-V cone associated with Σ and σ
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where is a D-V cone and σ = (ai9 i e /) = {Σί=o Kaίv \ 0 ==Ξ ̂  ^ 1? Σϊ=o Λ, = 1?
iv e /} is a Delone cell associated with Σ, if

7, j = {(y, x) e Σ x Rg myι(m + 2αt) + m ^ ^ 0

for any m e Z*7, and i e 1}

Then {VΣσ} forms a polyhedral decomposition of f)+ X i?^

DEFINITION 3.3. {VΓ,} is called a mixed V-D decomposition of

ψg X R9.

PROPOSITION 3.1 (Namikawa [18]).

VΣσ Π (y0 X Rg) = J(σ) witt respect to y0.

DEFINITION 3.4. ^^ σ = the troidal embedding of Tg x (C*)g associated

with VΣσ = Speci?^,, where

RΣσ = c[e(^- tr (or) + m'ζ), (α, m) e ( ^ J z ] .

DEFINITION 3.5. 0»Σβ = 0>Σσ x^Σ &°Σf &°Σ = Lλ ^ . and ^° = LΛ &if

where ^ ^ = SpecC[e((l/2ί)tr(ατ)), as (Σ)%]. If 2Ί is a face of ^ 2 , then

Θ®Σl c ^ 2 , canonically. So gluing them, we obtain ^° = [JΣ 0>°Σ. We

define an invertible sheaf J?° on ^° by,

^° = U J n * , JŜ i* = e(± tr

Then Z9 acts on both ^° and if0 freely and properly discontinuously via

Sn(neZg) as follows; 0*Σ is covered with 0>Σk(keZg). The transforma-

tion Sn is defined by,

L t r (or) + w'ζ))) - e ( ^ - tr ((2««w + α)r) + m'ζ)

& n -£ Σ k ~~* °£ Σ k + n

Sn(c) = e(A_ tr («nnr + 2ιnkτ) + rf

Namikawa has proved the action of Sp (g Z)(2X) on <Sα can be lifted

to J/° = 0>*IZg, θ° = j^/Z*", also °̂ is relatively ample on s/°.

THEOREM 3.2 (Namikawa). There exists a principally polarized

https://doi.org/10.1017/S002776300001672X Published online by Cambridge University Press

https://doi.org/10.1017/S002776300001672X


STABLE QUASI ABELIAN VARIETIES 177

family of SQAV's of level λ over the Voronoi compactification &*(2X)

There's another construction of a family of SQAV's over the Voronoi

compactification by use of Proj(*) as in §2. By the same argument as

before if g <̂  4, they coincide with each other.

(3.3) Next we shall investigate an irreducible component of the

complement of &g/Γg(λ) in &°/Γg(λ), which we call an irreducible compo-

nent of the boundary for brevity. At least if g is not greater than 3,

&gIΓ(λ) is non singular (λ ;> 3), and any irreducible component of the

boundary is of codimension one.

Although the results are already known in [8], we recall them from

the view point of troidal embeddings for later use.

By the general theory of troidal embeddings, we know that there is

a one to one correspondence between irreducible components of the

boundary and one-dimensional D-V cones. So with loss of generality we

may assume a corresponding D-V cone is τ0 == <ί^ j , ^ pA, and we

denote by Xτo an irreducible component of the boundary associated with

τ0. Since @*ϋ) is covered with open sets 9PΣ9 ( J open D-V cones), we

suffices to consider only 3£Σ for open D-V cones in order to investigate

the structure of Xτo. We notice that Xτo is contained in 2£Σ if and only if

τ0 is a face of Σ. So we have only to pick up all open D-V cones con-

taing τ0, however it can be readily carried out by using a well known

classification of open D-V cones up to GL(g Z) conjugate in case of g =

2,3.

At first we consider the case where g = 2. All open D-V cones which

have τ0 as a face are listed as follows,

Λi \ Ύ)OJ — OJ 3> 0 —— I Ύi — I lΊJ I Hi
l ί/i2 \ p TU" sn\ . ri/tfn y\z <^ v9 yiυ J-zί/n nr ί/12

.t/12 ί/22 ιv\fυ -"-/ί/ll \£iil/ J-/i/12 T f/22 ̂

where sυ =
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The action of Sp(2 Z)(X) on Xτo reduces to that of GL(2 Z)(λ), hence

in particular if λ >̂ 3, reduces to the following isomorphisms,

&τo n ar°DΛ s x« n ar°Dn. (n = nf mod λ)
(QnQ-l Q-H+IQ \ . (QΠ'Q-I Q-n' + lQ \

Vύllύ12 9 ύ l l ύ12/ * Vdlld12 > ύ l l ύ12/

J5Γt0 has an elliptic fibering over ®?(λ) defined by, t = (SnSΓ2

1)(5Γ1

7l+1512)

(£ = exp (2πίz/X), z e ©j). The fiber at t = tQ Φ 0 is an elliptic curve with

period (1, λ log ίo/V^Ί), and the fiber at t = 0 is a chain of Λ-lines. More-

over Z τ o carries the level λ structure defined by, s^s^ = one of Λ-th root

of unity.

Next we consider the case where g = 3. Then all the open D-V

cones dominating τ0 are listed as follows,

H = UnC'0"Un , Un = 0

+ 2/23 + ί/33 > 0, -yί2 > 0, - y 1 3 > 0, -y23 >

J = L = (^ ) 1̂2 + 2/22 > 0, +2/ 1 3 + 2/23 > 0, - 7 / 2 3 > 0

I *J ' 2/π + 2/i2 - 2/i3 - 2/23 > 0, — 2/12 + y23 > 0, - τ / 1 3 + 7/33 > θ

//
 =
 L

 =
 (

y
 ) . 2/π + 2/i2 > 0, y

1 3
 + τ/

23
 > 0, -y

13
 > 0 I

I 2/i2 + 2/
22
 - 2/i3 - 2/23 > 0, - #

1 2
 + y

13
 > 0, - τ /

2 3
 + y

33
 > 0)

IV*^11^12^13>

ί(xnX12X1

Λ a? (xxx
\ ^C/12 V ̂  12*^22^2

2/22 - 2/i3 - 2/23 > 0, - # 1 2 + y13 > 0, - τ

IV 1 1 1 2 1 3 > 1 2 2 2 2 3 > ^ 1 2 > *^13 > *^23 ) >

ί(xnX12X13)(Xn1), %u \ , J

) *>
etc.

Z r o has a fibering over ©2*00 with principally polarized abelian

varieties of dim 2 as general fibers. Analytic subsets in XT0 Π 3£%Q defined

by xu, x23 = ^-th root of unity and their transforms by un give a level
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^-structure on XΓ0.

Let p be the point in &?(λ) defined by

s-1 = sns12 = s12s22 = 0 in @2*u) n arDo.

Then the fiber at p has the following configuration, (λ ^ 3)

\

xnx12xϊ3x23 / \ x23

/ θ'n Pia Pis

The fibering of Xτo near p coincides with Deligne's example given in

[13]. If λ = 2, the fiber at p consists of eight copies of a projective

plane. If λ = 1, the fiber at p consists of two copies of a projective

plane, which is nothing but our stable quasi abelian variety of level 1.

In the final section we shall give a brief account of the reason why we

have taken our definition of stable quasi abelian varieties in spite of the

above fact. In case of g = 4, Xro has also a fibering over @3*C*), but the

fibers are not equidimensional. The details will appear in the sub-

sequent paper.

§ 4. Infinitesimal deformations of SQAV (1)

(4.1) For later use, we consider the following algebraic affine C-

scheme Y of dim 2 defined by,

y = γ 3 = Spec C[x19 x2, χ^

y = Yn = Spec C[x19 , > i Φ h i ± 1 mod n) (n > 3)

where xn+i = x€ .
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For example, Y4 is an affine scheme Spec C[x19 x2, x39 xj/ix^, x2x4). We

define

D = Spec C[x19 x2, x2]/(XιX2, x2Xz> x*Xι) > (w = 3)

D' = Spec C[xu x2, x3, xj/ix^, x2, xd (n = 4)

D" = Spec C[x19 x2, x3, xj/(x19 x3, x2xd (n = 4)

Di = Spec C[x19 , a?n]/(a?!, , ̂ _ i , a?<+1, , xn) (n > 4) .

Then we have,

L E M M A 4.1.

(1) ixt1 (Ω\r Oτ) = ΘD (n = 3)

(2) δχtι (Ω^ Θγ) = (P ,̂ Θ (Pz,. (n = 4)

(3) Λί1 (βx

Γ (Pr) = ©? β l ^ ( w > 4 )

Proof. (1) and (2) are left to the readers. We prove the last as-

sertion (3) only. At first we have the following exact sequence of Θγ

modules

where hv is defined by,

= ( Σ aijxX ,a>ij = 0 0" = i, < ± 1), α t i = α^ ,
\i /

<• = 0

0' = i> i ± 1)> aϊj = α j o αffc

+1 + <4+1 = 0, α{y = 0

In fact, we have hλ o fe2 = 0, h0 o fex = 0 and Ker fe0 = Im Λx by definition.

We shall show Ker hx = Imfe2. Take an element α^ {aiS = α i4) of Eer λlβ

Then any α t i is contained in the maximal ideal Σ?=i χβχ> s o we write
αiy = ΣLi^Xfc. We shall show that we can choose αfy in such a way

that αfy = αj,, α ŷ = 0, a^1 + α^+ 1 = 0, αfy = 0 ( j = i , i ± 1). Since

Σ α i ^ i = Σ (aίi^j-iXj + aij%) + a>ίϊ%Vj+ι)

we have on Xk — SpecC[xlf " ,xn]/(%j j Φ k,k + 1)
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yβίk ~Γ Q/ik + l)%k'£k + l ~Γ &ik%k "T ^ik + l^k + 1 ~ "

Hence it follows ak

kxk e Xk-v^Φx + %k%k+i@x so that by a change of a

choice of a^1 and α4+1 we may assume ak

k — 0. Since i Φ k — 1, fc + 1

(we notice that if i = fc ± 1, then aίk = 0 so that we may assume α .̂ = 0

from the beginning.)? we can also choose a\k

x and all1 in such a way

that a\k = 0. Consequently we obtain Σ " - ; ^ * ^ = Σy-ifai/1 + aίj+i)χjχj+i-

Then moreover we may assume α//1 + α/i+1 = 0. In fact, Xk%k+ι(Σ%i ^isχi)

= (ak

ik

+1 + α? f c + 1)44+ 1 = 0 hence <4+1 + aik+1e%i*k,k+i xβx so that we can

write ak

ίk

+1 + αfΛ+1 == 2]^* f*+i flr^y. We change αffc

+1 and αfΛ+1 into αffc

+1 +

Σ^*,*+i.*+2 ^ « i and αgfc+x + gk+2%k+2 respectively. Then we have (ak

ik

+1 +

Σ^*.*+i.*+2 9j%j)%k+i = a>ϊklχk+i and (αfΛ+1 + gk+2xk+2)xk = ak

ik+1xk. Thus we

have proved the exactness of (*).

Next, dualizing (*) by Horn ( Oz)9 we obtain the following sequence

(Qn X > /nn(n-Z)/2 2

 > >m(n+l)(n-4)/β

where fe* is the dual of hv, hence given by

kfUflfjϊ) = (αf/) , αfy = αji, α* = 0 0' = i, i ± D .

By the same deduction we conclude that

aafj)e(9nJn-*)/2;

Ker hf — lafj = c^^ + c^^ 0' Φi,i±l,i + 2)

On the other hand, we infer Im hf = {(αfy) a% = c^^ + CjXi}, hence

(4.2) The main purpose of this and next section is to prove the

following

THEOREM 4.1. Assume X to be a SQAV of dimension g (g = 2,3)

of level 1. Then we have,

dim,, Ext1 ( β ^ ) = g2
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We shall calculate dim Ext1 (Ωx Θx) by use of the following spectral

sequence,

Eψ = H*(X, Λία (ffz Θxί) -> E x t 2 ^ (Ωx Θx) .

Our idea is to compute the two terms H°(X, Sxt1 (Ωx Θx)), and

H°(X9 gxt* (Ωx Θx)) and show dim H°(X, £*tx {Ω\ 0z)) + dim H\X, Λ*° (Ωx Θx))

<; g2 if g = 2,3. If this is done, we have dim Ext1 (Ωx 0z) <; g\ while

using the explicit structure of D-V cones we can construct a flat family

of not necessarily polarized deformations of X depending on g2 effective

parameters, so that we have dim Ext1 (Ωx Θx) = g2.

In case of g = 2, all the possible SQAV's of level 1 are listed in the

following table.

(1) non singular principally polarized abelian surface

(2) a P^bundle over an elliptic curve glued along 0-section and oo

section

(3) P 1 x P 1 glued along two pairs of opposite lines.

(4) two copies of P 2 glued along three pairs of lines.

In what follows, we simply denote by Xv the v-th SQAV, for instance,

by Xx a non-singular abelian surface etc.

case 1)

LEMMA 4.2. dim Ext1 (ΩZl Θx) = 4

Proof, well known,

case 2)

X2 is isomorphic to the closed fiber of Proj R(τ)/Γ where τ(s) =

(?u Γ l 2 ) , τ22 = logs/2π</ — l, and rn, r12: constant. The normalization X2
\τ\2 τi2β

of X2 is a P 1 bundle over an elliptic curve E with periods 1, τn, which

is a compactification of C* bundle over E whose corresponding one co-

cyle is e(τ12) in Ext1 (E, C*) = E through a canonical isomorphism. X2 is

obtained from X2 by identifying 0 section and oo section by the relation

(z, 0) = (z + τ12, oo). We denote by C the double curve in X2. It is ob-

vious that C is isomorphic with E, and a long C,X2 is described by;

X2 = {O> y,z);xy = 0,zeE} .

The semi universal covering Po of Z is covered with Vi9 ieZ, and Y% is

locally given by {(xi9 yt9 z), xiyi = Q,z e E) along C* = {xt = yt = 0}
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LEMMA 4.3.

(1) 0 > <fxt* (Ωz Oz) - U Θf - ^ > Θc • 0 (exact)f
(2)

where in (1), the first homomorphism c is given by

c(ao(x, y, z)— + aλ(x, y9 z)x— + a2(x, y, z)y—
dz dx dy

= (aQ(x, 0, z) + a^x, 0, z), αo(O, y, z) + α2(0, y, z))

and also ψ0 is defined by

ψo((aQ(x, z), a^x, z)) Θ (a&y, z), a2(y9 z))) = αo(O, z) - ^(0, z) .

Proof. The exactness of (1) follows directly from the above defini-

tions of c9 ψQ. On Po = (Proj R)o, there exists an isomorphism δxt1 (βp0 ΘP)

= ©Γ=-oo^Ci This isomorphism is deduced from the complex,

lli-i lit}

obtained by dualizing an exact sequence of ΦPo modules,

In the last sequence h0, hx and h2 are defined by

9 a2, α3)) = a,dz + a2dxt

φ>d = (0, a*!/*, α4^ί) , h2 = 0 .

The isomorphism between Ker hf/lm hf and 0ίL-oβ^Ci i s invariant

under the action of Γ, so we have our lemma. Q.E.D.

From Lemma 4.3., it follows,

dim H\ixtι (Ωz Θx)) = 1 ,

and

0 -> H\£xt0 (Ωz

(Ωx

x Θx)) -> C Θ C -> 0

(β^ ^ ) ) -> 0 (exact) ,

so that we obtain, dim H°(£xt° (Ωx Θx)) = 2, dim H\£xt» (Ωz Θx)) = 3 and
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ά\mH2(ixt°(ΩxΘx)) = 0.
In this case the spectral sequence Eξq = HP(X, £xt

q (Ωx ΘΣ)) gives the
exact dimension of Ext1 (Ωx ΘΣ) as follows the sequence

0 _> ©i.o iχ φχ) _* ©o,i _> ©i,o = 0

is exact, so we have dim Ext1 (Ωx Θz) = 4.

Remark. The geometric meaning of the above computation is ac-
counted for by considering that dim H\£xtι (Ωx Θx)) is the number of
parameters deforming the singular loci of X, and dim £P(Λrf° (Ωx ΘΣ)) is
the sum of the numbers of parameters of the moduli of the normaliza-
tion X2 and parameters of gluing X2 into X2.
case 3)

Xs is isomorphic to the closed fiber of Proj R(τ)/Γ with τ(s) =

(Zn Γ l 2 ) , τn — τ22 = log s/2πΛ/~^ϊ, r 1 2:
\ τl2 ^22/

constant.

L

1

glued along /,//

At v, X3 is locally isomorphic to Spec C[xί9 x^x^xJ/ix^XsXt). Xz

has two double curves Clf C2 which are rational curves with one ordinally
double point respectively.
The normalization Xz of Xz is PιχPι. X2 is obtained from X3 by iden-
tifying two pair of opposite lines by the relations,

(xu 0) ΞΞ (e(τ12)xu oo) , (0, x2) = (oo, e(τ12)x2)

where (xί9 x2) is the usual inhomogeneous coordinate of P1 x P1. Then
we have,

LEMMA 4.4.

(1) o — >

(2) Sχtι{Ωx

0 (exact)
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where Ci denotes the normalization of Ct and c> ψ0 are given by at p =

(x19 x2, xz, x4) = (0,0, 0, 0)

ai+1(xi9 xί+ί))ί=lt...fi

== ^ ( ^ i , x2, x3, x4), 0, xj9 xj+1, 0 0),

Proof. (1) follows directly from the above definition.

(2) is proved in the same way as before by virtue of Lemma 4.1.

Q.E.D.

According to Lemma 4.4., it follows

dim H°(X, ixt" (Ωx Θx)) = 2 , dim H\X, δxt° (Ωx Θx)) = 2

dim H\Xy δxt° (Ωx Θx)) = 0 , dim H°(X, Sxt1 (Ωx Θx)) = 2 .

Hence we have dim Ext1 (Ωι

xΘx) = 4 in the same way as in the case

(2).

case 4)

X4 is isomorphic to the closed fiber of Proj R(τ)/Γ with τ —
i o) log S/2TΓΛΛ-1. Xi is a union of two copies of the projective

— ± Δ/

plane P2, has three double curves Ct (i = 1,2,3). Ct is also a rational

curve with one ordinary double point, and all Ct meet at the unique

point p, and there Z 4 is locally isomorphic to Y6 given in (4.1). Denot-

ing by Ct the normalization of Ct (i = 1,2,3) we have,

LEMMA 4.5.

/ . f Λ . 3

(1) 0 —
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(2)

where t and ψ0 are defined by,

( 6 β \

Σ.a^Xt—-) = (diiXi,
ai(x) = o>ι{Xι, , x6) and a^Xj, xj+1) = α*(0 0, #/, a?^+1,0 0)

We omit the proof of Lemma. From this lemma, we infer that

dim H\X, ixt1 (Ωx Θx)) = 3 , dim H°(X, £χt° (Ωx Φx)) = 2 ,

In fact, for instance, H\X, £xt* (Ωx Φx)) is calculated as follows. We
fix an orientation of each Delone cell as described in the picture. Then
HKX £xt0 (Ωx Oz)) is given by,

Ker ι = {(Cτ)J=lt2,z}/{Cτj = Σt[σt:

where

σtTΛ , Cτj, C ,

Hence dim H\X, ixt" {Ω\ Θx)) = 1.

For the completeness of arguments we shall construct a "complete"
flat family of deformations of X depending on 4 effective parameters.
We mean by "complete" that the Kodaira-Spencer mapping is surjective

(see § 5, [27]). Let τ{s) = (J g) log sn/2πV^Ϊ + (g J) log s22/2ττ/:::ϊ +

( - 1 ~ ί ) 1 ° g S l 2 / 2 π λ ^ Γ Ϊ + G ! i θ) a n d ^ = P r °J^W/^ where R(τ) =
[|TO •/?, m e Z*], |T O = e(\mτ(sym + m\z + Jr(s)), r(s) = (log s u + log s1 2/2ττ/ : rϊ,
log s12 + log s22βπ<fΞ\) φ = ^0>jDε, De = {(*„) |s,y | < ε}

Notice that tτ^Φτis). However the quotient of ProjJ? by Γ really

exists and the general fiber is a complex torus with period (1, τ(s)) and

the fiber 3Γ0 at the origin is X.
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In order to show the completeness of this family, we investigate the

structure along the singular loci Xτi (— C^) (ί = 1,2,3) of X. P = Proj R(τ)

is covered with open affines Uk, ke Z2, where

Uk = Spec Θ[IJ;\meZ2] .

We have only to see Uo. By an explicit calculation Uo is given by,

Uo = Spec Θ[WΪ\ w;1, sΰιwϊιwϊ\ sns12w19 sί2s22w2, SnS^s^w^,] .

At the generic point of Xxχ9 we have snsl2w1 Φ 0

Hence UQ is locally isomorphic to

Hence d/ds22 is mapped onto H°(X ΘXτ) (czH°(X, ixt1 {Ωλ

x 0z)). In the same

way, it is shown that d/dsn,d/ds12,d/ds22 are mapped into a basis of

H\X, ixt1 (&z0z)). On the other hand, d/ds21 is mapped into a basis of

Hι(X,£xt*(ΩxΘx)). Thus "completeness" is proved. ([27] theorem 3.5.)

Summing up the above calculations we obtain,

THEOREM 4.1. dim Ext1 (Ωx Θx) = 4 for a SQAV X of 2 dimension

of level 1.

§ 5. Infinitesimal deformations of SQAV (2)

(5.1) At first, we shall give the complete list of D-V cones in ^

(up to GL(3 Z) equivalence and the associated Delone decompositions

(Voronoi [26]). D-V cones:
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; # 3 3 > o Σ2 =

#22 + #23 > 01

-#23 > 0 ,

#23 + #33 > OJ

#11 > 0, y22 + y23 > Ol

~#23 > 0, y23 + #33 > Of

#11 + #12 > 0, ~ # 1 2 > 0
#12 + v22 + y2

#23 + #33 > 0

= 0, - # 2 3 > 0}

#11 + #12 > 0, -yl2 > 0, -y23 > θ[

#12 + #22 + #23 > 0, y2% + #33 > 0

ΣΛ = Σ:
.7 = 1

-Vu > 0

Associated Delone decompositions. (For brevity we only write represen-
tatives of Delone cells modulo translations by integral vectors)

Remark. In case of Σi9 only one cube appears. In case of Σ5 two
triagonal prisms appear. In case of Σβ, the shaded face is not a Delone
cell, and all the Delone cells of dimension 3 modulo translations are two
tetrahedrons and an octahedron which is a union of separated two copies

Σ J
/I

/ i
1
I

/ ! /

I/--::

/

J
7\

I
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of quadrangular pyramid. On the contrary in case of Σ7 two quadran-
gular pyramids and two tetrahedrons are all the Delone cells of dimen-
sion 3 although the picture looks like that in case of Σ6. In the last
case six tetrahedrons are all the Delone cells.

(5.2) For D-V cones Σt (ί = 1,2,3) the calculation of Ext1 (Ωx Θx)
can be carried out in the same way as before, so we omit the details
and state the results only. We note that we restrict ourselves to the
case λ = 1.

Mi Γ12 τ13\ /0 0 0\
case 2Ί) τ(s) = τ12 r22 τ23 + 0 0 0 log s/2πV^Λ

Viz τ23 0/ \0 0 1/

with constant τυ((ij) Φ (33))

H\X, i:
H\X, $-.

?x))
pχ))

= 3 ,
= 7,

HKX,«..

H\X, S: (P

x))

x))

= 8
= l

Although H2(X9 £xt* (Ωx Θx)) does not vanish we can conclude dim Ext1 (Ωx Θx)

= 9 from the existence of a flat family of deformations of X depending

on 9 effective parameters.

Mi r12 rls\ /0 0 0\
case Σ2) τ(s) = τ12 0 τ23 + 0 1 0 log S/2TΓV — 1 with constant

\r13 r23 0/ \0 0 1/ uj ((iί) =?fc (22), (33)) .

Let X be the closed fiber of Proj (R(τ))/Γ. Then we have

dim H\X, ixt° (Ωx Θx)) = 3 , dim H\X, g** (Ωx Θx)) = 7 ,

dim H\X, ixt1 {Ω\ΘX)) = 2 .

Also in this case by constructing a flat family of deformations of

X depending on 9 effective parameters we obtain dim Ext1 (Ωx Φx) = 9

Mi τ12 τ13\ /0 0 0\
case Σ,) τ(s) = τ12 0 0 + 0 2 - 1 logs^Tr/ 1 1 ! .

\r13 0 0/ \0 - 1 2/

Then similarly we have

dim ίί o(Z, ^xί° (β2

x (Px)) = 3 , dim H\£xt« (Ωx Θx)) = 6

dim H0(X, ixt1 (Ωx Θx)) = 3 , dim Ext1 (fli (Px) = 9 .

(5.3) Before we enter into the computation of Ext1 02*0*) ίn c a s e
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of Σi(i}t 4), we introduce here a concept of a graph associated with
SQAV X as follows. A vertex denotes a subscheme of codimension one
contained in the singular loci of X. Of course the latter corresponds
to a Delone cell of codimension one, so we may say a graph corresponds
to a Delone decomposition. Two or three vertices are connected by
arrows only if

(i) If X is locally given by Spec C[x19 x2, x3, xo z\\(xxxzy x2x4) along
Z — Spec C[z] then we connect a vertex corresponding to Dx with one
corresponding to Z?3, and do so for D2 and D4, where Dt = Spec C[xi9 z],

(ii) If X is locally isomorphic with Sγ>ecC[x19x2,x3fz]/(x1x2x3) along
Z = Spec C[z] then we connect all the vertices at one point where Dt =
SpecCfe, z\.

Otherwise we don't connect vertices any more. Notice that a graph
thus obtained is not necessarily connected. Under the assumption (A),
any irreducible subcheme of codimension one in X is reduced, so the
above definition of a graph seems to be natural. However the author
does not know how we should define it in the general case. Anyway in
the three dimensional case the condition (A) does hold for any Σ. We
shall give here a complete list of graphs of D-V cones in f)J. In the
following table an arrow starting from a vertex into itself means that

CBO CΘD C8D CΘD CΘD
CB3 CBO 3CP CBO CBO
ceo CBO ceo ceo
ceo
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a subscheme corresponding to the vertex intersects with itself along a
one-codimensional subscheme of it. Three arrows from one vertex to
another imply that two subschemes of codimension one corresponding to
vertices meet along three distinct subschemes of codimension two.

In order to make our idea clear, we shall show that in case of Σδ9

the associated graph is given as above. As stated before the Delone
decomposition consists of two trigular prisms and their faces modulo

7 \\ 1

/ . .

1

N

1 /

/ r2

\

k
-rί

translation. We call the upper face τu the lower τ[ respectively. Also
we call the face on the right hand r2 and its reverse face τj. Moreover
we call the faces on this side, τ3 and τ4 from above, and their counter-
parts r£, τ{ respectively. τ* coincide with r< modulo translation by an
integral vector. We call the face contained in the interior of the cube τ5.
On the other hand any pair of oppositive lines on τx (or r2, r5) are coinci-
dent with each other. Thus we have the former three graphs.

C€D OCO QOD
And also the upper edge of r3 and the lower edge of r4 are coincident,
and so are the right edge of τ3 and the left of τ4. Hence we obtain the
last graph.

(5.4) In order to compute Ext1 {Ω\ Θx) for a SQAV X whose cor-
responding D-V cone is one of Σt (4 ^ i ^ 8) we require the following
lemmae.
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LEMMA 5.1. Suppose X to be a Cohen-Macaulay scheme of dimen-

sion n (n^> 3), and Z a subscheme of X of at least three codimension.

Let i be an inclusion of X-Z in X. Then we have, £χtq (Ωx Θx) =

i # £χtq (Ωx_z, Φx_z). (q = 0,1)

Proof. We have a usual exact sequence of local cohomology,

0 - iχt\ (Ωx Θx) -> £xt« (Ωx Θx) — i* £xt» (ΩX_ZΘX_Z)

— Sxtx

z (Ωx Θx) -> Sxt1 (Ωx Θx) -> i # Λ*1 {ΩX_ZΘX_Z)

- > £ χ t 2

z ( Ω x Θ x ) ^ « . . .

On the other hand there is a spectral sequence

Eψ = <?%** (β^ ̂ f |((PX)) converging to Sxtγq (Ωx Θx) .

By assumption we have ^fq

z{Θx) = 0 (# = 0,1,2), so that our lemma fol-

lows. Q.E.D.

To a connected component Δ of the graph of X we associate a connected

reduced subvariety ZΔ of codimension 1 in X whose support is a union of

Xτ, where Xτ denotes the divisor corresponding to a Delone cell τ ( c J).

Our main interest is to know the number of connected components

of the graph of X because of the following lemma e.

LEMMA 5.2. Under the assumption (A*), Sxt1 (Ωx Θx) = i * (0 Δ Fj)

where Δ runs over the set of connected components of the graph of X

and FΔ is an invertible sheaf on ZΔ — Z.

Proof of Lemma 5.2. Since the condition (A) is satisfied in view

of Lemma 1.6., the structure of X is given in proposition 2.3.. Let

Z = (J r Zγ be a union of all the subvarieties Zγ (γ: Delone (g — 3) cell).

According to Lemma 5.1 we suffice to investigate $χtι(Ωx_z,Θx_z). Let

XkP = SpecC[a#°,αeΦ, {x^Y1^ + kep] be an open subscheme of (J7*)o.

ZΔ — Z is covered with the open affine sets XktP.

Since (Uk)0 = (Uo\ we shall prove £xtι (ΩXθp ΘXop) = ®(9zΔf]Xθp on XOp.

In what follows, we denote Delone cells containing the origin by σ,

τ,p
Let a be a Delone #-cell, σ = {x e R9 cfx ^ 0 i — 1, , 2V}, ^ be a

Delone (g — 2) cell defined by p = {xeσ; c^x = c2

ιx = 0}. Then rv =

{x e σ c/# = 0} is a face of σy and ̂  is a face of τv.

By assumption (A*), there exists Delone 1-cell άu(v = 1,2) such that

Ztav + Z0

+p = {̂ iαv + Σmμό aj e p n^ 09mj ^0} contains a basis of Zτv =
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{Σmjdj,dj e τ^nij e Z}. Hence, any vertex a of σ is by assumption (A*)

written as a linear combination of άlf ά2 and vertices of p. Let a =

nxάx + n2d2 + J^j mμ^ aό e p. Since c]a = c\{nιaι + n2ά2) = w2cία2 > 0, c[ά2 > 0,

we have n2 > 0. Similarly ^ > 0. Then we have xa = Λ?3Ϊ ^2 Π x™}> i e >

# α is contained in Clx^x^x^fds p]. Hence, XOp Π2 f f = Spec C[a?dl, a^,

#*S α e /?]. Therefore Z0/0 is isomorphic with Γ n x Spec Clxt1, a e p] where

Yn is one of the affine schemes given in (4.1.). According to Lemma

4.1., we have an isomorphism δxt1 (ΩχQp,(9χ0/) = ®ΘzΔnxQp-

LEMMA 5.3. // # = 3, then FΔ — ΘZ&_Z, a fortiori £xtι(ΩxΘχ) ^

φ ΘZr In particular dim H°(X, £%tx (Ωx ΘΣ)) = ^{connected components of

the graph of X).

Proof. Since FΔ is invertible on ZΔ — Z, we suffices to show the

existence of a global section of ixt1 (Ωx Θx) vanishing nowhere on ZΔ — Z.

In fact, ZΔ is Cohen-Macaulay so that ί*ΘZΔ-z = @zΔ- The existence of a

non vanishing section is proved by investigating closely a local family of

deformations of X. The proof is a case by case examination. We deal with

only the case Σ = Σ6 for brevity. With the notations in (5.5), (5.6) we put

/0 0 rls\
τ(s) = 10 0 r23 + eλ log s n/2^V^I + el2 log s12/2πV~^ϊ

+ e2Z log s 2 2/2^v c : l + e3 log S33/27ΓΛΛ^Ί

2r(s) = (log (sns1 2)27r/^l , log (S12S22)2TΓΛΛ=:Ί , log (s22s23)/2τrvc^ΐ)

ί?[ | m . t f ,meZ 3 ] , 0 = 0o* , ^ = {(«o) e C4 | s o | < ε}

P = Proj β(τ) , X = P/Γ , Γ = Z3 . (see (2.4))

Then P is covered with Uk, ke Z3. Uo is given by,

Spec

We shall show d/ds33 is mapped by the Kodaira-Spencer mapping into

a section vanishing nowhere on ZΔl — Z9 J1 = τ1 Ό τ2.

At generic points of ZT1 and Zτ2, we have

Uo ^ Spec O[xt\, xt\, xa6> ^s"1] , XaeWΪ1 = s33xai along Zτi

UQ ^ Spec 0[a?i,S x%\9 xa^ w^1] , ^ α ^ " 1 = g33^α2 along ZT2
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Moreover at generic points of Zai,Za2 and Za^ respectively we have

Uo ^ Spec O\xt\, xaί, %aβ, WΪ\ s^w^Ws1]

Z70 ^ S p e c Θ[x%l, x a i , xa6> x<w ^s" 1]

Therefore the image of d/ds33 vanishes nowhere on ZΔl — Z. By the

same way as above, we can show the existence of a non vanishing sec-

tion for any Δ, which completes the proof. (Q.E.D.)

In view of Lemma 5.3. we obtain,

COROLLARY OF L E M M A 5.3.

3
4
5

(Σ
(Σ
(2

= Σι)
= Σt,
= Σ7)

>6 (Σ • = J?8)

(5.5) As a special case of proposition 2.5. we have

LEMMA 5.4. With the notations in (4.1.) the following sequence is

exact (n ̂  3),

where Ϋ denotes the normalization of Y and Dt = SpecCfe, ,Xn\/(Xi>

-"> Xi-i, Xi+i, , xn) The proof is straightforward.

PROPOSITION 5.1. Under the assumption (A*) we have an exact

sequence,

( # s | ( ) 0 > Λrf° {Ω\ Θx) -U Θ (Pίσg -+1+ Θ (Pt J^ J * > Θ ^;2

ff_2

Z = U r ^ r (γ'.Delone (g - 3) ceίD,

other notations are the same as in proposition 2.5.

Proof. As seen in the proof of lemma 5.2., X — Z is covered with

Xk>p. Xkp = Spec C[f ifc), α € Φ, (ξ™)-1, a + keP]^Ynx Spec C\x%\ aep] for
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some n. Hence according to lemma 5.4., we have

<gχ*° (Ωx ΘΣ) = £χt* (Ωj Θτ) ®ΘX® Θ°x

2

so that we obtain the above exact sequence. (Q.E.D.)

Remark, We notice the sequence (**) is defined on the whole X.

The author conjectures (**) is exact on X.

LEMMA 5.5. Consider a sequence of Θx modules

such that ^ ! o ψ0 = 0, ψo °' = 0 Assume 0 -• F —> Ao -* A1 to be exact,

H\XyA,) = 0. Then we have dim H*(X,F) ^ dimH1({H°(X9AJ)}).

Proof. Let B be the image of Ao. Then we have a long exact

sequence

0 -> H\X, F) -> ̂ ( Z , Ao) -> fίo(Z, β) -> £P(X F) -> 0 .

Hence

d i m ί ί ^ Z ^ ) = dimH°(X,B)/ψo(H°(X,Ao)

^ dim Ker (H°(A,) -> H°(A2))/ψ0(H°(A0)) .

Now we shall compute the upper bound of dim H\X, Ext0 (Ωι

ΣΘx))

using the above lemma 5.5. Since each irreducible component Xσ is

rational, so WiXflx) vanishes for i > 0 and any Delone cell a ([11] p. 44,

52) dim H\X, Ext0 (Ωι

ΣΘχ)) is dominated by the dimension of the cohomology

of the complex,

Θ H\Xβx)®% —-H>- Θ H\XτΘx)®2 —^ φ H\XaΘχa)

II II II

where Nv denotes the number of ^-dimensional Delone cells mod Γ. In

this case N, = 6, N2 = 8, Nz = 3.

We define oriented cells σi9τj9ak modΓ as follows

OΊ = <Pi> Pδ> Pe> P7> P s ) U < P 7 , P i , P 2 , P 3 , P 4 )
/ 7) ~p ~p T) \
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<P,,P 8,P«>
<P,,P2,P7>

(Pi> -Pr> p«y

<P,,P,,P7>

<P,,Pτ,P4>

where P{ denotes a point in R3 whose coordinate is given by,

P, = (0,0,0), P, = (1,0,0), P, = (1,0,1)

P4 = (0,0,1), P, = (0,1,0), P, = (1,1,0)

Pτ = (1,1,1), Pβ = (0,1,1).

Then the homomorphisms ψo>Ψi are given by,

Σ
r-<<r

More explicitly, with the notations as above ψλ is given by,

[ τ 2 : α

[ τ 2 :

[ τ 3 :

2 + [ r 5 : α J / α i Γ 5 + [ r β : α j / α i r β

2 + [ r 3 : α 2 ] / α 2 Γ S + [ r 4 : α 2 ] / α a r 4

[ τ 4 : α 3 ] / α 3 Γ 4 + [ r 7 : α 3 ] / α 3 Γ 7 + [ r 8 :

[ τ 2 : αj/o^t, + b r - α J / α 4 τ 7 + I>8 Λ4]

τ 7 : a 6 ] / a β T 7 + [ r 8 : a 6 ] / a β T 8
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Notice that

J CL±τ\ J aχτ\ ~Γ J CLzτi 9 J a^τ^ J ttira ~Γ J a^τz 9

J Λ5T3 J α2Γ3 Γ J α3T3 9 J α 6τ4 »/ fl^r* I J C&3Γ4 >

«/ ftβΓ5 •/ α l τ 5 ' ' &5Γ5 > »/ ttβ7β •/ alτβ ' J Λ5Γ6 >

J CLQTI J Cί$τγ I J CL^tf 9 J CLQZQ J CL^TQ I ^ Λ4T8 *

Since 2α^Γ [r: *]/α,Γ = 0 where the summation is all over the pairs a <τ,
it is easy to check dim Im ψj = 5. Similary we have dim Im ψ° = 6, so
dim H\X, Sxt" ψ\ ΘΣ)) ̂  5,

In the same way as above we obtain

dim H\X, #xί° {Ωι

x

LEMMA 5.4.

6 (Σ = Σύ
ff / y y y \

4 (Σ = ΣJ
(Σ = ΣJ

According to Corollary of Lemma 5.3, Lemma 5.6, we have
dim Ext1 iβ\ φz) ^ 9 for a SQAV X of level 1.

(5.6) Next we shall construct a flat family of deformations of X
depending on 9 effective parameters.

Because of the similarity of computations we deal with only the
case Σ = ΣΛ as a succession of (5.5). Let X be a SQAV whose corre-
sponding D-V cone is Σt. Let

/0 0 r13\ / 2 - 1 0\
r(s) = 0 0 r23 + - 1 2 - 1 l o g s ^ - s ^ ϊ

\τn r33 0/ \ 0 - 1 2/

(Xij . constant). Then X is the closed fiber of Proj R(τ)/Γ.
We put

0 0 τ13 + sΛ (1 0 0\
«•(«) = I s21 0 r23 + s23 + 0 0 0 logsu

r23 + s32 0 / \0 0 0/

- 1 0\ /0 0 0\
1 0 log s12/2πΛf=ϊ + 0 1 - 1
0 0/ \0 - 1 1/

0 0\

V
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2r(s) = (log (sns12)/2πV~^Λ , log (S12S22)/2K^T^J , log (s22s^l

Riτ) = Θ[ξm θ9 meZ3], 0 = (P0>E , E = {(*„) e C9 \Sίj\ < ε}

ξm = e(imτ(sym + m'(ζ + r(s))) , #α = | α

, Γ = Z3 . (see (2.4.) Remark)

Then #" is covered with affine open sets Uk (k eZ3), Uk = Spec 0[|TOf ί"1,

meZ*]. More explicitly Uo is given by,

ίwϊ1 (i = 1,2,3), sus12w19 sns22w2, s22snwz \

Z70 = Spec ίP SΓJW^WΪ1, s^w^wς1, sns12s22wxw2, s12s22s33w2w3 .

\SΓ2

1S2-2

1^Γ1'W;2-
Iw3-

1, s 1 1 s 1 2 s 2 2 s 3 3 ^ 1 w 2 w 3 /

It is easy to check X is Cohen-Macaulay. ([11]) Since the fibering

of X over Spec Θ is equidimensional and Spec 0 is smooth, the projection

® from 9C to Spec0 is flat. Obviously the fiber w~K0) is X. In order

to show the Kodaira-Spencer mapping from Γo(^) to Ext1 {Ω\ Θx) is

surjective, we shall begin with showing that H°(X, Sxt1 (Ω^Φx)) is

spanned by d/dsU9 d/ds12, d/ds22, d/ds33. We use the notations in (5.5). Denote

four connected components of the graph of X by Δx — τx U τ2, Δ2 — τz\J τ4,

J 3 = τ5 U τ6, J 4 = τ7 U r8. Let P x be a generic point of Zτi Π ί/0 At Pl9

we have ^ α i ^ 0, xai Φ 0, so that UQ near P x is isomorphic with Spec Θ\%%\,
χal> a w ^ f1]. We notice that Xαβ WΓ1 = S33#α4 Hence 5/9s33 is projected

by Kodaira-Spencer mapping to a basis of H%ZΔβZΔ) ( c H°(X, gχtι{Ω\ Ox)).

Next let P2, P 3 and P 4 be generic points of Zτz Π C70, Zτ5 Π C70, ^T 7 Π Z70

respectively. ί/0 near P^ is isomorphic with

Spec 0[x%l, xtl, xao ^Γ1]^ ̂ ' ^ Γ 1 = snxa% (i = 2)

Spec 0[a£ί, «*e

l, xα3, x α j , xa,Xa, = s2^αβ (i = 3)

y ̂ α e ' ^αi> ^α2J> *^αi^α2

 = : ^12^α4 (l- = 4) .

Hence d/dsu, d/ds22, d/ds12 are projected to a basis of H\ZΔ%y ΘZΔ), H°(ZJs, ΘZΔ),

H\ZΔ^ΘZΔ) respectively.

It remains to show d/dstJ (i,j) Φ (1,1)(1,2)(2,2)(3,3) form a basis of

H\X, δxt*(ΩzGχ))Λ For that purpose, we consider a mapping ψ from

Spec C[ε] (ε2 = 0) to Spec 0 defined by φ*Sij — atje9 an = α12 = α22 = 3̂3 = 0,

aiόeC. φ*% corresponds to a 1-cocycle Dr = <a*γ,d/dζy because Γ oper-

ates on φ* Proj β(τ) as follows, C = ζ + ^ * τ , ζ = (d, ζ2, ζ3), 7 =? (7̂ , γ2, γ3) e Γ

so that d/dε - OisrsO/SCi) + feiri + o^γύid/dζ^ + (azlϊl + α32r2)(a/3ζ3). Each

of α13^3, α2i7Ί + 2̂3̂ 3 a n ( i α3iΓi + α32Γ2 defines an element of H\X9 Θ) which is
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contained in the image of H\X, C) by the canonical homomorphism. Ob-
viously γlfγ2,γ3 form a basis of H\X9Θ).

Hence (anγZ9 a2lγx + a2Zγz, azιγx + aZ2γ2) in Hι(X, ΘX)
Θ3 gives a basis of

H\X, $xt° (Ωx Θx)), which completes the proof. From t^e existence of a
flat family of deformations of X depending on 9 effective parameters we
infer dim Ext1 (Ωx Θx) = 9. Moreover according to the above proof, X is
locally complete because the Kodaira-Spencer mapping is surjective ([27]
Theorem 3.5.), while the inequalities in Lemma 5.6 turn out to be equalities.

In case of Σ7 we put,

/ 0 0

Γ(β) = \ s21 0

In case of Σ8 we put,

/° ° °\ ,—
τ(s) = I s21 0 0 + XI βi log Suβπ^Γ-1 + Σ eu l°g '

\ S 3 1 S3 2 0/

where

Let R(τ) = Φ[ξm θ,meZ3], Θ = 0OE with the notations as in the case
of Σ6. Then X — Fro]R(τ)/Γ is a complete flat family of deformations
of &0 depending on 9 effective parameters. In any case we can const-
ruct the desired family of deformations of X, so we obtain

THEOREM 5.1. dim Ext1 (J3i-0*) = 9 for a SQAV X of dim3ϋ = 1).

Remark. We shall point out an interesting fact that Σ is one of
Σv (v = 6,7,8) then dim H\X, δ*t* (Ωx Θx)) is given by a formula

dim H\X, £xt
Q (Ωι

xΘx)) = g-3N3 + 2N2 - N, + NQ (g = 3)

where Nv denotes the number of ^-dimensional Delone cells modΓ. In
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case of Σ6 we have No = 1, Nt = 6, ΛΓ2 = 8, N3 = 3. And also we have
No = 1,2^ = 6,2V2 = 9,N3 = 4 if J? = J 7 , N 0 = 1,NX = 7,N2 = 12, ΛΓ3 = 6
if Σ = Σ8. Remark that Σv (v = 6,7,8) does not come from lower dimen-
sional D-V cones. However this is not the case if g = 4.

§ 6. Existence of moduli of SQAV (g ^ 3)

(6.1) In this section we shall show the existence of the coarse moduli
of SQAV (ί = 1,2) the fine moduli (λ ̂ > 3) applying a theorem of Artin
([1][5]) and our results obtained in §4,5.

At first we prepare the preliminary results and define a functor of
SQAV.

THEOREM (Artin [1], [3]). Let F be a contravariant functor from
C-schemes to sets. Then F is represented by a separated algebraic
space locally of finite presentation over C if and only if the following
conditions hold.
[0] F is a sheaf for the etale topology
[1] F is locally of finite presentation
[2] F is effectively pro-representable
[3] Let X be a C-scheme of finite type and let ξ,ηeF(X). Then the
condition ξ = η is represented by a closed subsheme.
[4] Let X be a C-scheme of finite type and let ξ:X->F be a map. If
ξ is formally etale at a point x e X9 then it is formally etale in a neigh-
borhood of x.

According to Deligne-Rapoport ([5] (p. 201,202, p. 210 2.6.), F is
represented by an algebraic space locally of finite presentation if the
conditions [0][l][2][4] and the following (a)(b) are satisfied,

(a) For any ξ e F(C), let ξ' = ξ xc Spec C[e] (ε2 = 0) then Autc? =
AutcM ξ'

(b) For any ξ e F(C), Autc ξ = {1}.
And also the condition [4] holds if F is (locally) effectively pro-represented
by complete normal rings of the same Krull dimension.

Notice that in this case F is not necessarily represented by a sepa-
rated algebraic space ([5] p. 204 Remarque 2.6.)

DEFINITION 6.1. (g ^ 4) (X, π, S,G, H, H', εj j = 0, . . . , 2g, L) is a

principally polarized stable quasi abelian scheme of level λ over a C-
scheme S if
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(0) 7r is a flat proper reduced and surjective morphism

(1) G is an open S-subscheme of a S-scheme X and a commutative S-

group scheme operating on X with identity ε0.

(2) H is a S-group subscheme of G consisting of all ^-division points of G

and isomorphic with (Z/X)2g X S. eό is a Z-basis of 5 ( j = l, >2#).

(3) H' is a S-group subscheme of H acting freely on X, is isomorphic

with {ZjX)g X S. H' is generated by ε ^ 0' = 1, . ,#)

(4) L is a relatively ample invertible sheaf on X and W operates on L

so that the following diagram commutes.

H'xH'xL

where a is a group mutiplication of fl7 and φ is an action of H' on X.

(5) for any geometric point Specif of S the fiber product over S

(X x K,π x K,SpecE:,G x K,H x K,H' x K,ej X K,L x K)

is a principally polarized stable quasi-abelian scheme of level λ over K.

Remark. If λ = 1, H = ίΓ = e where ε denotes the identity of G.

So we write a SQAS ξ of level 1 over S by f = (X,π,S,G,ε,L).

DEFINITION 6.2. Two SQAV's over S (Xί9 πi9 S, Gi9 Hi9 H'iy εf, L4) « =

1,2) are isomorphic to each other if the following condition is satisfied,

there exists an S-isomorphism / between Xλ and X2

such that the restriction of / to G2 induces an isomorphism between

Gι and G2 and

/*εf = ε f , f*H% = H19 f*H'% = H'19 {f*L2)L^ e Pic0 (XJS) .

DEFINITION 6.3. Fg(X) is a contravariant functor from C-schemes to

sets defined by,
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Fg(X)(S) = the set of isomorphism classes of stable quasi abelian

schemes over S.

Let ^giλ) be the sheaίification of Fg(λ) in the etale topology.

Remark. We use here a terminology "a stable quasi abelian scheme"

(abbr. SQAS) over S only for an element of Fg(λ).

Our aim is to prove that S?g(JX) satisfies the conditions [0][l][a][b]

and is locally effectively pro-represented by complete regular local rings

of Krull dimension \g(g + 1) if λ ^ 3, g = 2,3.

LEMMA 6.1. S?g(λ) is locally of finite presentation.

Proof. Let {Bv} be an inductive system of C-algebras of finite pres-

entation and B = lim_ Bv. Take an element ξ of <9>g(Z)(B). Then ξ is

represented by, for an etale covering Sa, ael of Speef? and SQAS's over

SΛXa,πa,Sa,Gβ,Ha,H'a,ε ί9Lβ).

Since Speci? is quasi-compact (even if B is not neotherian) so we

may assume / to be a finite set and moreover Sa to be affine. Xa is

protective over Sa hence Ga is quasi-projective, and so they are of finite

presentation over S. And then the group law of Ga is of finite presen-

tation (EGA IV 8.13.2).

On the other hand the open immersion and the closed immersion are

also locally of finite preseptation (EGA IV 8.10.5) and so on. Hence

there exists a v0 such that ξ comes from an element of 6^g(λ)(BVQ).

Next take two inductive systems {£„}, {ηv} such that ξ = η in S?g(B)

where ξ = lim £„, η = lim ηv. Hence there exists a finite etale affine cover-

ing Sa of SpecB so that ξ and η are represented by ξa = (Xa,πa,SayGa,

Ha, H'a, e
aj, LJ, rf = (Xa, πay Sa, Ga, Ha, H'ay η, La) respectively and ξa s rf.

By assumption all except La and La are isomorphic and these isomor-

phisms are also of finite presentation. (EGA IV 8.8.2.) Since Xa is

protective over Sa and πa is cohomologically flat (at least if g ^ 4), so

Pic0 (Xa/Sa) is locally of finite presentation ([1]) there exists a v such that

ξa and ηa are isomorphic in S?g(λ)(βv). Thus we have proved ourproposition.

LEMMA 6.2. S?g(λ)(A) = Fg(λ)(A) for a complete local ring A.

Proof. An element ξ of S?g(λ)(A) is represented by ξv = (Xv, πv, Sυ, G ,

Hv,H'v,e
vj,Lv) with a finite affine etale covering Sv of Spec A. Take an

Sv. Since A consists of a unique point as a topological space, Sv consists

of a finite number of points as a topological space. Let x{v) x$ be
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all the closed points of Sv, and Af — OXjSv be the local rings of Sv at

Xj. Then Aψ is etale over A, hence Af is isomorphic with A, for A

is a complete local ring. Hence we can consider another etale covering

TvJ (=Spec Af) of Spec A, and a pull back ξuJ of ξv. Since they coincide

with each other over TvJ XSτ>e0ATμi, they determine only a SQAV £* of

level Λ over A, namely, £ is represented by a SQAV £* of level λ over

Spec A.

The isomorphism between ξ's (ξ e &* g(λ)(A)) is nothing but that be-

tween ξ* in ί^UXA). Hence we have the isomorphism between S?g(λ)(A)

and Fg(λ)(A) for a complete local ring A. Q.E.D.

(6.2) Let ξ = (X9πfS,G,H,H',ej9L) be a SQAS of level λ over S

(ξ e Fg(X)(S)). Then we can construct a quotient fmodi/ ' as follows.

Since fP acts on X and L in a compatible way, so there exists a scheme

Y and a projection / from X to Y and an invertible sheaf Lγ on Y such

that L = /*L F , the following diagram commutes

Q

Set GF = G/iϊP, εγ = /oε, τrF = TΓO/-1 where ε is the identity section of

G. Then obviously (Y, τrF, S, GF, ε r, LF) is a SQAS of level 1 over S.

LEMMA 6.3. (g ^ 4) Let ξ = {X,nyS9G9HyH
f

9ejyL) be a SQAS of

level λ and η — (X,πγ,S9Gγ,εγ,Lγ) be a SQAS constructed above. For given

X, εj9 H
/ and π there exists only one structure on X as a SQAV of level λ.

Proof. Let Z r e g be the maximal open subscheme of X such that for

any geometric point K of S, XTGS X s K is smooth over K. Let 2F be the

set of open subschemes Z of Xτβs containing H' such that for any geo-

metric point K of S

% (connected components of Zκ) = λ°"

where g" is the rank of an integral matrix associated with Xκ. Then

G is the maximal element of 3F w.r.t. inclusion. In fact, if g ^ 4, a

SQAS over an algebraically closed field K is described explicitly in §2.

From this our claim follows readily.
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The group structure of the connected component G°κ of Gκ contain-
ing ε0 is uniquely determined by ε0 and Gγ XSK where ε0 is the identity
of G. Iu fact since G°κ is an extension of a split torus (K*)g" by an
abelian variety Aκ. The quotient A'κ — Aκ/H' XGκG°κ is also an abelian
variety. Then Gγ XSK is an extension of a split torus {K*)°" by A'κ. So
A'κ is uniquely determined by Gγ X s K, then the group structure Aκ is
uniquely determined by A'κ,ε0 and εj9 hence by Gγ XSK and ε0. Moreover
the group structure of (K*)g" is uniquely determined also by ε0, so that
of G°κ is uniquely determined by Gγ XSK and ε0. The structure of Gκ

is determined by εό and G°κ, so by Gγ xsK,εj and ε0. (see footnote.)

Let two group structures on G be Gx and G2, / be an identity
morphism of G. Then we have only to prove / is a S-group homo-
morphism from Gx to G2. Given two points a, b e G^S), we have f(ά)f(b)
= f(ab) over K for any geometric point K of S. Since f(a)f(b) and
fiab) are sections over S, they coincide over k(x) for any point x of S
by the f.p.q.c. descend. So in particular, they coincide simply as sub-
sets in X. On the other hand the images of these two sections by the
projection from G to Gγ are also sections of Gγ over S9 and coincide
as sections by assumption. In the etale topology the section of G over
S and its image in Gγ is isomorphic, therefore the sections f(a)f(b) and
f(ab) coincide in the same topology.

L is the pull back of Lγ, so uniquely determined by η. Thus we
have proved our proposition.

(6.3) Assume X to be a proper reduced C-scheme and L an invert-
ible sheaf on X. We define a covariant functor DL from the category
of complete local rings C over C to sets by, DL(A) = the set of equiv-
alence classes of a pair (3Γ, &) such that

(1) % is a proper flat A-scheme with SC^ — X
(2) if is an invertible sheaf on X with J*?o = L.

where (^Ί, J5fχ) and (#2*^2) a r e defined to be equivalent if there exists
an A-isomorphism / from 3£x to ^ 2 such that (/*J*?2)J2T1 e Pic0 (^1/A)(A).

LEMMA 6.4. Lei ίfee notations and the assumptions be as above.
Suppose that the natural homomorphism from H\X,C) to HX(X,Θ) is
surjectίve. Then DL has a hull. Moreover if the deformation functor
Dx of X is pro-representable then so is DL.

We can prove Gγ χsK/lm (H χs G°κ) s G°κ.
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Proof. At first we prove the following

Claim; Let A, B be complete local rings and φ be an epimorphism from

B to A. Suppose % to be a proper flat B-scheme with «3Γ0 = X* Denote

by % A the fiber product of % and A through φ. Then a canonical

homomorphism φ* from Hι(&, Φx) to Hι(&A, Θ#A) is surjective. In fact,

since 2£ is proper over B, ΈL\3£y Θ%) is a finite S-module. Put M =

Gόker(H1(&9B)-+H\&9ΦίΓ)). Then we have M®B/mB = 0 by assump-

tion, where mB denotes the maximal ideal of B. Hence by an aid of

Nakayama's lemma, we conclude M = 0. On the other hand, it is ob-

vious that HK&, B) = H\X9 B) ^ H\X9 C) ® B, IP(βΓ9 A) - H\X, C)(g)A.

Therefore it follows from a commutative diagram

Hι{Sε,B)-*H\K,Og)

1 i

that φ* is surjective (QED of the claim).

According to Schlessinger's theorem ([23] theorem 2.11) we have only

to check the conditions (H1)(H2)(H3) in order to prove our lemma. We

proceed our proof in the same way as in [23]. We use freely the ter-

minology in [23].

(Hλ) Let u': (A\ ηf) -*(A,τj) and uff: (A;/, η") -> (A, η) be morphisms of

couples where un is surjective. Let &', 2£9 %" and f̂7, Jδf, Jδf7/ correspond-

ing schemes and invertible sheaves on them respectively. Namely yf =

(^/, J2P0, V = (&> &) and η" - («r;/, jδf'O.

Then we have isomorphisms &' ® A ^ S£, %" ® A ^ S£ and

(Jδ?7 ® A)^-1 e Pic0 (^"), {<£" ® A)<e~ι e Pic0 (#").

By the above claim there exist invertible sheaves =^;, S£ff respectively on

&', %" such that &' (x) A ^ .Sf, ^ 7 / (x) A ^ if. Put Z with tf^ == ̂  x ^ Θ^>

\Z\ — \X\ and JΓ = &' X^^", η"r = (Z, ̂ T). Then we have isomorphisms

j / " ® A7 = η'9 η"'®A" ^ ^ , which completes the proof of (H,).

(H2) Next let (&19 jSfx) and (# 2 , jSf2) be elements of DL{Af χc A"), An = C[ε]

(ε2 - 0). If #\ ® A7 ^ «T2 ® A7, ^ ® A;/ ^ ^2® A" and through these

isomorphisms ifx ® A7 = ^ 2 ® A7 mod Pic0 (^Ί ® A0 and ^ ® A7/ = if2 ® A

mod Pic0 ( ^ i ® ^ ^ ) , then there exists by (JEZΊ) an invertible sheaf if on

such that

"

Since J^ 0 = (PXJ if is an element of Pic0 (Z) where ^ is defined by Θz =
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OKl X,X0,,, \Z\ = \X\. In fact, since Pic°(Z/A'") = Fic°(Zan/A'") where Zan

denotes an analytic space associated with Z, A"f — A' χc A", we have only

to prove the assertion in the analytic case. From a commutative diagram

H\Z, Θz) -> H\Z, Θ%) -> H\Z9 Z)

I I II
H\X, Θx) - H\X, 0*) -> H\X, Z)

we infer that any invertible sheaf S£ on Z whose restriction on X is an

element of Pic°(X) is projected to zero in H2(Z,Z), i.e., comes from

H\Z,ΦZ).

Therefore changing <£x into &λ ® JS?"1, we have isomorphisms

#\ ® Af ^ ar2 ® A', ^ ® A" ^ ,r2 ® A ; /

/ g
cp fits Λf ~

By the same argument as in [23], we conclude that («̂ Ί, J^) and

(&29 S?2) are isomorphic if A/f = C[ε], A = C, which proves (H2).

(Hz) is obvious since DL is a subfunctor of the deformation functor.

The last assertion follows readily from Th. 2.11 and Lemma 3.8 in [23].

Q.E.D.

LEMMA 6.5. Let X be a proper reduced k-scheme and L be an

invertible sheaf on X. Suppose that S£ is flat and proper over k[ε],ε2 = 0

and &0 — X. Moreover we assume 3C be an element of H\X, $xt* (Ωx

x Θx))

through the canonical isomorphism between Ext1 (Ωx ΘΣ) and the tangent

space of a deformation functor of X. Then an obstruction o(&,L) to

extend L to the whole 9C is given by the cup-product of β£ and c(L),

and o(&,L) is an element of H\X,Θχ) where c is a canonical homomor-

phism induced from the homomorphism from Θ* into Ω1 defined by

c(a) — da/a, so c{L) is an element of H\X, Ωx).

Proof. This lemma is well-known, however for the later use we

recall the outline of the proof. Take an open affine covering Uj of X

and an open covering <fys of θ£ such that <%ά> X&X = Uj. Let L be defined

by a 1-cocycle {fjτc},fjk£Γ(JJjk,Θ*). And assume X to correspond to a

1-cocycle Ώ5%, Djk e Γ(Ujk £χt* (Ωx Θx)).

Now assume that there exists an extension S£ of L, say, defined by

a 1-cocycle FJk, FjkeΓ(Wjk,<D*) such that Fjk(0) = fJk. We write F)k =
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dFjkjdε, F% = fJk. Then one-cocycle Fjk satisfies the equality FijFjk —

Fik. Differentiating this equality with ε, we have,

Fψ)k + F]jF% + φj.FDF), = F]k

Hence we conclude a 2-cocycle (l/Flj)DJkFij is cohomologous to zero in

The converse is left to the reader.

Remark. The above obstruction will be often denoted by o(d/dε, L).

(6.4) Next we shall calculate o(d/dε,L) for SQAV of level 1 using

the above result. Because of the similarity of calculations we deal with

only SQAV's of dimension 2.

case 1)

Assume I to be a principally polarized abelian surface. Let the

period matrix of X be (l,τ), τ — \ n Γ l 2 ) . Then a complete family of

deformations is given by setting τ{s) = (Tn + Su Tl2 j ~ M , |s^| <ε.
V 1 2 I ^21 ^22 ~Γ ^22/

Consider a mapping φ from Spec C[ε], ε2 = 0 into s i r space defined by

φ*sij = aiάε so that we may obtain a flat family of deformations with
period r(e) = τ + (a

n

11 M ε over SpecC[ε].
\α21 dp/

Then o(d/dε, L) vanishes if and only if aί2 = α21. We shall give a

proof of it.

An invertible sheaf L is given by a 1-cocycle Θr = e{ — \yτιy — γ%).

Denoting the global coordinate of the generic fiber by ζ(s), then we can

write a transformation induced by γ as follows,

where α = (α f i), ζ7 = ζ;(0). Hence we have Dr = (3/3e)r = <αV,3/3C> =

ΈkUi aijTj(&/dζi)' The cup-product of Dr and θr> is given by a 2-cocycle

Crr, = -γWγ, where r = (γ1,γ2),γ' = (rί»rθ

However ^ , ^ , (JΊ + ^ ( ^ + γ'2) is cohomologous to zero because each

of them is the cup-product of a 1-cocycle in H\Γ, C) and itself. On the

other hand, γxf2 is not cohomologous to zero, so o(d/dε,L) vanishes if and

only if al2 = α21.

case 2)

Assume Z be a SQAV of the second type (see (4.2.)). Then the

corresponding local period matrix to X is given by τ(s) = ίTu τλ2) +
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(~ Λ log s/2π*J — 1. And a complete family #* of deformations of X is

given by setting τ(s) = ( ^ + J« Γl2 + S l 2) + (jj J) log s2 2/2π/=Ί,(|^,| < ε),

X = Proj JS(τ)/Γ ((2.4.) Remark).

Consider a mapping φ of Spec C[ε] into s^-space defined by φ*sij =

aίj9(ίj) Φ (22),9*s22 = 0, so that we have a flat family <p*& over SpecC[ε].

Then we may consider φ*9£ corresponds to a 1-cocycle Dr = <αf^,3/3ζ>

symbolically, where α = ί^n ^ί2j. By the same argument as above we

have a 2-cocycle o(d/dε,L) = —ftfγ, therefore o(9/3ε, L) vanishes if and

only if α12 = a21.

case 3)

Assume X be a SQAV of the third type whose corresponding local

period matrix τ(s) given by τ(s) = ί τA2J + (Q ^ J logs/2πV — 1. And

a complete family & of deformations of X is given by setting τ(s) =

Proj jB(f)/JΓ. Consider a pull back p*3Γ where p*s<y = αt ie (ί Φ j), φ*sit — 0.

Then Dr = a^w^d/dWj) + θ2iγιW2(d/dw^ where wt = e(ζi). Also in this

case, calculating o(d/dε,L), we can show that o(d/dε,L) vanishes if and

only if al2 = α2i.

case 4)

Assume Z be a SQAV of the fourth type, whose corresponding local

( o i\
— 1 -j) logs/27rV^l. And also by

setting \τ(s) - (£ 2) + (o o) l o g "n/2*^ + (_ϊ "}) l o^ snβπ^l
+ rλ j \ logs22/2π*f^:'ϊ, we obtain a locally complete family X of defor-

mations of X. # = Proj R(τ)/Γ. Consider a pull-back p*,T where p*s21 =

α21ε, φ*stj = 0 (otherwise). Then D r = α21^1w2(3/3^2) where w2 = e(C2) and

o(5/3ε, L) = — a2tfif29 hence o(d/dε,L) vanishes if and only if a21 = 0.

In any case, there is a polarized family of deformations of X over a

complete regular local ring of Krull dimension 3, and this family is

formally complete as for the functor DL defined in (6.3.) in view of

Corollarly 2.2 (ii), (4.2.), Lemma 6.4. and [23] Th. 2.11., hence pro-

represents DL.
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In the case of dimension 3, by quite similar calculations, we can prove

the pro-representability of DL.

Summing up these results we have,

THEOREM 6.1. DL is effectively pro-representable for a SQAV (X,L)

of level 1 defined over C. (g = 2,3)

COROLLARY OF THEOREM 6.1. S?g(λ) is locally effectively pro-represent-

ed by complete regular local rings of dimension \g(g + 1). (g = 2,3)

Proof. Let ξ0 be a SQAS of level λ over C, ξQ = (Zo, Go, H, H', εj9 Lo)

&ΌQXC) ( = Fg(X)(O) and η0 be a SQAS of level 1 obtained from ξQ by

taking a quotient, η0 == (Y0,GYo,ε0,LYo). ((6.2.))

Then we define covariant functors S?g(X)($0), 5^(l)(^0) from the category

of complete local rings to sets by,

= {£

9 x A A/mA ^

where mA denotes the maximal ideal of A. DLγ is effectively pro-

represented by a complete regular local ring A of dimension %g(g + 1)

and a flat polarized family & of deformations of Yo over A constructed

before. Then it's easy to check that <& is also a SQAS over A. Hence

any element η of DLYQ(B) is also a SQAS over B for any complete local

ring B. Therefore ^( l )(^ 0 ) coincides with DLYQ because according to

Lemma 6.2 &*g(\)(j)^(B) = Fg(ΐ)(ηQ)(B) for a complete local ring B where

Fg(l)(ηo) is defined in the same way as ^( l ) (^ 0 ) , which proves the effec-

tive pro-representability of ^ g(l)(^ 0).

As seen in (6.2.), we can define a SQAS η of level 1 for a SQAS ξ

of level λ, which we denote η — ψ(ξ). Now we shall prove the mapping

ψ from Sfg(λ)(ξQ)(B) to S?'g(i)(y]Q)(B) is bijective for any complete local ring

B. Any element η of ^(l)(^ 0 )(β) is induced from (^,A) and there exists

an unramified covering X of <¥ which is also a SQAS of level λ over A

and «3Γ/ίP = ^ , hence ψ is surjective. The injectivity of ψ follows easily

from Lemma 6.3. Q.E.D.

THEOREM 6.2. (i) S^g(X) is represented by a smooth C-algebraic

space S*(X). Moreover the greatest separated quotient Sg(λ) of S*(λ)

exists and is isomorphic with Igusa monoidal transform &f(X) of Satake

compactificatίon of the Siegel modular space of level λ. (# = 2, 3, Λ ̂  3)
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(ii) ©*(/l) (λ = 1 or 2) has the following property

(1) there exists a unique morphism f from S to ©*U) in the cate-

gory of algebraic spaces for a given SQAS over S functorially.

(2) For any separated C-algebraic space N enjoying the property

(1), a unique morphism g from @*(/0 to N is defined in such a way that

the following diagram commutes, for any SQAS η over S

S-U&Hλ).

N

Proof of (i). According to a generalization of Artin's theorem by

Deligne-Rapoport (6.1.), it remains to show the conditions (a)(b).

Take a SQAS ξ of level λ over C, then we can construct η of level 1

as before. An automorphism of ξ' = ξ x c C[ε], (ε2 = 0) induces that of

γf = η x c C[ε] by definition. By virtue of Theorem 2.1. Autc η = A u t σ w rf

because η' has a section over C[ε]. Hence we have Autα ξ = Aut^ ίelξ',

thus (a) is proved.

Next we shall prove (b). Let ξ = (X, G, H, H', ej9 L) e ̂ U ) ( C ) . Xies

— X — sing X consists of disjoint union of a split torus bundle over a

fixed principally polarized abelian variety A with level λ structure. By

the condition (B), any automorphism σ of ξ induces that of any connected

component of Xτes, moreover a unique automorphism σf of A as a prin-

cipally polarized abelian variety with level λ structure. Hence if λ ̂  3,

σf is an identity. Therefore a operates on X preserving all the fibers.

However on the fiber of Z r e g at the zero of A, a has ^-division points as

fixed points, so if λ ̂ > 3, σ equals to the identity, (proposition 1.2) So there

exists an algebraic space S*(X) locally of finite presentation which repre-

sents S?g(X). The smoothness of S*(X) (λ ̂  3) follows from Corollary of

Theorem 6.1. and (b).

(6.5) We are still on the way of the proof of our theorem.

Now we shall prove the second assertion of (i) that @*U) is the

greatest separated quotient of S*(λ) (λ ^ 3, g = 2,3).

We have only to consider the problem in the analytic category ([2]

Th. 1.12). At first we define an analytic mapping / from S*(λ) to @*U)

as follows. Let ξ be a SQAS of level λ over C and its local period
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matrix be τ(s) = ro(β) + B log 8/2π<f=i, B = (® Ά&" > 0). We may

assume that for a Delone g" cell σ w.r.t. 2?", g" = rank B the level λ-

structure εlf >,e2g on ξ is defined as in (2.4.). Because of the structure

of @*U) ((3.3)) lims_*oτ(s) exists, so we can define f(ξ) = lims_0Ks).

This mapping is obviously an extension of an isomorphism from the

fine moduli of principally polarized abelian schemes with level λ structures

to the Siegel modular space of level λ.

It is easy to check that / is an analytic mapping ((3.3), (4.2)(5.6.)).

Moreover we notice by definition # ( / " *(/(?)) = the number of Delone g"

cells modulo translations by Γ. Since ®*(X) is separated our second

statement of (i) is completely proved, (see supplement)

Next we turn to the proof of (ii). (λ = 1) Sρ(g Z)/Sp(g Z)(k) operates

on @ (̂fc). (k ^ 3) and its quotient space @*(1) is defined as an algebraic

space indepently of the choice of fc. @*(1) is also separated.

Let S be a C-scheme of finite type, η be an element of 6fg(ΐ)(S) i.e.

for an etale covering Sa of S, SQAS ηa = (Xa9 πa, Sa, Ga9 εα, LJ over Sa are

given where Sa is also a C-scheme of finite type. For any closed point

x0 of Sa9 the geometric fiber of ξa at xQ is a SQAS over C. Let Xa be

the formal completion along the fiber (Xa)Xo and Sa be the completion of

Sa by the maximal ideal of ΘXoSa. Then by the (effective) pro-represent-

ability (Corollary of Theorem 6.1.) Xa is isomorphic with Proj R/λΓ

over Sj)ec<9Xo§a = &τ>ec£XoSa. So there exists a SQAS ξ of level k (k ^ 3)

such that 7] is a quotient of ξ by H', so that we may have a morphism

from Sa to the moduli space S*(k) up to its level structure. Hence this

defines a unique morphism from S p e c k s to ®f(k) and consequently by

an aid of Artin's approximation theorem ([2]), we have a morphism

from the henselization S p e e d s of 8>γyecΘXoS to © f(l). Thus we obtain

a unique morphism from S to @*(1) as algebraic spaces.

If another separated algebraic space N admits this property, i.e.,

for any element ξ of «$%(1)GS) there exists a unique morphism from S to

N as algebraic spaces, then we have a unique morphism g from @*(1)

to JV. In fact, let x0 be a closed point of @*(1) and ΘXQ be its local ring.

Then according to the proof of effective pro-representability of 5^(1)

there exists a finite Galois covering Spec 0' of Spec ΘXQ on which a SQAS

ξ of level 1 over Θf is defined uniquely up to level structures. Here we

may assume (£, Θ') is a local universal family of SQAS. A morphism g

from SpecίP7 to N can be defined by this ξ.
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We must prove g is invariant by the action of a Galois covering

group GXo of Spec0' over Speed?. If x0 is a point of the Siegel space

@*(1) g is invariant under GXQ. Let x0 be a point of @*(1) — ©*(1), and

σ be a covering transformation of Speed?' over Speed?. Then g and #ofl-

are morphisms from Speed?7 to N, and coincide with each other on

Specif7 (K': the quotient field of Θf) because ©*(1) is a Zariski open dense

subset of <§*(1).

Since N is separated, g = goσ on Spec0' which implies g defines a

morphism g from @*(1) to N. The remaining assertion is trivial.

In the case of λ •=• 2, we can proceed our proof in the same way as

above. Q.E.D.

Supplement to the proof of theorem 6.2. (i)

Let JV be a separated algebraic space of finite type over C, and φ

be a morphism from S*(λ) to N. Then we must show that there exists

a morphism h from (3f(λ) to N such that ho f = φ.

Let P be a point of @*(Λ), Q be one of its inverse image P by /.

Since S*(λ) and ©*(Λ) are locally isomorphic, a morphism h is defined

near Q. We shall show h is independent of the choice Q. If P is con-

tained in the Siegel space ©*U), then Q is unique, so there's nothing to

prove. Assume that P is not contained in @*C2) and Q19 Q2 be two points

of fιiP). Let Θ be the local ring of @*U) at P. Then by the above

consideration two mapping hl9h2 defined at P coincide with each other

on SpecK where K is the quotient field of Θ, Since N is separated, hx

and h2 coincide all over Spec0. Thus it is proved that §f(λ) is the

greatest separated quotient of S*(X).

§ 7. Further remarks

(7.1) We shall give a brief comment on Deligne's example in [13].

Let Xλ be the fiber (Xτ)p at p: (s^1, sns12, s12s22) = (0,0, 0) in the case where

λ >̂ 3 (see (3.3.)). (Z/λ)2 operates on Xλ so that we have a quotient

scheme X of Xλ by (Z/λ)2. Obviously X is independent of λ, which is

nothing but the closed fiber of Deligne's example. Notice that X is a

union of a protective plane blown up at three vertices and two copies

of a protective plane.

As for this X, we have dim H°(X9 Sxt" Ω\ ΘΣ)) = 2, dim H\X, Sxt« (Ωλ

x Θx))

= 2, dim H\Xf Sxt" (Ωx ΰΣ)) = 0 and H°(X, ixt1 (Ωx Ox)) = 3, consequently

dim Ext1 (Ωx Θx) = 5. Since a canonical homomorphism Hι(X,C)—>Hι(X,ΦΣ)
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is surjective and dim H2(X, Θx) — 1, a flat polarized family of deformations
of X with 4 parameters exists. In fact X has apparently two parameters
for gluing, one of which prevents polarization from extending.

Moreover we remark that in the Deligne's example one of two pro-
jective planes of X can be blown down to one normal point so that X
becomes our stable quasi abelian variety, i.e., two copies of a projective
plane, and the total space becomes a local universal polarized family of
deformations given in (4.2.). Therefore it is conjectured that a stable
quasi abelian variety has in a sense a kind of minimality. We shall
discuss on it in the subsequent paper.

(7.2) Let

We consider X = Proj R{τ)jΓ, R(τ) = 0[£TO.0], ξm = e{\mτ{s2Ym + m%).

Then the theta series Θ — J]m e{\mτ{s2Ym + m%) is a global section of

0(1) whose restriction on (C7o)o is given by, θ — Σ α e Φ xa, with the nota-

tions in proposition 2.3.

Let ύi = (P0,Pi,Pi+ιy, ^ = (P09Pi}, Pί+6 = Pi9 where

Po = (0,0) , Λ = (1,0) , P2 - (1,1) , P3 = (0,1) ,

P4 = ( - l , 0 ) , P6 = ( - l , - l ) , Pβ = ( 0 , - l ) .

Then the restriction of θ on Zσ. Π (Uo)o is given by 1 + xa. + xat+1. Hence
a closed subscheme C of «3Γ0 defined by θ = 0 is a union of two projec-
tive lines meeting transversally at three distinct points.

In the same way as above we can construct a family of stable curves
of small genus, (see [15][17]).

We remark that a stable curve cannot necessarily be embedded into
its corresponding stable quasi abelian variety.
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