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ON MODULI OF STABLE QUASI ABELIAN VARIETIES
IKU NAKAMURA

Introduction

In [4] Deligne-Mumford introduced a concept of stable curves and
proved the existence of the coarse moduli space of stable curves of given
genus in the category of algebraic stacks. Thereafter Mumford has
shown this coarse moduli space is a projective scheme. We can consider
the coarse moduli space of stable curves as a geometric compactification
of the coarse moduli space of non-singular curves.

On the other hand Mumford showed the existence of the fine moduli
scheme (1 = 3), the coarse moduli scheme (1 = 1,2) of polarized abelian
schemes with degree d and level A-structures as a consequence of his
general theory on the existence of the quotient. ([12]) Also Igusa ob-
tained the same result in the case of dimension one before Mumford.
([10) Recently Deligne-Rapport has proved that the fine moduli scheme
of generalized elliptic curves with level 1 structures exists if 1 =3 and
becomes a projective scheme. ([5]) A generalized elliptic curve with level
A structure is one of the following, a nonsingular elliptic curve with level
A structure, a chain of A lines with level 1 structure. In this case the
moduli of generalized elliptic curves with level A structures is considered
as a geometric compatification of the moduli of elliptic curves with level
A structures.

The main purpose of the present paper is to construct a geometric
compactification of the moduli space of principally polarized abelian
schemes with level A-structures over the complex number field in the
lower dimensional cases. Namely we define a principally polarized stable
quasi-abelian scheme (or variety) with level 1 structure (abbr. SQAS or
SQAYV) (§2) and construct a compactification of the moduli of princi-
pally polarized abelian schemes by adding the isomorphism classes of
SQAS. A principally polarized non singular stable quasi abelian scheme
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with level 2A-structure is by definition a principally polarized abelian
scheme of the same level.

Our main theorem can be stated as follows,

Theorem 6.2. (g = 2, 3)

(i) The functor ©,(2), (more precisely the sheafification of the func-
tor) of principally polarized stable quasi abelian schemes with level 2-
structures over C of dimension g is represented by a non singular non-
separated algebraic space S}() locally of finite presentation if 2 > 3. The
greatest separated quotient S;(2) of S}(2) exists and is isomorphic with
the Igusa monoidal transform ©%¥(2) of Satake compactification of the
Siegel modular space ©,(2) of level a.

(i) &*1) (2 = 1,2) has the following property,

(1) Given a SQAS over a scheme S of finite type over C there ex-
ists a unique morphism from S to &}(2) in the category of algebraic
spaces.

(2) For any separated algebraic space N enjoying the property (1),
a unique morphism g from &#() to N is defined in such a way that
the following diagram commutes for any SQAS over S,

s L e

N

N

where % is morphism defined by the property (1).

We remark that ©X(2) is known to be compact. A remarkable fact
is that the moduli space S}(2) is not separated, contrary to the cases of
stable curves, generalized elliptic curves. It comes mainly from the fact
that a SQAS of level 1 is not necessarily irreducible and an ample in-
vertible sheaf on a SQAS does not seem to be determined canonically.
A concept of a stable quasi abelian variety was first obtained by Ueno
in case of g = 2 in his unpublished manuscript [30]. He constructed the
degenerate fibers of principally polarized abelian varieties by using theta
functions. After Ueno the author obtained stable quasi-abelian varieties
as a consequence of properfication of analytic Neron model in case of
g =2,3. After their works Namikawa gave two definitions of SQAS,
one of which the author also obtained around the same time time inde-
pendently. Two definitions of SQAS are proved to coincide with each
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other if a certain arithmetic condition (A) is satisfied. (proposition 2.2.)
If ¢ is not greater than four, (A) holds always true. (lemma 1.5.) If
g is greater than four, this may not be the case. Therefore we shall
give a precise definition of SQAS only under the condition (A). If this
condition (A) fails, then our SQAS is not reduced. (proposition 2.4.) It
seems to the author that there is no reason to determine which defini-
tion of SQAS is better when the condition (A) fails. So we have only
candidates for a genuine SQAS in the general case. Our definition of
SQAS is greatly indebted to Mumford [18]. (definition 2.3.) On the
other hand in the analytic case, the fine (or coarse) moduli of principal-
ly polarized abelian varieties with level 2 structures is known to be the
Siegel space &¥(2) of level 2. The compactification of it was considered
by many people. The most famous compactification is due to Satake,
which is often called the Satake compactification. Igusa investigated
the structure of the blowing up (1) of the Satake compactification by
the ideal of cusp forms and showed that the blowing up is non-singular
when g < 3, singular when g > 3. In this article we call the last com-
pactification &*(2) of S&,(1) the Igusa monoidal transform of the Satake
compactification in accordance with [16]. Recently a new method of
compactifying symmetric domains has been found by Mumford [14] and
Satake [28]. Mumford has shown a general idea of compactifying the
Siegel space in the former half of [14]. In [18], as he himself stated at
the end, Namikawa gave a false proof of a theorem that a canonical
morphism from the coarse moduli space of nonsingular curves to the
Siegel space can be extended to a morphism from the coarse moduli space
of stable curves to the Igusa monoidal transform. Mumford told
Namikawa in his letter that Namikawa’s theorem and proof can be modi-
fied into correct ones by taking a partial compactification of the Siegel
space associated with DV cones instead of the Igusa monoidal transform.
We notice that the original theorem in [18] has not been known to be
true or not yet. Stimulated with this Namikawa gave a precise con-
struction of a new compactification of the Siegel space associated with
DV cones which was named the Voronoi compatification. The Voronoi
compactification is the same as the Igusa monoidal transform for g <3.
The Voronoi compatification is deeply related with our stable quasi-
abelian varieties. In fact, our main theorem states that if g < 3, the
Voronoi compactification is in a wide sense the moduli space of SQAS.
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Moreover Namikawa has succeeded in constructing a polarized family
of SQAV’s of level 2 over the Voronoi compactification of level 22. From
these facts it is conjectured that the functor #,(2) (possibly with a slight
modification) is represented by an algebraic space S}(1) of finite type
and its greatest separated quotient S,(1) exists and is isomorphic with
the Voronoi compactification even for g greater than three. Now we
shall explain an outline of this article.

In §1, we prepare definitions, some lemmas and propositions. The
results in this section are quite elementary. In §2 we shall define
SQAS X under an arithmetic condition (A) and prove the fundamental
properties of SQAS. For instance, X is reduced and Cohen-Macaulay
under the condition (A). Moreover we shall see that the configuration
of X is given by a certain kind of a polyhedral decomposition of g di-
mensional Euclidean space, which is called Delone decomposition. Most
of the properties of X can be described by this Delone decomposition
associated with X. Furthermore we shall give two important exact
sequences of coherent sheaves on X, and calculate the automorphism
group of X under the conditions (A) and (B). Then the connected com-
ponent of the automorphism group of X has dimension g (theorem 2.1.).
We remark that the conditions (A) and (B) do hold if ¢ < 4. (lemma 1.5.)

In §3 we shall give an outline of the construction of the Voronoi
compactification and Namikawa’s polarized family of SQAV over the
Voronoi compactification. In the rest of this section we shall make a
short investigation of the boundary of the Voronoi compactification in
the lower dimensional cases from the view point of troidal embeddings.

In §4,8§5, we shall calculate Ext! (2% 0x) for a SQAS of level 1 (g =
2,8) which is the tangent space of the deformation functor of X because
X is a reduced proper scheme. ([24]) For that purpose we use a spec-
tral sequence E?? = H? (X £xt? (2% O0x)) converging to &x?*? (2% 0x).
Using the results in §2, we can compute the terms E}° and E}'. For
a SQAS of dimension 83 whose corresponding Delone decomposition is not
the composite of Delone decompositions of lower dimension we have an
interesting formula, dim E}° =38 + N, — N, + 2N, — 3N, where N, de-
notes the number of v dimensional Delone cells modulo translations by
integral vectors. ((5.6.) Remark)

In order to compute the term E?' we introduce a concept of the
graph of X, which should be called the graph of the singular loci of X.
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If ¢ is not greater than three we have dim E! = the number of connected
components of the graph of X. (Corollary of Lemma 5.3.)

From these calculations, the spectral sequence mentioned above im-
plies an inequality dim Ext!' (9% 0x) < ¢* if ¢ = 2,3. On the other hand
we can construct a flat family of deformations of X depending on g¢?
effective parameters so that we have dim Ext! (9% 0x) = ¢* (9 = 2, 3).

In §6, we shall define a functor &,(2), i.e., the sheafification of the
functor of SQAS of level 2, and show our main theorem. For this
purpose we shall consider a functor D,, in short, the deformation funec-
tor with polarization. (lemma 6.4.) With the aid of lemma 6.4. and
Wavrik’s theorem, we shall prove that #,(2) is locally effectively pro-
representable by complete regular local rings of dimension 1g(g + 1).
From these results we infer our main theorem along the same line of
arguments as that of Deligne-Rapoport [5]. The representability is
shown by using a generalization of a theorem of Artin by Deligne-
Rapoport [5].

In § 7 we shall give a brief account of the reason why we have taken
our definition of SQAS instead of degenerate fibers appearing in Deligne’s
example [13]. Moreover we shall show an example of a construction of a
local family of stable curves. On the last topic we shall discuss in full
details in the subsequent paper [16]. In fact the subsequent paper [16] was
the starting point of the present paper.

The author would like to express his hearty thanks to Dr. Namikawa,
Dr. Umemura, Dr. Ueno and Dr. Kashiwara and other mathematicians
in Nagoya University for their valuable advices and encouragements. Dr.
Namikawa has kindly shown the author his handwritten manuscript.

Notations.

Let E be a real vector space of dimension N with a fixed isomor-
phism E = R”. Define £, = Z¥ through this isomorphism. FE is equipped
with the inner product <{xz,, z,> = #ix,(x,€ E). Let C be a cone in E.
C:={xeE;<x, > =0 for any 2’ C}
©),:=CNE,

R*'D: ={rx;reR*,xe D} (D cCE

Q'D: ={rx;reQ*,xeD}

9;: the cone of real symmetric positive definite matrices of degree g.
2: D-V cone (1.1.)
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ag: Delone cell (1.1.)

Vs.: a mixed D-V cone associated with 3 and ¢ (3.2.)

Vi)z: ={(y,2) e PY; X R’; y: half integer, z:integral} N V;, where y is
called a half integer matrix if y, e Z, 2y,;€ Z (@ + J).

tu: the transposed matrix of u.

Z; . mnon negative integers

@,: the set of Delone g cells containg the origin

@: the set of Delone 1 cells containg the origin

r<¢: 7is a face of ¢

[o:7]: the incidence number, where r is a one codimensional face of ¢

M,Z): the ring of integral matrices of degree g.

GL(g Z): the group of integral matrices of degree g with determinant
+1

T, or Sp(g Z): = (M & Myy(Z); MJ*M = J} where J = (0_1 %)0), I, or

Sp (g 2)(D): = (M e Sp(92); M = 1,,mod 2} !

S,: the Siegel upper half plane of degree g (2.1.)

SF(): = &,/I',(2) the Siegel space of level 2

&*(2): the Voronoi compactification of level 2

e(x): = exp @rv/ —1x)

:= (&, ---,¢,) variable

m: = (My, -+, m,) €2Z°

R@):=0l¢,-0me 2] &, = e(Zme(s)him + mtE) (2.1.)

R@): =0I¢,-0me 29 &, = e(Ame(s)'m + m*(C + 3r(s))) where 7r(s) =
(ry8)), r8) = 7;,(s) (2.4. Remark)

R*(z): (2.4.)

)z = {ye;; y: half integer}

9;: the convex hull of all symmetric positive semi-definite integral
matrices of degree g over R*

Table of Contents
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§7. Further remarks

§1 Delone cell, Voronoi cell, D-V cone and a semigroup S,.

(1.1) For a matrix y of 9;, we define two decompositions of R’ as
follows,

DEFINITION 1.1. ([18]) A subset ¢ of R? is called a Delone cell w.r.t.
y if there exist integral vectors a; (e Z%) and a € R’ such that

0 o= {Z:=12ia'ji; 1<14=0, Zlei =145el,br=1,2,.. }

1) (0 — a)y’(a — a) = ¢ for some constant ¢

(2) in (1), equality holds if and only if ¢ = a; for some j.

DEFINITION 1.2. ([18]) A subset 4 = 4(¢) of R’ is called a Voroni cell
(corresponding to ¢) w.r.t. y if

A(e) = {—2ay; (0),(1), (2) hold for « and o} .

DEFINITION 1.3. All Delone cells (resp. Voronoi cells) w.r.t. ¥ give
a polyhedral decomposition of R? (resp. R%y), which is called Delone de-
composition (resp. Voronoi decomposition) w.r.t. y.

We recall the fundamental properties of Delone or Voronoi decompo-
gition.

ProprosITION 1.1. ([18]) The Delone (or Voronoi) decomposition has
the following properties.

(1) FEach cell has a finite number of faces, each of which is also
a cell.

(2) The translation by an integral vector (resp. an integral vector
times —2y) tramsforms a Delone cell (resp. a Voronoi cell) to another.
The number of cells modulo translations is finite.

3 If y> 0,0 is bounded and Delone cells of dim0Q are Z¢. 4 is
always bounded.

@ Ify = (g yo) ¥’ >0 rank iy’ = g, then o =R" Xa", 4 =0 x 4"

where ¢ (resp. 4”) is a Delone (resp. Voronoi) cell w.r.t. ¥y, g =9’ + g”.
And ¢ corresponds to 4 if and only if ¢’ does to 4”.

B) dime 4 dimd(e) = ¢

6) ¢ (resp. 4) is a Delone (resp. Voronoi) cell w.r.t. y if and only
if ou™t (resp. Au) is so w.r.t. uy'u. (ue GL(g Z))
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Proof. See Namikawa [18].

Now we introduce two conditions (A) and (B) about the Delone de-
composition w.r.t. ¥ > 0 as follows,

For a Delone cell ¢ containing the origin, we define R*¢ = {la;aco,
2> 0}

(A) For any Delone cell g, the vertices of o distinct from the origin
generate Rta N Z° as a semigroup.

(B) Let ¢, and o, be any pair of adjacent Delone cells of dimension
g i.e. 0, N g, =17 (r:a Delone (g — 1) cell).

Then there exists a tramslate o, of a, by an integral vector such that
ai N o, contains at least a Delone 1 cell not lying on .

Remark. As we see later, two conditions (A) and (B) hold at least
if g < 4.

DEFINITION 1.4. A subset X of 9; is called a Delone-Voronoi cone
(abbr. D-V cone) if there exists y,e9;

3 ={ye®;;v is equivalent to ¥}

where ‘“equivalent” means that vy determines the same Delone decompo-
sition as ¥, does.

THEOREM 1.1 (Voronoi [26]). All D-V cones form a cone decompo-
sition of 9; which is admissible, namely, satisfies the following condi-
tions,

o 9r=U2x (disjoint union)

1) 2, is a rational convex cone, t.e., a convex cone generated by
a finite number of integral matrices,

(2) every face of 2; is also a D-V cone

(8) this decomposition is itnvariant under the action of GL(g Z)

(4) the number of cosets w.r.t. GL(g Z) if finite.

EXAMPLE. In case of g = 2, all V-D cones modulo GL(2 Z) are listed
as follows

(0) {0}, (1) {(g g);y>0}, (2) {(f‘(’) ;’) v > 0}

(3) {<y1+y3 —ys);yi>0 }
Y—Ys Yo+ Vs 1=12,3
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We list Delone decompositions determined by D-V cones shown above.

@ @ @

1.2)

LEMMA 1.1. Assume 2,2’ to be D-V cones in 9;. Then the Delone
decomposition defined by 2 is a polyhedral subdivision of that defined
by 2’ if and only if 2’ is a face of 2.

Proof. Let @, be the set of all Delone g cells w.r.t. ¥ containing
the origin. Take a g cell ¢ of @, and let the vertices of ¢ be a, =0,
@, --,0,. Let y be an element of 3. Then there exists by definition
a vector « (€ RY such that

O (@ —y(a; — a) = (@ — )y (@, —a@) i=1,.--,7.
(2) for an integral vector a = a,,

(@ — Oy (@ — a) > (@ — Oy"a, — a) .
Hence we have,

QY eye; = 2ay'a;
@)Y ayle > 2ayta (o # a;)

Since dime =g and ¥ > 0, « is uniquely determined by ¢ and y. Put
B:(y) = 2ay. B; depends continuously on y over the closure 3 of 3 al-
though « is not in general defined over 3. Any y in Y satisfies (1)’ and
(2) for all 6 ®,. Conversely any y in 9; satisfying (1)’ and (2)" for
all o€ @, is contained in 3 because the Delone decomposition w.r.t. y is
determined by @,. Assume that the Delone decomposition defined by
another V-D cone X is a polyhedral subdivision of that defined by 2".
Let @, be the set of all Delone g-cells w.r.t. 3’ containing the origin.
Then ¢ € @, is covered with a finite number of g-cells in @,. For instance
assume ¢ to be covered with o, ---,0, and the vertices of 4; to be a,,
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a® ... a®. Hence {a, --,a,} = {a,a{, .-, =1,...,7}. Hence 3’ is
obviously a face of 2. Hence only if part is proved.

Next we shall prove if part. If X’ is a face of X, then any ¥ in
2’ satisfies (1), and some of (2)’ may reduce to equalities. Since g; is
defined over 3, B;.(y) = Bs(y) for ye3".

Hence the set of all a; such that ay‘a; = B5(¥)'a;, contains a; (7 =
0,.--,7) as a part, i.e. the Delone decomposition w.r.t. 3 is a polyhedral
subdivision of that w.r.t. 2’. Q.E.D.

LEMMA 1.2. Assume U to be an open cone in RY defined by a
fihite number of integral inequalities. Moreover suppose that there’s
no line completely contained in U. Set Aut U = {ge GL(N Z);g9-U = U}.
Then Aut U is a finite group.

Proof. By assumption U is the set defined by afx >0 =1, ---,n)
with integral vectors a,. Since U has only a finite number of faces of
codimension 1, we may assume ¢ € Aut U to transform any face of co-
dimension one into itself. However then we have g*(a,/2) = a,/9'x =
A0’ with a positive rational number 2,. Hence 2; is an eigen-value of
tge GL(g Z) so that we have 1, = 1. By assumption there exist at least
N vectors a; independent over R, therefore we conclude g = identity.

Q.E.D.

RROPOSITION 1.2. Assume X to be a D-V cone in 9. Then Autd
18 finite. Moreover AutY N GLB Z)(2) =1 if 1 = 3.

Proof. The Delone decomposition w.r.t. 2 (J C @;) has at most a
finite number of integral polyhedral subdivisions invariant by transla-
tions, hence in view of Lemma 1.1. 5 is contained in at most a finite
number of open D-V cones. Aut2 induces a permutation on D-V cones
which contain 3. According to Lemma 1.2., Aut 3’ is finite for an open
D-V cone 3, because 2’ is contained in 9;, so does not contain any line.
Hence Autl is finite. GL(g Z)(2) contains no element of finite order
distinct from identity if 2 = 3, so we are done. Q.E.D.

(1.3) Let B be a positive semi-definite symmetric half-integer (g, g)
matrix. Up to GL(g Z) conjugate we may assume B = (g Ig”)’ B”
> 0.
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DEFINITION 1.5. S, is a semigroup in Z X Z? generated by (mB'm, m)
me Z? and (1,0,).

LEMMA 1.8. (i) S, is finitely generated.
(i) Assume the condition (A), then S, is saturated.

Proof. (i) is a consequence of ([13] p. 242).

(ii) It suffices to prove our lemma in case that B is positive. We
define a function g by g(m) = Min {N; (N,m) e S;}. Obviously we have
g(m) = Min {Z¢;m;B'm;; 6; = 0, Xém; = m, ¢;, m; integral}. And (N, m)
belongs to S, if and only if N = g(m). So it suffices to prove g(rm) =
rg(m) for a positive integer. Assume m € R*c for a Delone g cell con-
taining the origin. Let « be a vector satisfying the conditions (0) ~ (2)
for ¢. We shall prove g(m) = 2aB'm. Assume m = 3¢;m; with integral
4;,m; (4; = 0). Then we have m;B'm; = 2aB'm;, so that X¢m;B'm; =
2aBY(X4;m;) = 2aB'm. On the other hand, by the assumption (A) we can
write m = 3r;a; with vertices a; of ¢ and positive integers r;,. Since
2ra;Bta; = 2aB(3r;0,;) = 2aB'*m, we have g(m) = 2aB'm, which completes
the proof.

DEFINITION 1.6. S;, is a semigroup in (J),), X Z’ generated by (a, 0)
ae (X, tmm,m) meZ' where 3 is a D-V cone in ;.

LEMMA 1.4. S;, is saturated and finitely generated under the as-
sumption (A).

Proof. (a,m)e (Y,); X Z° is contained in Sy, if and only if for any
yel, tr (oy) — 2ay'm = 0 with the notations in Lemma 1.3. Hence it is
obvious that Sy, is saturated. Since (E’)Z is finitely generated ([11] p. 7),
the assertion follows.

LEMMA 1.5. In case of g < 4. the conditions (A) and (B) hold.

Proof. Obviously the condition (A) holds true for any D-V cone in
9; if (A) holds for any open D-V cones. According to Lemma 1.1, the
condition (B) holds for X’ if X’ is a face of an open D-V cone 3 and
(B) holds for 3. In view of Voronoi’s results, (A) and (B) hold for any
open D-V cone if g < 4. ([26])

(1.4) We introduce a stronger condition (A*) than (A).

(A*) Let a,=0,qa, ---,a, be vertices of Delone g cell ¢ w.r.t. B.
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If a, - - -, a, are linearly independent over R. then qa,, ---,a, form a basis
of Z°.

LEMMA 1.6. If the condition (A*) is satisfied by B, then (A) is also
satisfied.

Proof. Let a be contained in R*¢ N Z? where ¢ is a Delone cell
containing the origin. Then there exist g vertices a,, - - -, a, linearly in-
dependent over R such that a is contained in > ¢, Rfa;. o is uniquely
written as ¢ = >/, 7, 7, = 0. Since a; is a basis of Z¢, a is also a
linear combination of a; with integral coefficients.

Remark. If g <3, (A*) holds for any B. In case of g = 4, many
examples satisfy (4*). The author does not known any counter-example.

§2. Stable quasi abelian varieties (SQAY)

(2.1) We write a disc D ={seC;|s|<e}, D* =D — {0}, @ = @, p = the
local ring of holomorphic functions at the origin.

Let = be a germ of a holomorphic mapping from D* to the Siegel
upper half plane &, of degree ¢,&, = {X + 1Y ; X,Y real, symmetric,
Y > 0}, surject to the unipotentcy condition,

(e*is) = 7(s) + B

with a positive semi-definite symmetric integral matrix B. Then we can
write ¢(s) = 7,(s) + B log s/2zi with a holomorphic matrix z,(s) defined also
at the origin.

It is well known that z(s) (s # 0) determines a principally polarized
abelian variety in a canonical manner.

The sympletic group Sp(g Z) operates on €, by,

M= (‘é g)n-»(AerB)(CMLD)-l, MeSp(g 2)

then z and (Az + B)(Ct + D)~! determine isomorphic principally polarized
abelian varieties.

DEFINITION 2.1. R = 0le(3mz(s)'m + m'L)d, m ¢ Z9], where 6 is an
indeterminate. Here we consider R as an ¢ graded ring by,
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degd =1, deg(e(Zme(s)'m + m) =0, dega=0 (ze0).

ProposITION 2.1. (i) Proj R is a locally noetherian analytic space
with a canonical projection @ to Spec 0.

(ii) Proj R is covered with open affines U, = Spec Ry, ke Z9 where
R, = Ole(EZmc(s)m — tko(sDk + (m — k)C), m e Z7]

(iii) Under the assumption (A), Proj R is normal, Cohen-Macauloy
and @ is flat, reduced, Cohen-Macauloy.

Proof. (i) (i) is obvious from the definition and (i) of Lemma 1.3.
(iii) Since R, = R,, we suffices to prove R, is normal, Cohen-Macaulay
and a|y, is flat reduced, Cohen-Macaulay. Up to GL(9 Z) conjugate, we

0 0 ), B” >0, rank B”" = ¢g”’7,9 = ¢’ + ¢g”. Then we

may assume B = (0 B

have

R, = O[s™B'™e(miC), m e Z°)]
= O[s™"B"me(mtC), m = (m’',m") e Z°]
= Ole(m”¢’), s™" 2" ™"e(m”'¢"), m e Z,m" e Z°] (€ = (L")

The normality and Cohen-Macaulayness of R, follow from the saturated-
ness of a semigroup S, associated with B”. ([11] p.5 and p. 52) How-
ever S, is saturated in view of Lemma 1.3. Next we turn to the proof
of the second assertion. Assume @ not to be reduced, then we have an
element f of R, such that f” = sh, with he R, f ¢ sR,. Viewing that
R, is a graded ring in s, e(¢)- - -, e(,), we may assume f is a monomial,
say, s%(b®¢). Then (s%e(b'®))” = sh implies ra > g(rb). Since f & sR,,
o = g(b), which contradicts to the fact g(rb) = rg(b). Since Proj R is
Cohen-Macaulay and @ is obviously equidimensional (see 2.3), so @ is
flat. We shall prove later that @ is Cohen-Macaulay.

(2.2) Next we shall construct a troidal embedding corresponding to Proj R.
This construction is one parameter case of Namikawa [18], and of
course the idea is quite the same as his.

DEFINITION 2.2. A subset 4 of Rf X R‘B is called a mixed V-cone
with respect to B if

4 = interior of 4, or a face of 4, (ke Zz9)

where 4, = {(y, ) e Rf X R?; (mB'm — kB'k)y + (m — k)'x = 0, me Z°.
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Remaork. {4} forms a convex rational polyhedral decomposition of
R} X R?, which we call mixed Voronoi decomposition of R; X RC.

LEMMA 2.1. Under the assumption (A), S, = (Avo)z ={la,m)e Z{ X Z°;
ay + m'z = 0 for any (y,x) € 4}

Proof. It suffices to prove go = 4, since S, is saturated. (lemma
1.3.) However this is obvious from the definition.
From Lemma 2.1., it follows by the theory of troidal embeddings [11],

PRrROPOSITION 2.2. Under the assumption (A), Proj R is a troidal
embedding associated with o mixed Voronoi decomposition of R} X RC.

(2.3) PROPOSITION 2.3. We assume the condition (A) to be satisfied for
B>0. Let P=ProjR, P,=the closed fiber of P by w. Then P, is
described as follows,

(i) P, is covered with open affine sets (U, ke Z°.
(ii) each (Uy), is isomorphic to (U,),,

(U2, = Spec Cla,a e B], o) = seBerniog(g/f)
where @ denotes the set of all vertices of Delone 1l-cells containing the

origin.
(iii) the fundamental relations between x,,ac @ are given by

[l ®,, =0 <f no Delone g cell contains all a, tel.
i€l

[l %o, =[] 2o, if a; Gel UI) are contained in a Delone
i€l tel”

g cell ¢ and moreover >, a;, = >, a;.
i€l tel’

iv) (U, is a union of Z. (z: Delone cell containing the origin)

Z. = Spec Clx,, x € 7] Zg = 2O
Z, NZ,=12Z, 04, Z.CZ, if t<ga

(v) (W) N (Ux)y # ¢ if and only if ke

(vi) Given a Delone g cell o, the structure of the closure Z, of
Z, in P, is described as follows. For a vertex a, of ¢ we define Y, =
Spec C[se8e-wB'ag((q — 0,)C), a € ¢] and A'(a) = {x — x,; x € A({a,}), %, € 4(0)}
where A(z) denotes a Voronoi cell corresponding to z. Let C,,= R*4(a,)
={y;yed(a),2>0}). Then Z = {Co,ac0 and a face of C,} gives a
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rational convex conical decomposition of R and Z, is an equivariant
completion of an algebraic torus (C*)* w.r.t. 2. ([11],[21])

Proof. (i) and (ii) are direct consequences of the definition and the
proof of Lemma 1.3,

(iii) If all @; are contained in the same o and > ;c;, @; = D lier, %
then we have for some « € R’ a;B‘a; = 2aB'a; t€ I, U I,, hence g3 ;c;, a;)
= Dlier, @B, = 2aB' (3 ser, ), v = 1,2, Thus we obtain [[;c;, 2., =
[Mier, a;» If there’s no Delone cell containing all a;, ¢€l, at the same
time, then ¢9(C era) < 2 a;B'a;. In fact, assume the contrary. Take
a Delone cell ¢ such that m = > ;c;a; € R'6. Then there exisits ac R?
such that aB'e = 2aB'a, equality holds if and only if acg. In view of
Lemma 1.3, g(m) = 2aB‘m = } ;c;2aB'a;. If g(m) = > a;B'a;, then
a; o (tel) since a;B'a; = 2aB'a; (1 ¢ I), which is a contradiction.

(iv) is obvious from (iii).

(v) If ke, then it is obvious that (U,), N (Uy), #+ @. Conversely
assume (Up, N (Uy), = ¢. Then there exists a point p such that x,(p) # 0,
w, = s*B%e(k'C) € I'(U,)y).

This implies g(k) = kB‘k, i.e. k = a, for some <.

(iv) With loss of generality, we may assume a,=0. We have
already known

4{0}) = {x; aB%a + a’x = 0, for any ac Z}
= {x; aB'e + a'x = 0, for any ac @}

and 4(o) = {,} = {; a;Bta; + a;'x =0 (a; € 0), aB'a + a'x = 0 for any a € Z%.
In order to prove the assertion, we suffices to show that Y, is an
equivalent embedding of algebraic torus associated with C,,. For that
purpose, it is sufficient to show that C,, = (R*e)¥ = {x; 2/(0 — a,) = 0, for
any aca}. (@, =0) If v — x,ed(ay), (e d{a,}), x, € 4(c)), then

(® — z)la; = 2ta; — xfa; = —aBla; + a;Bla;, =0,

so that we have C,, C (R*¢)V. Conversely let 2’ be contained in (R*0)V,
i.e., 2"%a; = 0 for any a;eg. Put N = Min,,,,,{eB'a + a‘z}. Obviously
N > 0. Take a positive number r such that |a’z’| < rN, for any ac®
o # a;, 0. Put x = (2'/r) + 2,. Then we have, a;Bla; + a;'x = a;B'a; +
atx, + (@2’ [/r) = 0 (a;€0) aBla + a'x = aBla + a’x, + (@'x'/r) = (@*x'/7)
+N>0 (aed,a+a,;0) so that 2 is contained in C,,, Hence we obtain
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= 1@ — 2, & € Cyy Xy € A(0). Q.E.D.

(2.4) Now we define an action of a lattice I' (= Z? on P and construct
a quotient space & = P/Al',AI' ={am;nel}, 2€Z*. For an element n
of I' we define ¢0-endomorphism of R by,

S¥a) =a , acd
S¥(e(Imz'm + mQ)0) = e(3(m + n)yc'(m + n) + (m + N))0 .

Thus S, transforms U, into U,.,,.

In order to prove that I" acts on P properly discontinuously we take
a local analytic model P over D, = {se C;|s| < ¢}, a local representative
7 defined over D, for a sufficiently small ¢ >0. Our aim is to show that
for any point p in P, there exists a small neighborhood U(p,e) such
that S,(U(p,¢) N U(p,e) is empty except at most a finite number of n.
For brevity we assume the condition (A) is satisfied and B > 0. More-
over assume that Z, is the minimal subvariety containing p where ¢ is
a Delone cell containing the origin. Then we may take a neighborhood
U(p,e) of p defined by, U(p,e) = {(s,%,) ac®; |8| e, |2,] <e (@&a),
|2, — 2,(0)] < &5 (@€ 0)} ¢ = (e,3,,¢;). Notice that z,(p) = 0 (a € ).

Assume S,(U(p,¢)) N U(p,e) + ¢. Take a point 2" from S, (U(p,e) N
U(p,e), then we may assume 2° to be given by (s,, 2%), (s, # 0) with finite
exception of n. (Recall that (Uy), N (Uy), # ¢ if and only if k = a; for
some i.) Hence we have,

0 <ls) <&y 23] <oy (25, — 2,(D)] < &
(a&o) (aeco) .
[s2Pnal | < e, |seBngl, — (D) < &

Taking at first ¢, ¢; in such a way that 0 <e, € 1,0 < g € Min,, [2.(D)|
and then ¢ € Min (e, ¢;), we have

sgetorenn) = [sgPtnaf|[af,| < 1

|siemie=est) = |spemnad,| 28] < 1

if ago or —a &, so that 2aBta 4 aB'n > 0, 2aB'a. — aB'n > 0. On the
other hand ¢ does not contain both @ and —a,i.e.,a &0 or —ages. Hence
S.(U,e) N Up,e) = ¢ except a finite number of n. Even in the gen-
eral case, since R, is finitely generated, it is easy to check the action of
I’ on P is properly discontinuous and free along the same line of argu-
ments as above. Thus we have proved that the action of I" on P is
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properly discontinuous and obviously free. (see footnote.)

On the other hand S¥S* = SkS* — S* by the symmetry of z, so
0(1) on P can be descended to an invertible sheaf which is also denoted
by 0(1). Then we have,

PrOPOSITION 2.4. (i) The quotient space P/ exists and has a
canonical proper projection w to Specd.

(ii) (Namikawa) Under the assumption (4), 0(1) is relatively ample
on P/l

(iii) Under the assumption (A), @ is a reduced, flat, Cohen-Macaulay
morphism. P/ is normal, Cohen-Macaulay.

Proof. The proof of (ii) should be refered to Namikawa [18]. The
other assertions follow from Proposition 2.1..

Next we investigate a section of P over Spec @ under the assump-
tion (A) and define a concept of level i-structure on P/il.

Let = z,(s) + Blogs/2zv—1, % =17, B = (g g,,), B’ >0. Take a
Delone g”’-cell ¢ w.r.t. B” containing the origin. Set ¢’ = g — ¢”.

Let a; (j =0,---,7) be all the vertices of ¢,0, = 0. Then by defini-
tion there exists a vector a( e R’") such that a;B‘a; = 2aBa; G =1, ---,7).
By assumption (A4), 2aB is an integral vector because {a;} span R*e N Z?"
over Z7, so Z% over Z where Z; denotes nonnegative integers.

Then we define an ¢-algebra R* = R*(r) by,

R*(z) = Olgx-0 me Z7] , &X = e(Imey(sH)im + mig)smBm-2aBm

R*(r) is obviously isomorphic to RE(z) as 0-algebras. I’ operates on
Proj R*(z) properly discontinuously and free and Proj R*(c)/iI" exists.
Since B = (8 lg,,), R*(2) = 0[&%)*, &%,] (e;; j-th unit vector, m, e Z7°).

We define a section ¢, by &% =1, &, =1 (a;€0) and ¢,,, by &, =
&8in = Le,un (ne Z9) is a section not only of P* = Proj R*(r) but also
of P*/2I'. On P*/A, ¢,,n = ¢,,n if and only if n = #n'modA. On the
other hand G, = Spec olEx)*, &%, 1 is an ¢-group scheme w.r.t. the usual
multiplication of a split torus with unity ¢,, and hence the image G, of
é” in P*/2' is an open subscheme and also an @¢-group scheme. The
union G of all translations of G, by I' forms a @-group scheme and an
open subscheme of P*/AI'. Let e; = > 5 0y, (e; = j-th unit, ¢’ + 1 <

This proof is valid only in the case 7p=0, B> 0. In a more general set-up we
can prove the existence of quotients ([15] § 2).
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jé g, njlceZ)’ and Ne; = E:} (1 = .7 = g,)’ Ne; = n (S:k)njk (g, + 1 = j = g)-

Put
&1, =1, G#v) g,=€" A1=v=9),
&1 e, = elery’ey) G+1=v=9+9"
e»=ea+€p (g+g”+1§yézg)'

Then ¢, 1 <y <29 forms a basis of the set of all 2-division points of G.
Obviously ¢, (¢ + 1 < v < 2¢9) operates on 0(1) invariantly.

Let H be the set of all A-division points of G and H’ be the sub-
group scheme generated by ¢, (¢ + 1 < v < 29).

DEFINITION 2.3. & = (P*/al', @, Spec0,G,H,H’,¢;,0(1)) is called a
principally polarized stable quasi-abelian variety (or scheme) with level
A-structure over Spec @. (or abbr. SQAV or SQAS) The closed fiber of
& is called a SQAYV (SQAS) over C.

Notice that our definition of level structure depends on the choice
of a Delone cell ¢. Although Namikawa has defined this by the action
of I" mod A", it seems that our definition is better in order to prove the
existence of moduli (§6).

Next for later use (§ 6) we shall define over any algebraically closed
field K (char K = 0) a principally polarized stable quasi abelian variety.

Let R = KIltl[¢,-0,me 29, &, = ([[,,; a™m)tmEmw™, B: a positive
semi difinite matrix, ‘B = B,a,; € K, a;; = a;;. We can define an action of
I'(=Z? in a similar manner. We assume that an action of I" is free and
properly discontinuous, and Proj R/AI" exists as a projective K[[t]]-scheme
with an ample invertible sheaf 0(1).

Moreover we assume here the condition (A) for B holds. Then by
the same argument as above, an open subscheme G, sections ¢;, H and
H’ are defined.

DEFINITION 2.4. (P/al’, w, Spec K[[t1], G,H,H’, ¢;, 0(1)) Xy Spec K
is called a principally polarized stable quasi abelian variety level 2
structure over K.

In the case where K = C, we may assume B = 8 BQ’ , B” >0,
tB” = B”, and a,; = e(3(zy);;). The existence of the quotient (P/aI"),0(1)
implies that the principal (¢ — ¢”)-minor ¢; of 7, gives an abelian variety.
We may assume then with loss of generality 7z} is contained in the Siegel

upper half plane of degree (9 — g”). So our second definition of SQAV
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is the same as the first one in case of K = C.

Remark. We give another construction of SQAV for later use. Let
z be a period matrix as before, ¢ = z,(s) + Blogs/2zv/—1,‘B = B > 0.
We define B(c) = 0l -0, €, = e(Imr,(s)'m + miQ)sVxmB'm-rim) where r de-
notes the diagonal vector of B i.e. r; = by, B = (b;;). [I'(= Z% acts on
P = Proj R(<) properly discontinuously and freely. The closed fibers of
P, P/il" are the same as before. Se we omit details.

(2.5) Let X be a SQAYV, and B be a positive semi definite matrix,
‘B=B, B= (8 BO”>’ B” >0, B”eM,(Z). We consider the Delone
decomposition associated with B. Let ¢, be a Delone cell of dimension
k of this decomposition (0 < k < ¢g). In what follows, we fix an orien-
tation of ¢ in such a way that every pair of adjacent g cells have con-

verse orientations to each other along their common faces.

LEMMA 2.2. Assume the condition (A) for B. (or in this case we
say simply X satisfies the condition (A)). With the notations in 2.3) we
have an exaclt sequence

* ¥ ¥ Vg —
0-*-)(9}:0—[—) @@Z”ﬂ"—i) @@Z”g-—l "—1—> L] _9—_; @@Zﬂg—g"'—> 0

where Oy denotes the structure sheaf of Y, g9” =rank B and ¢* is a
homomorphism induced by the normalization of P,. +; is defined by

vi((@) = (), b= lo:7la, .

<0

Proof. Since each of P,, Z, is reduced, the exactness follows from
that of the usual topological resolution

0—-QWP)—>D®RZ)— -+ ->DRZ,,_,)—0

where Q(Y) denote the constant sheaf @ of rational numbers on Y.
Let X = P,/al", X = the normalization of X. Denote by X, the in-
verse image of Z, in X. Then we have

COROLLARY 2.1. Under the assumption (A) we have,

005 — (—B @X”—> @ @Xa,,_l_’""‘" (.B @Xaﬂ_v".ﬁ().

emod Al emod Al gmodal’

COROLLARY 2.2. Under the assumption (A) we have
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(i) dim H{(X 05) = (g)

(i) a canonical homomorphism H'(XC) — H(X0x) is surjective.

Proof. (i) Assume g = g”,i.e. B> 0. Since HYX,,0x,) =01>0
by the general theory ([11] p. 44), it follows from the above Corollary
that

HY (X 0x) = H({® H(X,, 0x,)}

= 1({g <))

— H® /20, C) = D .

In the general case, noting that X, is a fiber bundle over a fixed abelian

variety A with fiber X, where X’ is a variety corresponding to ¢ w.r.t.
B"”,B = (8 BO,,), we infer easily our Corollary.

(ii) is obvious from the above proof.

Remark. Let B = (8 BO,,) rank B” = g”. Then we have H(X Z) =
Z%-9" by the same argument noting that X’ is simply connected.

COROLLARY 2.3. Under the assumption (A), X is Cohen Macaulay.

Proof. According to Proposition 2.3 (vi) ([11] p. 52) any X, is
Cohen-Macaulay, or equivalently »#7,(0,,) = 0 (¢ < dim X,, 25¢ X,). Using
Corollary 2.1 we can prove % (0x) =0 (¢ < g, 2, e X) inductively.

(2.5) Next under the assumption (A) we shall give an explicit de-
scription of &xt* (2% 0x) and moreover compute dim Ext’ (2% 0Oy) in the
case where 1 =1 and the condition (B) holds for X. Assume B > 0,
consider the Delone decomposition associated with X, i.e., B. Let a; be
an extremity distinct from the origin of a Delone 1-cell w.r.t. B con-
taining the origin. We put @ = the set of all such a,’s and

D(a,) = {a subset I C & The 1.1ni0n.0f I and a; is not completely}
contained in any Delone g cell

S(a;) = { g, cde The union of I and a; is not completely contained}
¢ ! " in any Delone g-cell for any I of &(a,)

LEMMA 2.3. &(a) = a;
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Proof. Assume a; # a;, a;€P. Then there exists a Delone g-cell
containing the origin such that osa; c&a, (obvious !) Denoting the
set of vertices of ¢ distinct from the origin by I, we have I ¢ @(a,), and
so a; & D(a,).

Obviously @(a;) ={I C @; x,,x; = 0} where ;=[] z,
a€l
é(ai) ={a;; %o, % =0 for any Ie?(a;)}

Any relation between x,’s in I'(X,0x,) is induced from proposition 2.3.
(iii). So Q% is generated by dz,,a;€®, and dz,’s are subject to the
relations induced by Proposition 2.3. (iii). We denote P, N U, by X,

(ke Z9.
LEMMA 2.4.
9 . x
0 (%) %q, 5 0 = o on Z, N X,
Extt (@4, 0g) — |5 7a@Teiz =) D o= 5T :

for a pair (I,1') and o satisfying (1)
where ,,0/0x,,) denotes an Ox-homomorphism of 2' to Ox defined by
(%4, /02, ))(d%a,) = 0:52q, (a; € D), T, = e(3ar,(0)'a)s*® “e(a’l).
Proof. Assume o is an element of Ext’ (2%, 0x,) defined by
o(dx,,) = 9,4, € Ox, » a; e .
For Ie 9(a,), x;2,, = 0 hence z,,dx; + x;dx,, = 0. Consequently
0 = (@, d2; + 2,d2,,) = x,,0(dx;) + 19,4, .

Therefore z3g,, = 0, hence we have x,;9,, = 0 for I ¢ (a;). According to
Lemma 2.2., we obtain g,, = #,,f,, for some f,, € 0x,. From the second
relation (iii) of Proposition 2.3., it follows o(d [[ier %4,) = o(d [[icr %a))s
and since o(dx;) = 3, @1 o, 0(dx,,) = X1 (3 ser fo). We have ;3 icr fo,
— Yier Ja) = 0, which is equivalent to the equation >;c;f., = 2licr fa,
on Z, N X,. Conversely w = 3 f,,2,,0/0%,,) subject to (*) defines a Oy,
homomorphism of 9%, to 0y, in a canonical manner.

LEMMA 2.5. (i) 0— & (D, Ox,) —> OX®  (exact)

(i) Image of ¢ = @ 0(X,)’ where «(w) = (z¥f,, a,c0) with the no-

0€ag
tations in Lemma 2.3., w,: X, — X, is an inclusion, X, = e, X, 1S the
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normalization of X,.

Proof. At first we must show ¢ is well-defined. We take other f,,’s
such that

a 0
o = th;ixM*— = Zfaixai— .

0%, 0%,

0 = (3 Uty = fadais o)) = (F2, = Ju )i,
ai
So we have f;, = f,;, on X, if a; €0, which shows ¢ is well-defined. It
remaing to show ¢ is injective. If ((w) =0, =}f,, = 0 for any pair a; g.
Therefore w(dw,,) = fo,%., = 0. We deduce the second assertion directly,
noting that > ;.cr, fo. = Xiaien, fo and ¢, has exactly g linearly inde-
pendent vectors z;. Q.E.D.

LEMMA 2.6. The following sequence is exact,
0 —> &xt® (D, Ox) —> D O(X, ) 2> ® 0(X,, )0

where 0(X,)¢ is the subsheaf OCXY = {(f0.); jﬁe"(’; 2(}?%)}(N(ak) =

#(o, N D)) defined by
D fae = S fue i Jai= T

i€l 1€1a

and v, is defined by
‘,’o((fa,a)aea) = (fo) » Sae = Z lo: T]fau .

<0

Proof. According to Lemma 2.4., it is shown that +, is exact (i.e.,
injective) and the image of +, is {(=z}f,) a;€0, fo, € O(Xy)}, which is
nothing other than Ker , because [¢:7] = —[¢’: 7] for any (9 — 1) cell
z and adjacent pair ¢,¢’ such that ¢ N ¢’ = 7. Q.E.D.

Any X, is isomorphie, so there is the same kind of an exact sequence
on X,. Patching them together we obtain a global exact sequence as
follows,

PRrOPOSITION 2.5. The following sequence is exact;
0—> 6 (0%, 00) —> @ 06X, )2 @ o0xX, )
ggmod I gg—1mod I'

Proof. We remark that X, N X, += ¢ (k + 0) if and only if k = a;¢ @.
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On X, N X, we shall investigate the relation between two homomorphism

,\P‘OIXo and ‘!"OIXk'
Let k£ be an element of @, say a,. Let

I'X,) = Clz,, 0, € 9], Zq, = e(3a,7,'a,)s% 5 % e(0,'C)
and
Ir'X,) = Clz,,,a,e 9], 2, = e(daia; + a ta)steiBlataiBlaig(qrr)

X, and X,, are glued along X, N X, by the relation

Ty, =0 if a; + 0,6
Zq, =0 if g —a,&0
X g = Xgt

Xyyay = Toi%a, if a; —a,e9.

Hence we have
, . -2
da’_,, = —x;idx,,
ATy, g, = —X32d%e, + T31%0,d%q, (a; —a,e ).

Let o be an element of Ext’ (2'x,,x. Ox,nx,) given by

0 , 0
@ = Z faixaia = Z: féixaz

ai€eo 390:” a0 5&2 )
Then computing w(d2”,,), o(dz;,_,,) we obtain,
Sloy = —JSa, > Zo(Sfoyoas — Ja, + fad =0 (@, —a,e®),
hence
T flay = =7 fay» TiSajar = TEfa, — 7Efa,  (@;€0,0; —a,€D).

If we fix a Z-basis ¢;(j =1,---,9) of Z? and define

Fo, =tkfoy Fo, = 2inmtfe, for a=3;n0, ;e 2), F, likewise,
then the above isomorphism on X, N X; reduces to the trivial identities
F.,=F,,. On the other hand the exact sequence thus obtained on
(Proj R), can be descended to X because of the invariance under the
action of the lattice I'. Q.E.D.

THEOREM 2.1. Under the assumption (A) and (B), dim Ext’ (24, Ox)
=g if 1=1.

Remark. We prove here the above theorem in case that B is positive.
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But as easily shown, we infer from the fact of dim Ext’(£Y,0,) = g for
an nonsingular aberian variety that even in the general case our theorem
under the same assumption is true. On the other hand our theorm is
not true if 2+ 1. For example, dim Ext(2%, ®)) = » for a chain of lines.
A=mn,g=1).

Proof of the Theorem. By virtue of proposition 2.5. we have only
to compute the kernel of ¥,: ® HY(O(X,))’ — @ H(O(X,,_))". A section
(C,.0ea, N 0) of @ H(O(X,)) is mapped to (C,, — C,,) for adjacent
pair ¢ and ¢/, i.e. s N’ is a (g — 1) cell. (C,,) is contained in Ker
if and only if C,, is independent of g, i.e. C,, = C,. Moreover if a, e 0,
Sler @ = 0 mod I', then >};.; C,, = 0. Since 2 =1, there are at most ¢
linearly independent solution by the assumption (B). (C*)? acts effectively
on X, so dim Ext’ (9%,0x) = g. Q.E.D.
More precisely we obtain

THEOREM 2.2, Let Y be a D-V cone corresponding to a SQAV X of
level 1, and ¥ C Q;. Then under the assumptions (A) and (B) we have
Aut'! X = Aut2 where Aut'X = Aut X/Aut'X, Aut¥ = {ueGL(g Z);
udty = 2}

Proof. By the assumption that 2 C 9}, any irreducible component
X, is a compactification of an algebraic torus (C*)?. Fix a Delone g
cell o, and an embedding of (C*)? into X,,. Then assumption (B) implies
that for any ¢ cell ¢ in a canonical way an embedding of (C*)? into X,
is uniquely determined. We fix a Z-basis of Z. An automorphism f
of X induces a polyhedral automorphism f of the Delone decomposition
associated with 3. If two g cells ¢, and o, are adjacent, then f(s,) and
f(s,) are adjacent. f on ¢, is represented by a matrix u,, of GL(g Z)
w.r.t. the above basis of Z7 and in view of the assumption (B), we have
u,, = %,,. By induction on the length of a chain of Delone g cells con-
necting ¢ and ¢, we have u, = u,,, namely, f is induced from a linear
transformation 4 = u,, of RY, and we AutX. Obviously % induces an
automorphism of X, so we consider an automorphism f/ = fou! of X.
f’ transforms X, into itself, moreover, f’ is a translation by a constant
vector a,(e(C*? on X,. S’ is an element of Aut’X = the connected
component of identity of Aut X. Hence by the theorem 2.1., we obtain
a, = a independent of ¢ if 2 = 1. Q.E.D.
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Remark. Notice that in the above theorems we mean by an
automorphism of X simply that as an algebraic variety, not as a SQAYV.
Therefore an element # of Aut X may not preserve a section X over C.

§3. Voronoi compactification and Namikawa’s polarized
family of SQAYV over it.

(8.1) As stated in the introduction Namikawa gave a precise con-
struction of the Voronoi compactification in [18] by using the theory of
troidal embeddings [11]. The Voronoi compactification ©*(2) has been
already known as the Igusa monoidal transform of Satake compactifi-
cation of Siegel space if g < 3. It is deeply related with our stable
quasi abelian varieties. In fact, Namikawa succeeded in constructing a
global polarized family of stable quasi abelian varieties over it. We
shall introduce an outline of his results in (8.1) (8.2). In (3.3) we shall
investigate the structure of the Voronoi compactification (1) along the
boundary, in particular, the fibering over &% (1) of an irreducible com-
ponent of the boundary of codimension one. We notice that a general
fiber of this fibering is a polarized abelian variety with level 1 structure.
Therefore it seems natural to expect the fibers of this fibering are also
our stable quasi abelian varieties. However this is not the case. We
find that a reducible variety distinct from our stabel quasi abelian variety
appears as fiber. But this does not imply that our definition is improp-
er, on which we shall give a comment in §7. Set

B() = {Mz ((1) If);BeMg(Z),‘B — B, Bz()modz},

e(r) = exp 2ry/— 1)
I'n=8p@2), I'/@=8Sp@2)@={MeSp(92);M =1mod7}
T, ={W = (w;p); ' W = W, w,;; + 0} = (C*)ste+vs
T ={WeT,;log W = (log |w,;) is negative definite}
i) ={ye®;; ky'k > r for any non zero integral vector k} .

We fix 1 once for all. The mapping e(2) from €, to T, defined by
e(A)(z) = (e((1/N7;y))) induces an isomorphism between &,/B(2) and T,.
We identify them through this isomorphism.

Let 2 be a D-V cone in 9;. Then by an appropriate transforma-
tion u of GL(g Z),2 is transformed into a D-V cone {(8 yo,,); y”eZ’”}
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for a D-V cone 3 in 9;.. (Notice that not only 3”7 < ;). Therefore
we assume

2 — {(0 ,y(z,); ,y// e 2//} , 2// C @;«; .

0
T = (tll tlz)
(2
or (t,t,,t,) instead of z;;, where t, €S, t,eS,., t,€ My, (C), 9 =9 + 9”.

Then we define Z;. to be a troidal embedding of 7,. associated
with 3" i.e.

For brevity we write

% ,» = Spec C[e(% tr (ar)) A= (Z”)\Z/]
and
#, = Spec C[e(-} tr (af)>; ae (Z)g] = T, X (CH7" X %3
Let
T,.(r) = {W - (e(tl) e(tm)); Imt, — Ly (tw) € @;,,(r)}

e(t,)
15, = T5,(0) where L, (t,) = Im (¢,)(Im¢)™" Im (£,) .

DEFINITION 3.1. S,.(V,2”,r) = the interior of the closure of T9,.(r)
in (V X (C*)7" x %,,) where V is an open set in

Bor= (0 O)ever).
Yy

If 3/ <23), then S,(V,2{,r) can be canonically embedded into
S,AV,2),r. If V,cCV, then S,(V,2/,r) < S(V,,2/,r). Gluing S(V,
2", r) together, we set Z% = Uy S(V,2",7), Sy V, 1) = Usn Syl V, 2", 7).
For a general 2, we define S(V,2,r) to be the pull back by a tranfor-
mation of GL(g Z) of S(V,2”,r). We set ° =T} Ur,Tecg,L<gz> TSV, 3", 7).
and GL(g Z) operates on Z°. v

For a point £} in T,, the stabilizer subgroup H(t}) is finite. Hence
we can choose a sufficiently small neighborhood V of ¢! such that M,V NV
# ¢ if and only if M, e H(#), and M,V =V for any M,e H(t)). Then we
put,
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an, 0 by by
b b a, b
I, (£)(2) = Uy Oz Oy Oy e Sp(g Z); ( 1 11) e H)
o cn 0 dy dy ey dy '
0 0 0 d,

Obviously B,(2) is a normal subgroup of I',,.(t)QA), so we set
LgDQ) = TyyrltD@)/B,(A). If 2= 38, then H() = 1, hence we have a,,
=d,=1,0b,=c,;=0 for an element M of I',.(tD(A). Assume 1= 3,
M e Ty tDQ), MNSyAV, 2", 1) NSyl V, 2", r) # ¢ for a D-V cone X"(C ;)
and a sufficiently large » > 0. Let (¢t t) = M-(¢, t,t,). Then we have

(Im 23 — Re (L (t)) = 0, (Im £, — Re (L, ()’ atz, -

We notice a,, € GL(9”’Z). Moreover a general point (¢, ¢, t,) of S,.(V,3",r)
satisfies

Imt, — Re (L, (t) € 27 N YPiAr) .

Hence a,, ¢ Aut2”. In view of Proposition 1.2., Aut2” is finite, so that
a,=1if 2= 3. Hence I',,(t)(2) consists of elements such that a, =
ap=d,=dp=1,b,=c¢;,=0. (A=3). Then it is easy to check I",,.(tD)(D)
operates properly discontinuously and freely. Therefore the quotient of
SV, r) by I',,(tD(2) exists and becomes a normal complex space. Notice
that if S(V,r) is nonsingular, so is the quotient. If 2 =1 or 2, then
Iy (tD(E2) (k2 = 3) is of finite index in I',,.(9)(2), so in this case a quotient
space S(V,r) by I',(t)(2) exists and becomes a normal complex space.

Remark. The author does not know whether the following state-
ment is true, for g” < g
For a point ¢} in T9, a sufficiently small neighborhood V of ¢{ and
a sufficiently large r» > 0, Sp(g9 Z)-equivalence on S,.(V,r) N T} reduces
to I',,(t)-equivalence.

THEOREM (Mumford [14], Namikawa [18]). The quotient space S}(2)
= 2°/I'(2) exists and is a mormal compact complex space containing
&,/I',(2) as a Zariski dense open subset.

(8.2) Next we shall introduce Namikawa’s construction of a polarized
family of SQAV over the Voronoi compactification. As stated in §1,
his method is an application of troidal embeddings.

DEFINITION 3.2. V., is a mixed D-V cone associated with ¥ and ¢
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where is a D-V cone and ¢ =<a;,1el> ={3>702,0:,;0= 4,51, 570 0,4, =1,
i,eI} is a Delone cell associated with X, if

V,: = {(y,2) e I X R; myt(m + 2a;) + m'z =0
for any me Z?, and tel}

Then {V;,} forms a polyhedral decomposition of ¥; X R?

DEFINITION 3.3. {V;,} is called a mixed V-D decomposition of
Vi X R,

PROPOSITION 3.1 (Namikawa [18]).
Vi, N (¥, X RY) = 4(e) with respect to ¥,

DEFINITION 3.4. £, = the troidal embedding of T, X (C*)? associated
with V;, = Spec R;, where

R, = C[e(% tr (a7) + m‘C), (@, m) € (Vza)z] .

DEFINITION 3.5. 2%, = P;, X4y X%, 2% = U, P, and 2° = (J; 25,
where Z'; = Spec Cle((1/2)tr(az)), a € (X)y]. If 3, is a face of JX,, then
P, C #%,, canonically. So gluing them, we obtain #°=J; 2%. We
define an invertible sheaf #° on #° by,

P=U L, L= e(_2.17 tr (tkke) + ktC)@,oz iy

Then Z° acts on both #° and #° freely and properly discontinuously via
S, (n e Z%) as follows; 2% is covered with 25, (ke Z%). The transforma-
tion S, is defined by,

S,T: R2k+n b d REk
S;{‘(e(i tr (az) + m‘C))) = e(—l- tr (@tnm + a)z) + m‘C)
22 22
Sn: gg‘k’—’gg‘k+n
Sp(e) = e(El,Z_ tr Cnne + 2nkr) + n‘C)c
Namikawa has proved the action of Sp (¢ Z)(22) on ©, can be lifted
to o' =P)2°,6" = /77, also 6 is relatively ample on 7°.

THEOREM 3.2 (Namikawa). There exists a principally polarized
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family of SQAV’s of level A over the Voronoi compactification S¥(22)
= Z°/T",(22).

There’s another construction of a family of SQAV’s over the Voronoi
compactification by use of Proj(*) as in §2. By the same argument as
before if g < 4, they coincide with each other.

(8.3) Next we shall investigate an irreducible component of the
complement of &,/I",(2) in 2°/I",(2), which we call an irreducible compo-
nent of the boundary for brevity. At least if ¢ is not greater than 3,
Z°/I'(2) is non singular (1 = 3), and any irreducible component of the
boundary is of codimension one.

Although the results are already known in [8], we recall them from
the view point of troidal embeddings for later use.

By the general theory of troidal embeddings, we know that there is
a one to one correspondence between irreducible components of the

boundary and one-dimensional D-V cones. So with loss of generality we

may assume a corresponding D-V cone is 7, = {(g g), (??// z 1(?))}’ and we

denote by X,, an irreducible component of the boundary associated with
7,. Since &¥(2) is covered with open sets 2%, (X:open D-V cones), we
suffices to consider only 2% for open D-V cones in order to investigate
the structure of X,. We notice that X, is contained in &% if and only if
7, is a face of X. So we have only to pick up all open D-V cones con-
taing 7,, however it can be readily carried out by using a well known
classification of open D-V cones up to GL(9 Z) conjugate in case of g =
2, 3.

At first we consider the case where g = 2. All open D-V cones which
have 7z, as a face are listed as follows,

— >0, —(n—Dy, +v,>0
Dn — {(yll ylZ) e M (R); nyll ylZ ’ 11 12 } (n e Z)
Yo Yz ’ nm — Dyy — @Cn — Dy, + Y >0
X, N &Y, = {(sus5', 80" '81) 5 |(Shsp) (s +sy,)| < 1}

where s;; = exp 2niry;/2)

Susy s Sp SuSiE'  Sw'Sy shsi'

X X X XX XX
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The action of Sp(2 Z)(2) on X,, reduces to that of GL(2 Z)(2), hence
in particular if 2 = 3, reduces to the following isomorphisms,

X, N, =% N %%, (n = n’ mod )

(shsh, si™*'sy,) — (8% 8%, sa™ *1sy,)

X., has an elliptic fibering over Sf(1) defined by, ¢ = (susE)(Sn""'Sw)
(t = exp (@riz/2),zc ). The fiber at t = t, # 0 is an elliptic curve with
period (1, 2log t,/+/—1), and the fiber at t = 0 is a chain of A-lines. More-
over X, carries the level 2 structure defined by, sisy' = one of 2-th root
of unity.

Next we consider the case where g = 3. Then all the open D-V
cones dominating z, are listed as follows,

1 0 0
Crn= uncozun ’ C; = uncatun ’ C;/ = unca,tun , Upy=[0 1 0},

n n, 1
(n;e Z)
O = _ Yt Y+ Y > 0, Y+ Yo + Yy > 0
o =Y = Wis);
Yis + Yoz + Yz > 0, =¥, > 0, =433 > 0, —Yps > 0
O = — Y. Yo+ Y > 0, +Y3+ Y5 > 0, =¥ > 0
0= Y= Wiy);
Y+ Yo — Yis — Yos 7 0, — Yo + Y55 > 0, —¥13 + Y3 > 0
>0, Y5 + Yos > 0, =133 > 0
O — {y = (W) Yu + Yo 13 23 13
’ ! Yo+ Yoo — Yz — Y23 2 0, — Yy, + Y13 > 0, =¥y + ¥ > 0
. (01121, % 135 T1gTosssy X' T3’y Ti3') 3
X N &G, = ((xuxuxw)(x;;), i ) e[’ Moy 6(—%1)
L1z (@125 %50) (X 557)

ete.

X,, has a fibering over G&¥(2) with principally polarized abelian
varieties of dim 2 as general fibers. Analytic subsets in X, N Z7Y, defined
by @, %, = A-th root of unity and their transforms by u, give a level
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2-structure on X,
Let p be the point in &¥(2) defined by

Sl = 818y = 838, =0 In SFQ) N Zp, .

Then the fiber at p has the following configuration, (1 = 3)

XX

150
EATE

vy

L1 %15%13%23

a:;.‘

x5k 13

<
xnxnxx:
L1202 %1523
1, %20%23

The fibering of X, near p coincides with Deligne’s example given in
[18]. If 2 =2, the fiber at p consists of eight copies of a projective
plane. If 2 =1, the fiber at p consists of two copies of a projective
plane, which is nothing but our stable quasi abelian variety of level 1.
In the final section we shall give a brief account of the reason why we
have taken our definition of stable quasi abelian varieties in spite of the
above fact. In case of g = 4, X,, has also a fibering over S¥(2), but the
fibers are not equidimensional. The details will appear in the sub-
sequent paper.

§ 4. Infinitesimal deformations of SQAV (1)

(4.1) For later use, we consider the following algebraic affine C-
scheme Y of dim 2 defined by,

Y=Y,= Spec Clx,, ,, x3]/(x1x2x3)k (n=3)
Y =Y, = Spec Clz,, - -+, 2,1/ (@, § # i, = 1modn) (n>3)
where &,,.; = ; .
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For example, Y, is an affine scheme Spec Clx,, 2, %,, x,1/ (2,25, 2,2,). We
define

D = Spec Clx,, 2,, ,1/ (X2, 2,25, 2:%,) , (n =3)
= Spec Clx,, &,, X3, X,/ (@125, 5, ) n=4)
D" = Spec Clx,, %y, %3, 2,1/ (21, 235, 2,2,) n =4
D, = Spec Clay, -+, 2,1/ (@1y «+ +s Xy_yy Tyy1y ++* 5 L) n>4).

Then we have,
LEMMA 4.1,

Q) et (@ Oy) =0, (n=3)
(2) gxtl (Qly @y) = 01)/ 6‘) @D” ('n = 4)
@) &x' (P Op) = DtaOp, (>4

Proof. (1) and (2) are left to the readers. We prove the last as-
gsertion (3) only. At first we have the following exact sequence of 0Oy
modules

(*) @¥6n(n+1)(n—4) hza @1,/27;(71,—3) hl} o _ﬂ.) Q; > 0
where h, is defined by,
n

ho((@4)i_s,....n) Z adx; ,

h((a;p) = (Z aiﬂ%)u a;; =0 G=141x D, ay = T

(@) = (3 atee)oss aty = 0
G=1d41x D), af; =af, aii* + af =0, ai; =0
In fact, we have h,oh, =0, hyoh, = 0 and Ker i, = Im h, by definition.
We shall show Ker h, = Im k,. Take an element a;; (a;; = a;;) of Kerh,.
Then any a,; is contained in the maximal ideal > 7., 2,05, so we write

iy = D v lafjxk We shall show that we can choose af; in such a way
that of, = a%,0f;, = 0,0l + ak.; = 0,af; =0 (f =14,¢ £ 1). Since

n n
Zi Oy = Z (@fj'e; 025 + af@h + off'eu.)
= J=

n
= Z (@i' + af;)x;25,, + Z %,
=

we have on X, = Spec Clx,, -+, %,1/(®, § # Kk, k + 1)
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1 k1 _
(@b + ab)Teey, + abad + affhai, =0.

Hence it follows a%x; € @y 2:0x + 42%:x,..0x S0 that by a change of a
choice of a! and a%' we may assume af = 0. Since 1tk — 1,k + 1
(we notice that if =k + 1, then a;, =0 so that we may assume ai, =
from the beginning.), we can also choose af;! and a}' in such a way
that af, = 0. Consequently we obtain > 2., a,;x; = @+ ad )X,
Then moreover we may assume ¢f;' + af;,; =0. In fact, 11D 2y Q)
=(ak" + ab., )xixi,., = 0 hence a¥' + ¥, € > 520641 ;05 s0 that we can
write aff' + ok = D jukk41 9525, We change aff' and ef,,, into af
Dinkkenksz 9585 and af, 4+ g%, respectively. Then we have (a¥t' 4
Dieikrnire 938D % 0 = Q@ Ty AN (@41 + Gr42%r4) T = 0. Thus we
have proved the exactness of (*).

Next, dualizing (*) by Hom ( 0y), we obtain the following sequence

£ *

o L o1 _ﬁf_) OrrDn-0/6
where h* is the dual of h,, hence given by

r¥E((@P) = (afFx; + aFx)a,s,
h¥((a} )) = (a¥), af =af,a=0 (G=1,7x1).
a )

Il

akxy,

J+1 *
= X%, — Q57

a*
By the same deduction we conclude that

(a )e @n(n 3)/2
Ker hf = Jaf = ¢, + ¢ G#i,i+1,71+2)

a;‘:&z = Cy0®; + Ciliyy + bz‘+1x1:+1 ¢; € Oy, bz €0x

On the other hand, we infer Im Af¥ = {(a}) = ¢;&; + ¢;z;}, hence
Ext' (0% Ox) = @i Op,.

(4.2) The main purpose of this and next section is to prove the
following

THEOREM 4.1. Assume X to be a SQAV of dimension g (9 = 2,8)
of level 1. Then we have,

dim,; Ext' (2% 0x) = ¢*
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We shall calculate dim Ext! (9% 0y) by use of the following spectral
sequence,

E? = H?(X, xt? (2% 0x)) — Ext?*? (2% Oy) .

Our idea is to compute the two terms HYX, &x' (2% 0x), and
H(X, & (2% 0x)) and show dim H'(X, &xt' (2% Ox)) + dim H(X, &x° (2% Ox))
< ¢ if g = 2,3, If this is done, we have dim Ext! (2% 0y < ¢%, while
using the explicit structure of D-V cones we can construct a flat family
of not necessarily polarized deformations of X depending on g? effective
parameters, so that we have dim Ext! (2% 0x) = ¢°

In case of g = 2, all the possible SQAV’s of level 1 are listed in the
following table.

(1) non singular principally polarized abelian surface

(2) a P-bundle over an elliptic curve glued along 0O-section and oo
section

(8) P! X P! glued along two pairs of opposite lines.

(4) two copies of P? glued along three pairs of lines.
In what follows, we simply denote by X, the »-th SQAYV, for instance,
by X, a non-singular abelian surface etc.
case 1)

LEMMA 4.2. dim Ext' (2%, 0;) = 4

Proof. well known.
case 2)
X, is isomorphic to the closed fiber of Proj R(z)/I" where z(s) =

(2: ZZ), 7, = log s/2x4/—1, and z,, r,: constant. The normalization )~(2
of X, is a P! bundle over an elliptic curve E with periods 1, z,;, which
is a compactification of C* bundle over E whose corresponding one co-
cyle is e(zry,) in Ext!(H, C*) = E through a canonical isomorphism. X, is
obtained from X, by identifying 0 section and oo section by the relation
(2,0) = (2 + 73, 0). We denote by C the double curve in X,. It is ob-

vious that C is isomorphic with F, and a long C, X, is described by;
Xz = {(90,2/,2);90’!/ = O,ZGE} .

The semi universal covering P, of X is covered with V,,i¢Z, and V, is
locally given by {(x;, ¥:,2), ¥, = 0, z€ E} along C; = {z; = y; = 0}
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LEMMA 4.3.

¢

M) 0 —> &xt (2 Ox) —> 02
@ Ext (2 0x) =0, .

AN

O¢ 0 (exact)

where in (1), the first homomorphism ¢ is given by

day(, v, 22 1 a,(x, v, z)aci + a)(z, ¥, z)yi
az o oy
= (a,(, 0, 2) + a,(x, 0, 2), ,(0, ¥, 2) + a,(0,¥,2))
and also ¥, is defined by

Pol(ay(, 2), a\(x, 2)) @ (ay(¥, 2), a,(¥, 2))) = a,(0,2) — ay(0,2) .

Proof. The exactness of (1) follows directly from the above defini-
tions of ¢, ¥,. On P, = (Proj R),, there exists an isomorphism &xt' (2%, Op,)
= @5 _. 0p,- This isomorphism is deduced from the complex,

i R
0% —> Op, —> 0
obtained by dualizing an exact sequence of ¢p, modules,

h ho

h
0 —2> Op, —> OF° Op, 0.

In the last sequence %, h, and h, are defined by

ho((ay, @y, @) = a,dz + a,dx; + a,dy;
hl(‘h) = (0, QY a4x1:) ’ hz =0.

The isomorphism between Ker if/Im ¥ and @i _.. Oq, is invariant
under the action of I', so we have our lemma. Q.E.D.
From Lemma 4.3., it follows,

dim H(&xt' (% 0x) =1,
and

0— H'(E (2% 0) - CHRC—C
— H(Ex" (2% 0x) - CPHDC—0
— HY(Ex (2% Ox)) — 0 (exact) ,

so that we obtain, dim H(&x (2% 0x)) = 2, dim H'(6x" (2% 0x)) = 3 and
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dim HY(&x (2% 0x) = 0.
In this case the spectral sequence E7? = H?(X, &x? (2% 0x)) gives the
exact dimension of Ext!' (% @) as follows; the sequence

0— E} — &xt' (R4 0x) > ESt - E2* =0
is exact, so we have dim Ext' (2% 0y) = 4.

Remark. The geometric meaning of the above computation is ac-
counted for by considering that dim H°(&xt' (2% 0x)) is the number of
parameters deforming the singular loci of X, and dim H'(&x° (2% Ox)) is
the sum of the numbers of parameters of the moduli of the normaliza-
tion X, and parameters of gluing X, into X,.
case 3)

X, is isomorphic to the closed fiber of Proj R(z)/I" with z(s) =

(‘:11 le)’ Ty = Ty = log s/2x4/ —1, 7, constant.

Tz To

|
!
[
|
I
Bl
]
I
I
|
I
J

o ————

®
e
—

v

-————

glued along /,//

At p, X; is locally isomorphic to Spec Clz,, 2,, z;, 2]/ (2,%;, Z:2). X,
has two double curves C,, C, which are rational curves with one ordinally
double point respectively.

The normalization X, of X, is P' X P. X, is obtained from )?3 by iden-
tifying two pair of opposite lines by the relations,
(@, 0) = (e(z)2y, ) , 0, ) = (o0, e(z),)

where (x,,2,) is the usual inhomogeneous coordinate of P' x P'. Then
we have,

LEMMA 4.4.

D) 00— & (2 0x) —> 02 15 05, 05,—> 0 (ewact)
@) éxt' (% 0p) = O, D O,
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where C, denotes the normalization of C; and ¢, ¥, are given by at p =
(xly Ly L3y x4) = (0’ 0, 07 0)

4
z(Zl ai(x)xiéi—) = (@45 Typ1) + Cip1(Toy Tip1))icrens
= i

Yo((ai(@s, ©4.1) + (@5, %541) = (@70, %4,)) — @1 (@4115 0)4g,n

and we put ai(x) B ai(xu Lgy X3y x.i); a’i(xj, xj+1) = ai(O e 0’ Lgy Ljis 0... 0)’
Xy = 4.

Proof. (1) follows directly from the above definition.
(2) is proved in the same way as before by virtue of Lemma 4.1.
Q.E.D.

According to Lemma 4.4., it follows
dim H'(X, &xt* (2% 0x) = 2, dim H'(X, &xt° (2% Oy)) = 2
dim H(X, &x° (2% 0x)) = 0, dim H(X, &xt' (0% 0x)) = 2 .
Hence we have dim Ext! (2'y0x) = 4 in the same way as in the case
2).

case 4)

X, is isomorphic to the closed fiber of Proj R(z)/I" with ¢ =
(_% -%> log s/2zv/—1. X, is a union of two copies of the projective
plane P,, has three double curves C; (1 =1,2,3). C, is also a rational
curve with one ordinary double point, and all C, meet at the unique
point p, and there X, is locally isomorphic to Y, given in (4.1). Denot-
ing by C, the normalization of C,(7=1,2,3) we have,

LEMMA 4.5.

3
(D) 0— 6x (2 0x) —> 0F > @ 05, —> 0

T AT T T
;/ %2 |
Ve
4 |
d I
/
Tag 7 x,J
|
] pd
| Vs
| Y 7
| J Y
|/ y
Ly g
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Q) &xtt (% 0x) = @i, g,

where ¢ and 4, are defined by,

6
‘(Z_i az(x)wiaz ) = (@s(®sy T511) + Cspi(Tsy T531))ict,enss s
a)(®) = iz, - -+, %) and @ 2;,%;.) = a0 -+ 0,24 2;,,,0 -+ 0)

Yo((@i(@4y T411) © @7 (245 2440)) = (@70, Ziy) — @71 (Bgi1y 0))igyenys -
We omit the proof of Lemma. From this lemma, we infer that

dim H(X, &xt* (2% 0x)) = 3, dim H(X, & (2% 0x) = 2,
dim HY(X, &x° (Q% O0x)) = 1, dim HY(X, & (2% 0x)) = 0 .
In fact, for instance, H'(X, &x°(R% 0x)) is calculated as follows. We

fix an orientation of each Delone cell as described in the picture. Then
H'(X &x° (2% 0y)) is given by,

T1

@

T3 T3

(=y

T

Ker vro/Im ¢ = {(C.);-1,0,5}/{C., = Zilo;: 7,1C

urj}

where
Cﬂi‘ra = Cairl + Cdifz ’ Cr] b Cvirj e C b

Hence dim HY(X, &x° (2% 0x)) = 1.
For the completeness of arguments we shall construct a “complete”
flat family of deformations of X depending on 4 effective parameters.

We mean by “complete” that the Kodaira-Spencer mapping is surjective
0 0

(see §5, [27]). Let (s) = ((1) 8) log s,/27v =1 + (0 1) log 8,,/2ev =1 +
( i “}) log s,,/2n¢/—1 + (80 8) and & = Proj R(z)/I" where B(z) =
- 21
[€,-0,m e Z9], &, = e(3me(s)'m + m(z + 11(5)), 7(s) = (log 8;, + log s,,/224/ — 1,
log 8y, + log 8, /274 —1) O = Oy, p,, D, = {(8:)) ; |8¢5] < ¢}
Notice that ‘z(s) #=(s). However the quotient of ProjR by I" really
exists and the general fiber is a complex torus with period (1,7z(s)) and
the fiber 2, at the origin is X.
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In order to show the completeness of this family, we investigate the
structure along the singular loci X,,(=C)) (¢ =1,2,3) of X. P = Proj B
is covered with open affines U,, & € Z%?, where

U, = Spec 0[E,.5;', me Z?] .
We have only to see U,. By an explicit calculation U, is given by,

U, = Spec Olwi?, w3, S5 Wi W;", $1181,W1; S138,,Ws, $118138,W1W,] .

3123227”24 _____ $ f'n_szzw,w,
d |
/
d I
d |
g |
7
// |
w;l'\ 7\.3113:27/0;
| 7/
i . Y
! Ve
| , s
| b
s wrw;t wit

At the generic point of X,, we have s;s,w, # 0
Sy, = (S1SyW1) (8188w W) W5 .
Hence U, is locally isomorphic to
Spec Clsy, S1» Su1y SuS1Wis (SuSpW) ™ Wiy 811818, W1 W, ]

Hence 6/ds,, is mapped onto HY(X Ox,) (CHYX, &x#' (2% Ox)). In the same

way, it is shown that 9/ds,,0/0s,,,0/3s,, are mapped into a basis of

H'(X, &xt' (2% Ox)). On the other hand, 9/ds, is mapped into a basis of

HY(X, &x" (2% Ox)). Thus “completeness” is proved. ([27] theorem 3.5.)
Summing up the above calculations we obtain,

THEOREM 4.1. dim Ext! (2% 0x) =4 for a SQAV X of 2 dimension
of level 1.

§ 5. Infinitesimal deformations of SQAV (2)

(5.1) At first, we shall give the complete list of D-V cones in i
(up to GL(8 Z) equivalence and the associated Delone decompositions
(Voronoi [26]). D-V cones:
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0 0 0O 0 O
0 0 );vs>0;, 2, =210 ¥ 0 ];%x>0,¥3>0
0 Ys 0 0 vy

0

0

0

0 0 0 Y + Y > 0 Yu 0 0

0 ¥ ?/23); — Yy > 0} ’ 2= {(O Yoo 0); Yiz > 0}
0

Y

M
I

M
I

Yoz Yss Yoz + Yz > 0 0 0 v,

0 0
! ) Yn > 0, Yy + Yps > 0}

Yn Ui — Yy > 0, Yoy + Y3 > 0
Yoz Yz

Yu Yo O Yu + Y > 0, =9, > 0 }

L
I

Yiz Yoo Yoz |3 Yo+ Yoo + Yz =0, =¥ > 0
0 Y Y Yos + Yz > 0

e
I

—— —N— — N T —
o o

2

Yz Yo Yz S Y Yy F Yoz > 0, Yps + Y > 0

0
Yu Yo Yu + Yu > 0, — Y12 > 0, —Yas > 0}
0 Y Ys

Yz Yo Yz
Yis Yz Yss — Yy >0 @ =7

{ Yu Yo Y iyu>0 (i:1,2,3)}
3, = =

Associated Delone decompositions. (For brevity we only write represen-
tatives of Delone cells modulo translations by integral vectors)

Remark. In case of X,, only one cube appears. In case of X, two
triagonal prisms appear. In case of Y, the shaded face is not a Delone
cell, and all the Delone cells of dimension 3 modulo translations are two
tetrahedrons and an octahedron which is a union of separated two copies

|
|
|
|
}._.___.__ [ SRS Z A
/
// /// 1 ,//4
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of quadrangular pyramid. On the contrary in case of X, two quadran-
gular pyramids and two tetrahedrons are all the Delone cells of dimen-
gsion 3 although the picture looks like that in case of ;. In the last
case gix tetrahedrons are all the Delone cells.

(5.2) For D-V cones X; i =1,2,3) the calculation of Ext' (2% 0x)
can be carried out in the same way as before, so we omit the details
and state the results only. We note that we restrict ourselves to the
case 1= 1.

Tu Tz Tis 0 00

case X)) w(8) = |ty T Tu|+ [0 O O0]logs/27z4/—1
Ty Ty O 0 0 1

with constant c;;((¢7) # (33))

H(X,6x' (0% 0x) =3,  HY(X,Ex (4 0p) = 8
HY(X, & (2% 00) =T, H'(X, &xt* (2% 0x) =1

Although H*(X, &x° (2% Ox)) does not vanish we can conclude dim Ext! (2% 0y)
=9 from the existence of a flat family of deformations of X depending
on 9 effective parameters.

Tu Tz Tu 0 00
case J,) 7(8) =z, 0 75 +10 1 0]logs/2z4/—1 with constant
T T O 0 0 1 ry; (@) # (22),(33)) .

Let X be the closed fiber of Proj (R(z))/I’. Then we have

dim H'(X, x (2% 0x)) = 3, dim H(X, éx* (2% 0x) =T,
dim HY(X, &xt' (2% 0x)) = 2 .

Also in this case by constructing a flat family of deformations of
X depending on 9 effective parameters we obtain dim Ext' (2% 0x) = 9

Tu Tz Tu 0 0 0 ‘
case J,) (8 =z, 0 O]4+10 2 —1|logs/2zy —1.
s 0 0 0 -1 2

Then similarly we have

dim H X, x° (2% 0x)) = 3, dim H'(éx* (2% Ox)) = 6
dim H (X, &xt' (9% 0x) = 3, dim Ext' (2% 0x) =9 .

(5.3) Before we enter into the computation of Ext!'(£2% 0x) in case
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of X, (@ = 4), we introduce here a concept of a graph associated with
SQAV X as follows. A vertex denotes a subscheme of codimension one
contained in the singular loci of X. Of course the latter corresponds
to a Delone cell of codimension one, so we may say a graph corresponds
to a Delone decomposition. Two or three vertices are connected by
arrows only if

(i) If X is locally given by Spec Clx,, x,, @, x,, 21/(x,x:, x,2,) along
7 = Spec C[z] then we connect a vertex corresponding to D, with one
corresponding to D,, and do so for D, and D,, where D, = Spec Clz;, 2],
g = (zl’ v "zg—z)

(i) If X is locally isomorphic with Spec Clz,, x,, ;, 21/ (x,2,2,) along
Z = Spec C[z] then we connect all the vertices at one point where D, =
Spec Clz,, z].

Otherwise we don’t connect vertices any more. Notice that a graph
thus obtained is not necessarily connected. Under the assumption (A),
any irreducible subcheme of codimension one in X is reduced, so the
above definition of a graph seems to be natural. However the author
does not know how we should define it in the general case. Anyway in
the three dimensional case the condition (A) does hold for any Y. We
shall give here a complete list of graphs of D-V cones in J;. In the
following table an arrow starting from a vertex into itself means that

1000888

=0 =0 =0 G0
o=
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a subscheme corresponding to the vertex intersects with itself along a
one-codimensional subscheme of it. Three arrows from one vertex to
another imply that two subschemes of codimension one corresponding to
vertices meet along three distinct subschemes of codimension two.

In order to make our idea clear, we shall show that in case of 2,
the associated graph is given as above. As stated before the Delone
decomposition consists of two trigular prisms and their faces modulo

| \\ I©n 4
| |
\“‘ -
| £ N\
o —t> s M
[} \,
=N -t
el
/

translation. We call the upper face r,, the lower 7] respectively. Also
we call the face on the right hand z, and its reverse face 5. Moreover
we call the faces on this side, r; and 7z, from above, and their counter-
parts 4, 7; respectively. r; coincide with <; modulo translation by an
integral vector. We call the face contained in the interior of the cube z;.
On the other hand any pair of oppositive lines on z; (or z,,7,) are coinci-
dent with each other. Thus we have the former three graphs.

o o do

And also the upper edge of 7, and the lower edge of r, are coincident,
and so are the right edge of z; and the left of z,, Hence we obtain the

last graph.

(56.4) In order to compute Ext! (2% 0yx) for a SQAV X whose cor-
responding D-V cone is one of 3, (4 <1 < 8) we require the following
lemmae.
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LEMMA 5.1. Suppose X to be a Cohen-Macaulay scheme of dimen-
sion n(n=3), and Z a subscheme of X of at least three codimension.
Let © be an inclusion of X-Z in X. Then we have, &xt? (2% Ox) =
Uy Ext? (Q%-2,0x_7). (@=0,1)

Proof. We have a usual exact sequence of local cohomology,

0— &xt’y (D% Ox) — Ext® (0% Ox) — 1ty Ext® (D% _z0%_7)
— Ext'y (0% Ox) — Ext' (0% Ox) — Ty Ext’ (Q%_20x_7)
—>éaxt2z (Q}g@x)'ﬁ v

On the other hand there is a spectral sequence
Er = &u? (0% #%(0x)) converging to &xtgt? (9% Oy) .

By assumption we have #%(0x) = 0 (¢ = 0,1,2), so that our lemma fol-
lows. Q.E.D.
To a connected component 4 of the graph of X we associate a connected
reduced subvariety Z, of codimension 1 in X whose support is a union of
X., where X, denotes the divisor corresponding to a Delone cell 7 (C 4).
Our main interest is to know the number of connected components
of the graph of X because of the following lemma e.

LEMMA 5.2. Under the assumption (A%*), &xt' (2% 0x) = 1.(D,F,)
where 4 runs over the set of commected components of the graph of X
and F, is an tnvertible sheaf on Z, — Z.

Proof of Lemma 5.2. Since the condition (A) is satisfied in view
of Lemma 1.6., the structure of X is given in proposition 2.3.. Let
Z =\J,Z, be a union of all the subvarieties Z, (y: Delone (9 — 3) cell).
According to Lemma 5.1 we suffice to investigate &x' (Q%_z,Ox_z). Let
X, = Spec Clz{, 0 € D, ()", a + ke p] be an open subscheme of (Uy),.
Z, — Z is covered with the open affine sets X, ,.

Since (Uy), = (Uy), we shall prove &xt' (2%, Ox,,) = ® 07,01, ON X,,p.

In what follows, we denote Delone cells containing the origin by o,
7, 0.

Let o be a Delone g-cell, ¢ ={reR;¢ctxr =20 i=1,---,N}, p be a
Delone (9 — 2) cell defined by p ={reo;c/'v =ctle =0}. Then ¢, =
{xeao;cte =0} is a face of o, and p is a face of z,. _

By assumption (A*), there exists Delone 1-cell 4, (v = 1,2) such that
Zid, + Zjp = {na, + Zm,a;; a;€ p ny = 0,m; > 0} contains a basis of Zz, =
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{gm,a;,a,€7,,m;e Z). Hence, any vertex a of ¢ is by assumption (4%)
written as a linear combination of d,,d, and vertices of p. Let a =
M4, + n,d, + >y myay, a5 € p. Since cja = ci(n,d, + n,d,) = n,cid, > 0, cid, > 0,
we have n,>0. Similarly n,>0. Then we have z, = x3:-23-[] 27, i.e.,
x, is contained in Clw,, ,,, 2;',a € p]l. Hence, X,, N Z, = Spec Clx,,, X4,
22, a € p]. Therefore X,, is isomorphic with Y, X Spec C[z;*, a € p] where
Y, is one of the affine schemes given in (4.1.). According to Lemma
4.1., we have an isomorphism &xt' (2%, Ox,,) = @ Oz,nx,,-

LEMMA 53. If g=3, then F;= 03,4, o fortiori &x'(Q%0x) =
DOz, In particular dim H'(X, &xt' (2% Ox)) = #(connected components of
the graph of X).

Proof. Since F, is invertible on Z, — Z, we suffices to show the
existence of a global section of &xt' (2% Ox) vanishing nowhere on Z,— Z.
In fact, Z, is Cohen-Macaulay so that i,0,,_; = 05, The existence of a
non vanishing section is proved by investigating closely a local family of
deformations of X. The proof is a case by case examination. We deal with
only the case 3 = 3, for brevity. With the notations in (5.5), (5.6) we put

0 0 74
#s) = (0 0 723) + e, log 311/277‘\/:_1 + ey, log sz/zﬂm
Tis T O
+ €55 10g 85,/2m0/—1 + €;10g 855/214/— 1
27r(s) = (IOg (811812)271'«/_—_1 , log (812322)277:\/——_1 , log (322323)/2774/_:1)
R@) = 0l¢,-0bmeZ, 0=05, E=/{(5,)eC;]|sy <é
P=ProjR®, X=P/I', I'=2". (see (2.4)

Then P is covered with U,, ke Z°. U, is given by,

wi' (@ =1,2,38), 8,;,8,W;, 8128Ws, SyS5W;
Spec O si'wi'w; ', 85 W W3, 811818, W W,y 81552855 WyWs
S8R W MWW, 811812850853 W W, W5

We shall show 9/ds;, is mapped by the Kodaira-Spencer mapping into
a section vanishing nowhere on Z, — Z, 4, =7, U 1,.
At generic points of Z, and Z,,, we have

U, = Spec 0lxz], €3, Topy W'l 5 ToWi' = Sy,  along Z,,

U, = Spec 0[23;, %5}, Bag wi'l 5 TaW3i' = Sy,  along Z,
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Moreover at generic points of Z,,Z,, and Z,, respectively we have

U, = Spec O[;], 4,5 Top Wi, Suwi'ws']

-1 —1ypy=lppy=1
Lo, Wy~ = Splqys Lgy Sz Wy Wy~ = S3p3g,

U, = Spec 0[w;], Ta,, Tay Wi, w3l
Loy W' = 83T, Loy Wi = Sp3%a,

U, = Spec O[x3}, T, Tag Lay W5
Xq,Lay = S12%q4» xae'w's_l = S33%q, -

Therefore the image of 3/ds;; vanishes nowhere on Z, — Z. By the
same way as above, we can show the existence of a non vanishing sec-
tion for any 4, which completes the proof. (Q.E.D.)

In view of Lemma 5.3. we obtain,

COROLLARY OF LEMMA 5.3.

3 2=2)

. , . " . 4 (Z' = 259 26)
dim B (X, 6 (% 0x2) =0 (5 )
6 Q=2

(5.5) As a special case of proposition 2.5. we have
LEMMA 5.4. With the notations in (4.1.) the following sequence is
exact (n = 3),

0 —> & (24 Oy) —> 02 2

D 0p,—> 0

where ¥ denotes the normalization of Y and D; = Spec Clx,, - - -, 2,1/ (2,
sy Ly Ly 0, X,).  The proof is straightforward.

PROPOSITION 5.1. Under the assumption (A*) we have an exoact

sequence,
(%) 0 — & (0% Ox) —> B 0%, > ® 0%, > D oy,
on X —17

where Z = Ur Z, (‘}’: Delone (g — 3) celD), "!"k((faa)ac”) = (Zr<a [o: 1']fa,z ace
and the other motations are the same as in proposition 2.5.

Proof. As seen in the proof of lemma 5.2., X — Z is covered with

X, X, = Spec CltP,a e 0, (EP) ', a+ ke p]l = Y, X Spec Clz!, a € p] for

2
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some n. Hence according to lemma 5.4., we have
Ext’ (2% Ox) = Ext* (25 Oy) @ Ox D 0%?

so that we obtain the above exact sequence. (Q.E.D.)

Remark. We notice the sequence (**) is defined on the whole X.
The author conjectures (**) is exact on X.

LEMMA 5.5. Consider a sequence of Ox modules

¢ Yo
N

0—>F 54,7 4,154,

such that oy =0, Yy0c=0. Assume 0 —F — A, — A, to be exact,
H'(X,A) = 0. Then we have dim H'(X, F) < dim H'{H'(X, A)}).

Proof. Let B be the image of A,, Then we have a long exact
sequence

0—-HX,F)—- H(X,A) - HX,B) - H(X,F)—0.
Hence

dim H'(X, F) = dim H'(X, B) [y(H'(X, A,)
< dim Ker (H'(A,) — H'(A,)/¥(H'(A,) .

Now we shall compute the upper bound of dim H'(X, Ext’ (2'x05))
using the above lemma 5.5. Since each irreducible component X, is
rational, so HYX,0x,) vanishes for ¢ > 0 and any Delone cell ¢ ([11] p. 44,
52) dim H'(X, Ext’ (2'x0x)) is dominated by the dimension of the cohomology
of the complex,

@ HY(X,05,)% 1> @ H(X.05)® Y @ HA(X,0x,)
I I I

C3N 3 5 CZN 2 > CN 1

where N, denotes the number of y-dimensional Delone cells mod I". In
this case N, =6,N, = 8, N, = 3.
We define oriented cells ¢, 74, a; mod I as follows

0, = (P, P, P, P, P> U (P, P, P,, P, P>
0, = {P,, P,, P, P,>

03 = {P, P, P, P>

t, = (P, P, P

https://doi.org/10.1017/5002776300001672X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300001672X

196

P,

IKU NAKAMURA

7, = {Py, Py, Py
T3 = <P1’P5:Ps>
7, = {Py, Py, P,>
7y = {Py, P,, P,
7 = (P, Py, Py
Ty = <P17P8’P7>
73 = {Py, P,, P>

a1:<P1»P2>’
a/4=<P1.-Po>;

a2=<P1,P5>,
ay = (P, Py,

a3:<Pl’P4>
a6=<P19P7>

where P, denotes a point in R® whose coordinate is given by,

P, =(0,0,0),
P,=(0,0,1),
P7=(1’171) ’

P, =(1,0,
P5=(0719
Ps=(0,1;

0, P,=(1,0,1)
0)’ Po:(lylyo)
1.

Then the homomorphisms ., are given by,

Vol (Fardacd) = (; [o: e1as)

Il fadac) = (g [e: a]fa,)a .

More explicitly, with the notations as above +, is given by,

[z,: a’l]falu + [z, al]falra + [z5: al]fam + [z

[z,:

[z,:

[71

[z

[zy:

a/z]f agey T [Tz:
5l fage, + [74:
20 S + [
a5l f ages T [z,:
aﬁ]faers + [zs:

@) fagen + [75:
05l fage, + 772
0 faen + [r7:
@) fage, + 752
agl f agre T [z:
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) fages + 742
aslf aser T [zs:
0] farer + [z
a1 f, ases T [z4:
el f. agrr T [zs:

20 fares s
] fageq 5
aslf agrg 9
Ol faes 5
) fages »
agl S agrs 0
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Notice that

Jowr = Jower T Saoer s Saiee = Sorea + Jagea s

Jases = Joses + Sages s Sagee = SFages + Sage s

Jooes = Jores + Fages s Sagee = Fares T Sases

Jasr = Jogr T Soser s Jags = Sages T Jauss
Since > ... [r: alf,,. = 0 where the summation is all over the pairs a <=,
it is easy to check dim Im+, = 5. Similary we have dim Im ° = 6, so
dim H\(X, &« (2% Oy)) < 5,

In the same way as above we obtain

LEMMA 5.4.
6 Q=2
. 5 Q=2,2
dim H'(X, &« (9% 0x) < by <87,
im HY( (2% 0x) < &= 5
3 (2:28)

According to Corollary of Lemma 5.8, Lemma 5.6, we have
dim Ext! (2% 0x) < 9 for a SQAV X of level 1.

(5.6) Next we shall construct a flat family of deformations of X
depending on 9 effective parameters.

Because of the similarity of computations we deal with only the
case X = 2, as a succession of (5.5). Let X be a SQAV whose corre-
sponding D-V cone is ;. Let

0 0 7y 2 -1 0
7(8) =10 0 75|+ |—1 2 —1]logs/2zy/—1

Ty Ty 0 0 -1 2
(z;;: constant). Then X is the closed fiber of Proj R(z)/I.
We put
0 0 T3 + Sis 1 0 0
#(8) = Sy 0 T3 + S + 10 0 0]logs,/2x¢/ —1
Tis + Su Tas + Sy 0 0 00
1 -1 0 0 0 0
+ -1 1 0]logs,/2n4/—1 4|0 1 —1)logs,/2zy—1
0 0 0 0 -1 1

0 00
+10 0 0]logs,/2zn4/—1,
0 0 1 -
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27(s) = (10g (8,,8:12)/2n/ — 1, log (8,38,0) /274 — 1, 1og (8,,8:9) 274/ —1) ,
R® =0lf,-0meZ, 0=0,5, E={(s:;;)eC;|sy| <e}
£, = e(Gmz()'m + m'C + r(9) , x, =&,
& =Proj R®/I', I'=2. (see (2.4.) Remark)

Then Z is covered with affine open sets U, (ke Z%, U, = Spec 0[£,.£;!,
m e Z*). More explicitly U, is given by,

w;' @ =1,2,3), 8,,8,W, $128W,s SpS3W;
U, = Spec O sz'wi'w;", $5' Wi w3, 81181,8W 1 W;, 81285,85W;Ws
SRR WT W5 W3, 8118138285 W W, W,

It is easy to check £ is Cohen-Macaulay. ([11]) Since the fibering
of & over Spec @ is equidimensional and Spec @ is smooth, the projection
o from Z to Spec @ is flat. Obviously the fiber #~%(0) is X. In order
to show the Kodaira-Spencer mapping from T (E) to Ext'(Q% 0y is
surjective, we shall begin with showing that H°(X, &x' (2% 0x)) is
spanned by 4/0s,;, 0/08.,,0/085,3/0S;;. We use the notations in (5.5). Denote
four connected components of the graph of X by 4, =7, Uz, 4,=7, U<,
dy =17y Uty dy =17, U zq. Let P, be a generic point of Z, N U,. At P,
we have z,, # 0, 2,, # 0, so that U, near P, is isomorphic with Spec O[zZ},
xil, Xop wi'l. We notice that x,,-w;' = s;ux,,. Hence 9/ds;; is projected
by Kodaira-Spencer mapping to a basis of H%(Z,0,,) (C H'(X, &xt' (2% Ox)).
Next let P, P, and P, be generic points of Z N U, Z,, N U, %, N U,
respectively. U, near P; is isomorphic with

Spec Olx;}, x5, oy W'l To - W' = 81,74, T=2)
SPGC @[xil, x;ela Lags xad], Lagla, = S22%q, (i = 3)

1

Spec O[x;), 51, Tays Tayls Xay@ay = S13%a, C=4.

Hence 9/0s,,,0/9sy, 3/3s,, are projected to a basis of H'(Z,,, 04,), H(Z 4, 04,),
HZ,,, 0,,) respectively.

It remains to show 4/ds;; (4, 7) # (1,1)(1,2)(2,2)(3,3) form a basis of
HY(X, &xt° (% 0x)). TFor that purpose, we consider a mapping ¢ from
Spec Cle] (2 = 0) to Spec ¢ defined by ¢*8;; = Gy, Ay = Gy = Gy = &3y = 0,
a;;€ C. ¢*Z corresponds to a l-cocycle D, = {a'y,d/d(> because I' oper-
ates on ¢* Proj R(%) as follows, ' = + 7o*t, { = (£, 8,8, 1= Gurmyd e I
s0 that 9/0e = a,57:(0/3C) + (@ny + A1) (0/08) + (@ay: + @xy)(@/3C:). Each
of @yysy Oy + Gusys and g7, + gy, defines an element of HY(X, @) which is
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contained in the image of H'(X, C) by the canonical homomorphism. Ob-
viously 7, 1. 7: form a basis of HY(X, 0).

Hence (@7 @y + Qusysy @ayy + Capn) in HY(X, 05)®° gives a basis of
H' (X, éxt" (2% Ox)), which completes the proof. From the existence of a
flat family of deformations of X depending on 9 effective parameters we
infer dim Ext! (2% 0x) = 9. Moreover according to the above proof, & is
locally complete because the Kodaira-Spencer mapping is surjective ([27]
Theorem 3.5.), while the inequalities in Lemma 5.6 turn out to be equalities.

In case of X, we put,

0 0 745+ 8 s
7(8) = 8y 0 0 + Z; e;log s;;/2ny/ —1

T3 + S Sy 0
+ ey log s,,/2n8/ =1 + e, log 8,,/2n4/ — 1

In case of X; we put,

0o 0 0
(s) = (321 0 0) + 23] e;log 8;;/2ny/ —1 + 3 e,5log s;;/2n4/ —1
i=1 i<y

831 832 0

1 0 0 0 0 0 0 0 0
e,=(0 0 0}, ezz(O 1 0}, 63:(0 0 0
0 0 0 0 0 0 0 0 1

1 -1 0 0 0 0 1 0 -1
e, =|—1 1 0], €3 = |0 1 -1}, € = 0 0 0].
0 00 0 —1 1 -1 0 1

Let R(z) = 0§, -0, me Z°], 0 = 0,; with the notations as in the case
of 3,. Then % = ProjR(c) /I" is a complete flat family of deformations
of Z, depending on 9 effective parameters. In any case we can const-
ruct the desired family of deformations of X, so we obtain

where

THEOREM 5.1. dim Ext' (2% 0x) =9 for a SQAV X of dim3Q =1).

Remark. We shall point out an interesting fact that X is one of
2, (v=6,7,8) then dim H(X, &x° (0% 0y)) is given by a formula

dim H'(X, 6x' (2'x0x)) = 9 — 3N, + 2N, — N, + N, (9 =3)

where N, denotes the number of y-dimensional Delone cells mod I'. In
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case of X, we have N,=1,N, =6,N,=8,N,=3. And also we have
Ny=1,N,=6,N,=9,N, =4 if >=3,Ny=1,N,=7,N,=12, N, =6
if ¥ = 3,. Remark that 2, (v = 6,7, 8) does not come from lower dimen-
sional D-V cones. However this is not the case if g = 4.

§ 6. Existence of moduli of SQAV (g < 3)

(6.1) In this section we shall show the existence of the coarse moduli
of SQAV (1 = 1,2) the fine moduli (1 = 3) applying a theorem of Artin
([11[5]) and our results obtained in §4,5.

At first we prepare the preliminary results and define a functor of
SQAYV.

THEOREM (Artin [1],[3]). Let F be a contravariant functor from
C-schemes to sets. Then F 1is represented by a separated algebraic
space locally of finite presentation over C if and only if the following
conditions hold.

[0] F is a sheaf for the etale topology

[1]1 F is locally of finite presentation

[2] F' is effectively pro-representable

[8] Let X be a C-scheme of finite type and let &, ype F(X). Then the
condition & = 7 is represented by a closed subsheme.

[4] Let X be a C-scheme of finite type and let £¢: X — F be a map. If
& 1s formally etale at a point xe X, then it is formally etale in a neigh-
borhood of .

According to Deligne-Rapoport ([5] (p.201,202, p.210 2.6.), F is
represented by an algebraic space locally of finite presentation if the
conditions [0][1][2][4] and the following (a)(b) are satisfied,

(@) For any £€eF(C), let & = & xSpec Cle] (62 = 0) then Auty & =
AUtC[c] gl

(b) For any &e F(C), Auty & = {1}.

And also the condition [4] holds if F' is (locally) effectively pro-represented
by complete normal rings of the same Krull dimension.

Notice that in this case F' is not necessarily represented by a sepa-
rated algebraic space ([5] p. 204 Remarque 2.6.)

DEFINITION 6.1. (9 <4 X,r,S,G,H,H,¢; §=0,.--,29,L) is a
principally polarized stable quasi abelian scheme of level 1 over a C-
scheme S if
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(0) = is a flat proper reduced and surjective morphism

(1) G is an open S-subscheme of a S-scheme X and a commutative S-
group scheme operating on X with identity e,.

(2) H is a S-group subscheme of G consisting of all 1-division points of G
and isomorphic with (Z/2)* X S. ¢; is a Z-basis of H (j =1, ---,29).
(8) H’ is a S-group subscheme of H acting freely on X, is isomorphic
with (Z/2)? x S. H’ is generated by ¢,,; G=1,.---,9)

(4) L is a relatively ample invertible sheaf on X and H’ operates on L
so that the following diagram commutes.

HxH XL

¢
(”,id)\AH/ x L I¢ \L

| |

H'XH’XXMHIXX
(@,id) l N
H x x— 5 x
where ¢ is a group mutiplication of H’ and ¢ is an action of H’ on X.
(5) for any geometric point Spec K of S the fiber product over S
X x K,n X K,SpecK,G X K,H x K,H X K,¢; X K,L X K)

is a principally polarized stable quasi-abelian scheme of level 2 over K.

Remark. If A=1,H = H’ = ¢ where ¢ denotes the identity of G.
So we write a SQAS ¢ of level 1 over S by & = (X,n,S,G,s, L).

DEFINITION 6.2. Two SQAV’s over S (X, n;, S, Gy, Hy, HY, 67, L) (2=
1,2) are isomorphic to each other if the following condition is satisfied,
there exists an S-isomorphism f between X, and X,

f:Xl"’Xz

such that the restriction of f to G, induces an isomorphism between
G, and G, and

JrP =P, f*H,=H,, f*H}=H{, (f*L)Li'ePic’'(X,/S).

DEFINITION 6.3. F,(2) is a contravariant functor from C-schemes to
sets defined by,

https://doi.org/10.1017/5002776300001672X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300001672X

202 IKU NAKAMURA

F,()(S) = the set of isomorphism classes of stable quasi abelian

schemes over S.
Let &,(2) be the sheafification of F,(2) in the etale topology.

Remoark. We use here a terminology “a stable quasi abelian scheme”
(abbr. SQAS) over S only for an element of F,(2).

Our aim is to prove that #,(1) satisfies the conditions [0][1][al[b]
and is locally effectively pro-represented by complete regular local rings
of Krull dimension 1g(9 + 1) if 2= 3,9 =2,3.

LEMMA 6.1. &,(2) is locally of finite presentation.

Proof. Let {B,} be an inductive system of C-algebras of finite pres-
entation and B = lim_ B,. Take an element & of &,()(B). Then ¢ is
represented by, for an etale covering S,, « eI of Spec B and SQAS’s over
S, X, 7., S., Go, H,, H,,, 5, L,).

Since Spec B is quasi-compact (even if B is not neotherian) so we
may assume I to be a finite set and moreover S, to be affine. X, is
projective over S, hence G, is quasi-projective, and so they are of finite
presentation over S. And then the group law of G, is of finite presen-
tation (EGA IV 8.13.2).

On the other hand the open immersion and the closed immersion are
also locally of finite preseptation (EGA IV 8.10.5) and so on. Hence
there exists a v, such that £ comes from an element of & ,(2)(B,,).

Next take two inductive systems {¢,},{»} such that ¢ =7 in &,(B)
where ¢ = lim &,,7 = limy,. Hence there exists a finite etale affine cover-
ing S, of SpecB so that £ and 5 are represented by & = (X,, 7., S,, G.,
H,H,¢, L), n° = X, #ar Ses éa,ﬁa,ﬁ{,,é;,fza) respectively and &° = 5~
By assumption all except L, and L. are isomorphic and these isomor-
phisms are also of finite presentation. (EGA IV 8.8.2.) Since X, is
projective over S, and z, is cohomologically flat (at least if g < 4), so
Pic’ (X,/S,) is locally of finite presentation ([1]) there exists a v such that
& and »* are isomorphic in % ,(A)(B,). Thus we have proved ourproposition.

LEMMA 6.2. &,(D(A) = F,(D(A) for a complete local ring A.

Proof. An element & of &,(1)(A4) is represented by ¢, = (X,, 7, S,, G,
H,H,e,L) with a finite affine etale covering S, of Spec A. Take an
S,. Since A consists of a unique point as a topological space, S, consists
of a finite number of points as a topological space. Let z( --. 2 be
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all the closed points of S, and A = O,,, be the local rings of S, at
x;. Then A{ is etale over A, hence AY is isomorphic with A, for A
is a complete local ring. Hence we can consider another etale covering
T, ; (=Spec A%) of Spec 4, and a pull back &, ; of £. Since they coincide
with each other over T, ; Xgy4 I, they determine only a SQAV &* of
level 1 over A, namely, & is represented by a SQAV &* of level 1 over
Spec A.

The isomorphism between &’s (¢ e &,()(A)) is nothing but that be-
tween £* in F (D)(A). Hence we have the isomorphism between &,(2)(4)
and F,(A)(4) for a complete local ring 4. Q.E.D.

6.2) Let & =WX,n,S,G,H,H ,¢;5,L) be a SQAS of level 2 over S
(e F,()(S)). Then we can construct a quotient & mod H’ as follows.
Since H’ acts on X and L in a compatible way, so there exists a scheme
Y and a projection f from X to Y and an invertible sheaf L, on Y such
that L = f*Ly, the following diagram commutes

x-2,x

fl O lf (ce H)

Y—Y

Set Gy = G/H',ey = foe, wy = mwo f~! where ¢ is the identity section of
G. Then obviously (Y, 7y, S, Gy, ey, Ly) is a SQAS of level 1 over S.

LEMMA 6.3. (94 Let ¢=X,nS,G,H,H,¢;,L) be a SQAS of
level 2 and 5 = (X,xy,S,Gy,ey,Ly) be a SQAS constructed above. For given
X, ¢;, H and = there exists only one structure on X as a SQAV of level A.

Proof. Let X*s be the maximal open subscheme of X such that for
any geometric point K of S, X™ XK is smooth over K. Let % be the
set of open subschemes Z of X™¢ containing H’ such that for any geo-
metric point K of S

#(connected components of Zz) = 19"

where ¢” is the rank of an integral matrix associated with X,. Then
G is the maximal element of % w.r.t. inclusion. In fact, if g <4, a
SQAS over an algebraically closed field K is described explicitly in §2.
From this our claim follows readily.
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The group structure of the connected component G% of Gy contain-
ing ¢, is uniquely determined by ¢ and Gy X ¢ K where ¢, is the identity
of G. Iu fact since G% is an extension of a split torus (K*) by an
abelian variety Ax. The quotient Ay = Ax/H’ X 4, G% is also an abelian
variety. Then Gy X ¢ K is an extension of a split torus (K*)*” by A%. So
A% is uniquely determined by Gy X s K, then the group structure Az is
uniquely determined by A%, e and ¢;, hence by Gy X s K and ¢, Moreover
the group structure of (K*)?” is uniquely determined also by &, so that
of G% is uniquely determined by Gy X s K and ¢. The structure of Gg
is determined by ¢; and G%, so by Gy XsK,¢; and ¢. (see footnote.)

Let two group structures on G be G, and G,, f be an identity
morphism of G. Then we have only to prove f is a S-group homo-
morphism from G, to G,. Given two points a, b € G,(S), we have f(a)s(b)
= f(ab) over K for any geometric point K of S. Since f(a)f(») and
f(ab) are sections over S, they coincide over k(x) for any point z of S
by the f.p.q.c. descend. So in particular, they coincide simply as sub-
sets in X. On the other hand the images of these two sections by the
projection from G to Gy are also sections of Gy over S, and coincide
as sections by assumption. In the etale topology the section of G over
S and its image in Gy is isomorphic, therefore the sections f(a)f(b) and
f(ab) coincide in the same topology. ‘

L is the pull back of Ly, so uniquely determined by 7. Thus we
have proved our proposition.

(6.3) Assume X to be a proper reduced C-scheme and L an invert-
ible sheaf on X. We define a covariant functor D, from the category
of complete local rings € over C to sets by, D,(4) = the set of equiv-
alence classes of a pair (Z,.%) such that

(1) & is a proper flat A-scheme with &, = X

(2) 2 is an invertible sheaf on & with %, = L.
where (%,, %) and (%,, %, are defined to be equivalent if there exists
an A-isomorphism f from &%, to %, such that (f*%,)%;'e Pic’(Z,/A)(A).

LEMMA 6.4. Let the notations and the assumptions be as above.
Suppose that the natural homomorphism from H'(X,C) to H(X,0) is
surjective. Then D, has a hull. Moreover if the deformation functor
Dy of X is pro-representable then so is Dj.

We can prove Gy Xs K/Im (H xs G%) = G%.
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Proof. At first we prove the following

Claim; Let A, B be complete local rings and ¢ be an epimorphism from
B to A. Suppose & to be a proper flat B-scheme with &, = X. Denote
by &, the fiber product of & and A through ¢. Then a canonical
homomorphism ¢* from HYZ,0,) to H % 4 0.) is surjective. In fact,
since % is proper over B,HY(%,0,) is a finite B-module. Put M =
Coker (H(Z,B) — H(Z,0,)). Then we have M ® B/my = 0 by assump-
tion, where m, denotes the maximal ideal of B. Hence by an aid of
Nakayama’s lemma, we conclude M = 0. On the other hand, it is ob-
vious that HY4,B) = H(X,B) = H(X,CO)® B,H(%¥,4A) = H(X,O ® A.
Therefore it follows from a commutative diagram

H{(Z,B) - H(%,0,)
! !
HY(Z,A) — H(Z 4,0,,)
that ¢* is surjective (QED of the claim).

According to Schlessinger’s theorem ([23] theorem 2.11) we have only

to check the conditions (H))(H,)(H, in order to prove cur lemma. We
proceed our proof in the same way as in [23]. We use freely the ter-
minology in [23].
(H) Let w:(A’,7)— (4,9 and u’:(A”,7") — (A, be morphisms of
couples where u” is surjective. Let 27,4 ,%" and %/, %, %" correspond-
ing schemes and invertible sheaves on them respectively. Namely 7’ =
@, L, 9=, L) and 7’ = (", L").

Then we have isomorphisms 2'®A =%, Z"QA =% and
(¥ Q@A) ¥ e Pic" (), (¥ ® A)¥ ' e Pie’ ().

By the above claim there exist invertible sheaves %/, #” respectively on

2, %" such that ' ®A =%, ?"®A = %. PutZ with 0, = 0, X, Opr,
|Z| = |X| and 4 = P X, P, 7" = (Z, #/). Then we have isomorphisms
7 QA =,y QA" = 5", which completes the proof of (H).
(H,) Next let (2, %) and (2, &, be elements of D, (A’ XcA"), A” = Cle]
@=0. If Z,04=2=2,QA", QA" =%,QA” and through these
isomorphisms &, ® A’ = £, A’ mod Pic® (', A) and ¥, QA" = L, QA"
mod Pic’ (2, ® A”), then there exists by (H,) an invertible sheaf ¥ on &,
such that

FRA =(FQANL, QAN FRA = (L RQANL, QA" .
Since 7, = 0y, £ is an element of Pic’ (Z) where Z is defined by 0, =
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Oz, X o3 Osyy |Z] = | X|. In fact, since Pic’(Z/A"") = Pic*(Z,,/A"’) where Z,,
denotes an analytic space associated with Z, A" = A’ X, A", we have only
to prove the assertion in the analytic case. From a commutative diagram

H'(Z,0,) — H'(Z,0%) — H"Z, 2)
l ! [
HX(X, 0y) — H'(X, 0%) —» HX, Z)

we infer that any invertible sheaf ¥ on Z whose restriction on X is an
element of Pic’(X) is projected to zero in H*Z, Z), i.e., comes from

HYZ,0,).
Therefore changing %, into ¥, ® #~!, we have isomorphisms
T, QA =%, QA", T QA" =F, QA"
J g9

RA = [*2,QA", LRA = g* P, QA" .

By the same argument as in [23], we conclude that (%,, %, and

(Z,, &, are isomorphic if A” = Cle]l, A = C, which proves (H,).
(H,) is obvious since D, is a subfunctor of the deformation functor.
The last assertion follows readily from Th. 2.11 and Lemma 3.8 in [23].
Q.E.D.

LEMMA 6.5. Let X be a proper reduced k-scheme and L be an
invertible sheaf on X. Suppose that & is flat and proper over kle],&® =0
and &, = X. Moreover we assume & be an element of H'(X, &x* (2% Ox))
through the canonical isomorphism between Ext' (0% 0x) and the tangent
space of a deformation functor of X. Then an obstruction o(%,L) to
extend L to the whole & is given by the cup-product of % and c(L),
and o(&, L) is an element of HYX, Oy) where ¢ is a cononical homomor-
phism induced from the homomorphism from O* into £2' defined by
cla) = da/a, so ¢(L) is an element of HY(X, 2%).

Proof. This lemma is well-known, however for the later use we
recall the outline of the proof. Take an open affine covering U, of X
and an open covering %; of Z such that #; X, X = U;. Let L be defined
by a l-cocycle {f;x}, fix € I'(Uj, ©*). And assume % to correspond to a
1-cocycle Dy, Dj, € I'(Ujy Ext° (2% Oy)).

Now assume that there exists an extension % of L, say, defined by
a l-cocycle F, F';, € I'(% ji, 0%) such that F;(0) = f;,. We write F, =
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oF /¢, F, = f;,. Then one-cocycle F';; satisfies the equality F;F;, =
F,.. Differentiating this equality with ¢, we have,

ngF;k + F%ng'k + (Dijgj)F(}k = F’%k

Hence we conclude a 2-cocycle (1/F},)D;.F?; is cohomologous to zero in
H(X, 0y).
The converse is left to the reader.

Remark. The above obstruction will be often denoted by 0(0/0e, L).

(6.4) Next we shall calculate 0(3/ds, L) for SQAV of level 1 using
the above result. Because of the similarity of calculations we deal with
only SQAV’s of dimension 2.
case 1)

Assume X to be a principally polarized abelian surface. Let the

period matrix of X be (1,7),z = (:“ T”). Then a complete family of
12

To2
. . . ; s T S T S

deformations is given by setting z(s) = (Ti: i s; TZ i SZ), |8:;] <e.
Consider a mapping ¢ from Spec Cle], & = 0 into s;;-space defined by
©*8;; = a,e so that we may obtain a flat family of deformations with
period z(e) = 7 + (Z“ Z”)s over Spec Clel.

Then 0(3/0e, L) 2iranizéhes if and only if a, = a,. We shall give a
proof of it.

An invertible sheaf L is given by a 1l-cocycle 0, = e(—3yrcly — 7°0).
Denoting the global coordinate of the generic fiber by &(¢), then we can
write a transformation induced by y as follows,

C) =¢ + @y = + (a'p)e

where a = (a;), ¢ = {'(0). Hence we have D, = (3/de), = {a'y,3/0) =
2.4, @i;7@/0C;). The cup-product of D, and 0, is given by a 2-cocycle
C, = —y'a'y, where v = (r, 12, 7" = (4,79 :
However .71, 1275 (i + 72074 + 73) is cohomologous to zero because each
of them is the cup-product of a l-cocycle in H'(I",C) and itself. On the
other hand, 7,7} is not cohomologous to zero, so 0(d/d¢, L) vanishes if and
only if a,, = a,,.
case 2)
Assume X be a SQAV of the second type (see (4.2.)). Then the

corresponding local period matrix to X is given by z(s) = (:” 462) +
12
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01

given by setting #(®) = (2 T30 70§ %) (7 Q) log su/2ev =T, (51 <o),

& = Proj R(®/I" (2.4.) Remark).
Consider a mapping ¢ of Spec Cle] into s;;-space defined by ¢*s;; =
a4, () # (22), ¢*8,, = 0, so that we have a flat family ¢*% over Spec Cl[el.

Then we may consider ¢*% corresponds to a 1-cocycle D, = {a‘y,9/0()

symbolically, where a = (gu

21

have a 2-cocycle 0(3/de, L) = —y'a’y, therefore o(d/de, L) vanishes if and
only if a,, = a,,.

(0 O) log s/2z4/'—1. And a complete family & of deformations of X is

082). By the same argument as above we

case 3)
Assume X be a SQAV of the third type whose corresponding local

period matrix z(s) given by z(s) = <TO T(‘f) + ((1) (1)) log s/2x4/—1. And
12
a complete family & of deformations of X is given by setting #(s) =

(0 0%+ (b S tomawzev=T + (3 9) tog su2ev=T, # =

Proj R(z)/I". Consider a pull back ¢*Z where ¢*s;; = a,;e (2 % ), ¢*s;; =0.
Then D, = a,7,w,@/0w,) + auy,w,(0/ow,) where w; = e(;). Also in this
case, calculating 0(3/de, L), we can show that o0(d/de, L) vanishes if and
only if a,, = a,,.

case 4)

Assume X be a SQAV of the fourth type, whose corresponding local

period matrix is given by z(s) = (__% —"} log s/2z4/ —1. And also by

setting [#(s) = (821 8) + ((1) 8) log 8,,/2n4/ —1 + (__i _%) log 8,,/2r4/ —1

+ (8 (1)) log s,,/274/—1, we obtain a locally complete family % of defor-

mations of X. % = Proj R(2)/I". Consider a pull-back ¢*% where ¢*s, =
0y, 0*8;; = 0 (otherwise). Then D, = a,y,w,(0/0w,) where w, = e({,) and
0(0/0e, L) = —ayyy;, hence 0(d/de, L) vanishes if and only if a, = 0.

In any case, there is a polarized family of deformations of X over a
complete regular local ring of Krull dimension 3, and this family is
formally complete as for the functor D; defined in (6.8.) in view of
Corollarly 2.2 (ii), (4.2.), Lemma 6.4. and [23] Th. 2.11., hence pro-
represents D;.
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In the case of dimension 3, by quite similar calculations, we can prove
the pro-representability of D;.
Summing up these results we have,

THEOREM 6.1. D, is effectively pro-representable for a SQAV (X, L)
of level 1 defined over C. (9 = 2,3)

COROLLARY OF THEOREM 6.1. %,(2) is locally effectively pro-represent-
ed by complete regular local rings of dimension 1g(g + 1). (9 =2,3)

Proof. Let & be a SQAS of level 1 over C, &, = (X, Gy, H, H', ¢, L)
FL(NC) (= Fy(A(C) and 7, be a SQAS of level 1 obtained from &, by
taking a quotient, 5, = (Y,, Gy, &, Ly,). ((6.2.)

Then we define covariant functors &,(D(&y), ¥,(1)(y,) from the category
of complete local rings to sets by,

LDEIA) = {£e L, (D(A); & X4 AImy = &}
L D)A) = {ne L (D(A); 7 X4 Alm, = o}

where m, denotes the maximal ideal of A. D,,, is effectively pro-
represented by a complete regular local ring A of dimension }g(g + 1)
and a flat polarized family % of deformations of Y, over A constructed
before. Then it’s easy to check that # is also a SQAS over A. Hence
any element » of D, (B) is also a SQAS over B for any complete local
ring B. Therefore &,(1)(3) coincides with D,, because according to
Lemma 6.2 &, (D(n)(B) = F,(D()(B) for a complete local ring B where
F,(1)(y,) is defined in the same way as &,(1)(3,), which proves the effec-
tive pro-representability of &%, (1)(3,).

As seen in (6.2.), we can define a SQAS 7 of level 1 for a SQAS ¢
of level 2, which we denote » = y(£). Now we shall prove the mapping
¥ from &, (D(EN(B) to L, (D(5)(B) is bijective for any complete local ring
B. Any element 3 of &,(1)(3)(B) is induced from (%, A) and there exists
an unramified covering Z of % which is also a SQAS of level 1 over A
and & /H' = %, hence v is surjective. The injectivity of 4 follows easily
from Lemma 6.3. Q.E.D.

THEOREM 6.2. (i) &£,(3) is represented by a smooth C-algebraic
space Sy(2). Moreover the greatest separated quotient S,(2) of S¥(Q)
exists and is isomorphic with Igusa monoidal transform &) of Satake
compactification of the Siegel modular space of level 2. (9 =2,3,2=3)
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(i) &*Q) (A=1 or 2) has the following property;

(1) there exists a unique morphism f from S to S¥(2) in the cate-
gory of algebraic spaces for a given SQAS over S functorially.

(2) For any separated C-algebraic space N enjoying the property
1), a unique morphism g from &*(2) to N is defined in such a way that
the following diagram commutes, for any SQAS 7 over S

AN 1)

RN

N

Proof of (i). According to a generalization of Artin’s theorem by
Deligne-Rapoport (6.1.), it remains to show the conditions (a)(b).

Take a SQAS £ of level 2 over C, then we can construct » of level 1
as before. An automorphism of & = & X Clel, (¢ = 0) induces that of
7’ = 5 X ¢ Cle]l by definition. By virtue of Theorem 2.1. Aut; 7= Auter, 7
because 7’ has a section over Cle]. Hence we have Aut, & = Autg &,
thus (a) is proved.

Next we shall prove (b). Let ¢ = (X,G,H,H,¢;,L) e Z,(AD(C). X
= X — sing X consists of disjoint union of a split torus bundle over a
fixed principally polarized abelian variety A with level 2 structure. By
the condition (B), any automorphism ¢ of ¢ induces that of any connected
component of X™¢, moreover a unique automorphism ¢ of A as a prin-
cipally polarized abelian variety with level 2 structure. Hence if 21> 3,
¢’ is an identity. Therefore ¢ operates on X preserving all the fibers.
However on the fiber of X™# at the zero of A, ¢ has A-division points as
fixed points, so if 2 > 3, ¢ equals to the identity. (proposition 1.2) So there
exists an algebraic space SF(2) locally of finite presentation which repre-
sents #,(2). The smoothness of S}(2) (2 = 3) follows from Corollary of
Theorem 6.1. and (b).

(6.5) We are still on the way of the proof of our theorem.

Now we shall prove the second assertion of (i) that @;‘(2) is the
greatest separated quotient of S}(2) (1= 3, g = 2,3).

We have only to consider the problem in the analytic category ([2]
Th. 1.12). At first we define an analytic mapping f from S¥(2) to @;"(Z)
as follows. Let & be a SQAS of level 1 over C and its local period
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matrix be 7(s) = z,(s) + Blogs/2ry/ -1, B = (g é),,)(B” > 0). We may

assume that for a Delone ¢g” cell ¢ w.r.t. B”, 9” = rank B the level A-
structure ¢, - - -,¢,, on ¢ is defined as in (2.4.). Because of the structure
of &*(2) ((8.8)) lim,_, z(s) exists, so we can define f(&) = lim,_, z(s).

This mapping is obviously an extension of an isomorphism from the
fine moduli of principally polarized abelian schemes with level 1 structures
to the Siegel modular space of level A.

It is easy to check that f is an analytic mapping ((3.3), 4.2)(5.6.)).
Moreover we notice by definition #(f!(f(§)) = the number of Delone g”
cells modulo translations by I'. Since ©¥(1) is separated our second
statement of (i) is completely proved. (see supplement)

Next we turn to the proof of (ii). (1 = 1) Sp(g Z)/Sp(g Z)(k) operates
on &*(k). (k=3) and its quotient space &*(1) is defined as an algebraic
space indepently of the choice of k. &*(1) is also separated.

Let S be a C-scheme of finite type, » be an element of #,(1)(S) i.e.
for an etale covering S, of S, SQAS 5, = (X,, 7., S., G.,¢e., L) over S, are
given where S, is also a C-scheme of finite type. For any closed point
z, of S,, the geometric fiber of &, at x, is a SQAS over C. Let X, be
the formal completion along the fiber (X,),, and S, be the completion of
S, by the maximal ideal of @,,s,. Then by the (effective) pro-represent-
ability (Corollary of Theorem 6.1.) X, is isomorphic with Proj R/AI"
over Spec®,s, = Specf,,s,. So there exists a SQAS & of level k (k= 3)
such that 5 is a quotient of ¢ by H’, so that we may have a morphism
from §,, to the moduli space SF(k) up to its level structure. Hence this
defines a unique morphism from Spec ﬁzos to S¥(k) and consequently by
an aid of Artin’s approximation theorem ([2]), we have a morphism
from the henselization Spec d,,s of Spec @, to &%(1). Thus we obtain
a unique morphism from S to @;‘(1) as algebraic spaces.

If another separated algebraic space N admits this property, i.e.,
for any element & of &,(1)(S) there exists a unique morphism from S to
N as algebraic spaces, then we have a unique morphism g from @;‘(1)
to N. In fact, let z, be a closed point of &*(1) and 0,, be its local ring.
Then according to the proof of effective pro-representability of #,(1)
there exists a finite Galois covering Spec @ of Spec @,, on which a SQAS
& of level 1 over @ is defined uniquely up to level structures. Here we
may assume (&, @) is a local universal family of SQAS. A morphism ¢
from Spec @ to N can be defined by this &.
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We must prove g is invariant by the action of a Galois covering
group G, of Spec @ over Spec®. If z, is a point of the Siegel space
©¥(1) ¢ is invariant under G,. Let z, be a point of &*(1) — S¥(1), and
g be a covering transformation of Spec® over Spec®. Then g and gog
are morphisms from Spec@® to N, and coincide with each other on
Spec K’ (K’: the quotient field of @’) because ©(1) is a Zariski open dense
subset of &*(1).

Since N is separated, g = goo on Spec @ which implies g defines a
morphism g from &*(1) to N. The remaining assertion is trivial.

In the case of 2 = 2, we can proceed our proof in the same way as
above. Q.E.D.
Supplement to the proof of theorem 6.2. (i)

Let N be a separated algebraic space of finite type over C, and ¢
be a morphism from S}(2) to N. Then we must show that there exists
a morphism A from ©%(2) to N such that ho f = ¢.

Let P be a point of ©}(1), Q be one of its inverse image P by f.
Since S¥(2) and €©}(2) are locally isomorphic, a morphism % is defined
near . We shall show % is independent of the choice Q. If P is con-
tained in the Siegel space ©}(1), then @ is unique, so there’s nothing to
prove. Assume that P is not contained in &}(2) and Q,, @, be two points
of f'(P). Let 0 be the local ring of &#(1) at P. Then by the above
consideration two mapping #,, h, defined at P coincide with each other
on Spec K where K is the quotient field of ¢. Since N is separated, h,
and h, coincide all over Spec®. Thus it is proved that &¥(2) is the
greatest separated quotient of S¥(2).

§ 7. Further remarks

(7.1) We shall give a brief comment on Deligne’s example in [13].
Let X, be the fiber (X.), at p: (S5, 8181, 8128,) = (0,0, 0) in the case where
A= 3 (see (3.3.)). (Z/A)* operates on X, so that we have a quotient
scheme X of X, by (Z/2)* Obviously X is independent of 2, which is
nothing but the closed fiber of Deligne’s example. Notice that X is a
union of a projective plane blown up at three vertices and two copies
of a projective plane.

As for this X, we have dim H(X, &x° 2% 0x)) = 2, dim H'(X, &xt° (2% Ox))
= 2, dim HY(X, & (2% 0x)) = 0 and H X, &« (2% Ox)) = 3, consequently
dim Ext! (2% 0x) = 5. Since a canonical homomorphism HY(X,C) — H'X,0x)
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is surjective and dim H*X, 0x) = 1, a flat polarized family of deformations
of X with 4 parameters exists. In fact X has apparently two parameters
for gluing, one of which prevents polarization from extending.

Moreover we remark that in the Deligne’s example one of two pro-
jective planes of X can be blown down to one normal point so that X
becomes our stable quasi abelian variety, i.e., two copies of a projective
plane, and the total space becomes a local universal polarized family of
deformations given in (4.2.). Therefore it is conj'ectured that a stable
quasi abelian variety has in a sense a kind of minimality. We shall
discuss on it in the subsequent paper.

(7.2) Let

z(s) = ( ? _;) log s/2xv/—1 .
We consider % = Proj R()/I", R(c) = 01¢,,-0], &, = eGme(s)'m + m).
Then the theta series 6 = >, e(Eme(s)'m + m¢) is a global section of
0O(1) whose restriction on (U,), is given by, 6 = > 4co Xq, With the nota-
tions in proposition 2.3.

Let o, = <Py, P;, Pyyr)y & = <Py, Pyy, P,y = P, where

Po:(O’O)’ P1=(1’O)’ P2=(1,1)7 P3:(0a1),
P,=(-1,0), P,=(-1,-1), P;=(0,-1).

Then the restriction of ¢ on Z,, N (U,), is given by 1 + x,, + «,,,,. Hence
a closed subscheme C of %, defined by § = 0 is a union of two projec-
tive lines meeting transversally at three distinct points.

In the same way as above we can construct a family of stable curves
of small genus. (see [15][17]).

We remark that a stable curve cannot necessarily be embedded into
its corresponding stable quasi abelian variety.
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