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1. Introduction

Let G be a group. With each element a in G we associate the mappings
p(a) and X(a) of G into itself defined as follows,

1.1 gp{a) = [g, a] for all g e G

1.2 #(«) = [*.g] for all geG.

The product of mappings is defined as usual. Let P(G) and A(G) denote
respectively the semigroups generated by the set of all p's and X's. These
semigroups will be called the commutation semigroups of G.

One naturally raises the following two questions:
(i) Are the commutation semigroups of a group isomorphic?
(ii) If not, how are these two semigroups related to each other?
The answer to both the questions depends upon the group G. For

instance it can be observed easily that if G is the symmetric group on 3
letters, then \P(G)\ = 6 and \A(G)\ = 9; and also in this case P(G) is
properly contained in A(G).

The purpose of this paper is to give a complete answer to question (i)
for dihedral groups and for nilpotent groups which are not of class 4. The
paper is in two parts, dealing with the commutation semigroups of dihedral
groups and of nilpotent groups, respectively. For dihedral groups we give
criteria for isomorphism of P(G) and A(G). For nilpotent groups we
construct an example of a group of class 5 and prove that for nilpotent
groups of class ^ 5, the commutation semigroups are not in general
isomorphic. Also we prove that these semigroups are always isomorphic
for groups of class 2 and 3. For groups of class 4 we prove, however, that
the two semigroups are of the same cardinality.

I thank my supervisor Professor B. H. Neumann F.A.A., F.R.S. for
suggesting the study of commutation semigroups and for his general
guidance. I also thank the referee for his many useful suggestions which
in particular have considerably simplified the proof of theorem 1.
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2. Notations and definitions

For any two elements a and b of a group G, we write

2.1 a" = b~*ab.

The commutator of a and 6 is defined as,

2.2 [a, b] = a-H-^ab;

and for « > 2, the left normed commutator of weight « is defined in-
ductively as

2.3 [«i. « t . - " , «»] = [[«i.«i. • •• .««-i] .«J-

The following commutator identities are standard and are used
repeatedly without reference,

2.4 [a, b] = [b~\ a]" = [b, a-*]-

2.5 [a, be] = [a, c]\a, b]e

2.6 [ab,c\ = [a,cf[b,c].

If A and B are subgroups of a group G, then [̂ 4, B] is the subgroup
of G generated by all the commutators of the form [a, 6] where a e A
and b e B. In particular [G, G] is the commutator subgroup of G and is
denoted by G\ If G' is abelian, then G is called metabelian. If G is metabelian
and if [a, b] = 1 for a, 6 e G, then it can be verified that for any g e G,

2.7 fe, a, 6] = [g, b, a].

For a given group G, the commutation semigroups P(G) and /1(G)
may also be written as P and A respectively. Both P(G) and A(G) possess
zero elements, namely p(l) and A(l), respectively; and p(l) = A(l). We
denote the zero element of P and A by 0. For all elements z in the centre
of G, we have p(z) = A(z) = 0.

An element a.eP(G)(A(G)) is called prime if it cannot be expressed
as a product of two or more elements of P(G)(yl(G)).

PART I

Commutation semigroups of dihedral groups

Let n = 2rm be a positive integer where m is odd and r ^ 0. Consider
the dihedral group G of order 2« given as:

G = gp {a, b\a* = l = bn, aba = 6"1}.
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Let N denote the set of residue classes (mod«). For each pair of
elements i, j eN, define a mapping p(i,j) of G into itself as,

(1)

Then it is easy to see that

(2) fi{t, j) = /i{i', j') if and only if * = *', j = j '

and

(3)

Thus the set of all fi(i, j) form a semigroup 5 of order n*. Further it can be
directly verified that

(4) p(&-') = 0(0, - 2 / ) , P{ab->) = , . ( - 2 , - 2 / )

and

(5) A(&-') = 0(0. 2/), A(o4-0 = 0(2, 2j).

Thus by (2), (3), (4), (5) it follows that P{G) is the subsemigroup of S
consisting of all elements of the form 0(0, —2j) and 0((—2)1, (—2)'/);
and A(G) is the subsemigroup of 5 consisting of all elements of the form
0(0, 2/) and 0(2', 2'/).

If u, v are relatively prime integers, let indu v denote the least positive
integer t such that v* = 1 (mod «). Then we prove the following'theorem:

THEOREM 1. P{G) s A(G) if and only if indp 2 = 0 (mod 4) for every
Prime divisor p of m.

PROOF. Let indp 2 = 0 (mod 4) for each prime divisor p of m. Let
0 ^ k e N and let d = (k, tn) be the greatest common divisor of k and m.
Let d < m. The residue classes (mod m\d) which are prime to m\d form
a multiplicative group H of order (p(mfd), the Euler's function of m\d.
Let C1 and C2 denote the cyclic subgroups of H generated by the residue
classes of 2 and —2 respectively. By hypothesis both Cx and C2 are of
the same even order. Then clearly either Cx = C2 or C^C^ = C1 u — 4CX =
C2 u — 4C2 and in the latter case if {m1(= 1), m2, • • •, m,} is a set of
coset representatives of C^C^ in H, then {m1,m2,...,m,,—4m1

—4w2,. . . , — 4tn,} is a set of common coset representatives of Cx and Ct

in # . Let M denote the set of common coset representatives of Ct and
C2 in H. Then,

(6) k = ( - 2 ) % = 2W2,

for some llt lteM, where llt lit tlt tt are uniquely determined.
Now, for each k eN we define integers x(k), (}(k) eN as follows:
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(7) a(0) = 0(0) = 0;

a(£) = 0(A) = (—1)*& if d = m, where k =£ 0 and t is the largest power of 2
dividing k; «.{k) = (-1)'1*, 0(£) = (—1)'»& if d < m, where A =/= 0 and
<!, *2 are given by (6). The following properties can be easily verified:

(8) k = k if and only if *(k) = a(*') and 0(*) = 0(*').

(9) a(l) = 0(1) = 1

(10) a((-2) '*) = 2«a(ft), 0(2'*) = (-2)'0(*)

(11)

We now define the mappings rjl and JJ2 of P(G) into A(G) and
into P(G) respectively as follows:

By (8), (9), (10) both ^x and ?;2 are well defined mappings, and by
(11), r/! and t)2 are inverses of one another. A product in P(G) has the
form ,u(u,v)/i(u',v') = fi(uu',vu') with « ' = 0 or (—2)1. Then by (9)
and (10) T)t is a homomorphism. Hence P(G) s -^(G).

Conversely, let P(G) ~ A(G). If m = 1, there is nothing to prove.
Let m > 1 and let 7* denote the subset of N with elements of the form 2/.

Let J; be an isomorphism of P(G) onto A(G). Since /J(0, 0) is the zero
element of P(G) and A{G), /i(0, O)rj = /t(Q, 0). Further, since w > 1,
P(G)/i(u, v) = /x(0, 0) is satisfied precisely when u = 0. Thus /i(0, w)?; =
fi(0,6(v)) for some permutation 6 of 7\ Suppose j«(—2, O)JJ =/i{c, e);
then c = 2 ' for some /. Since (/t(0,v)nt(—2,0))ij = fi(O,e(v))/i'(c, e) =
/«(0, c'0(w)); we have,

(13)

In particular, since 6 is 1 — 1, for all t = 1, 2, • • •,

((-2)«-l)a; = 0 and (c'-l)a; = 0

have the same number of solutions x e T. Now fi(—2, 0) and /i(c, e) both
generate cyclic sub-semigroups of P(G) and A(G) respectively and by the
isomorphism condition it is easy to see that c and 2 are powers of one
another, so that

((-2)«-l)a; = 0 and ( 2 ' - l ) a ; = 0

have the same number of solutions xeT. Let dt = ((—2)'— 1, n)
and d2 = (2*—1, n). Then the number of solutions are edx and edt
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respectively where e = $ or 1 according as « is even or odd. Thus dt = dt

and we get in particular

(14) (2«-l , n) = (2«+l, n) = ( 2 « - l , n) = 1,

for all positive odd integers t.
Now let 1 # p be a prime divisor of m. If ind, 2 =^ 0 (mod 4), there

is an odd or twice-an-odd integer s such that />|2*—1 and so p\(2'—\, n)
which is contrary to (14). Hence i n d p 2 s O (mod 4). This completes the
proof of the theorem.

Remark. If r = 0 or 1, then it can be independently proved that
P(G) C A(G) if and only if the least positive integer s, satisfying 2* = —1
(mod m), is odd and A(G) C P(G) if and only if indm 2 is odd. Further,
the proper inclusion of commutation semigroups does not hold if r > 1.

PART II

Commutation semigroups of nilpotent groups

Let G be a nilpotent group. For I ^ 1, let P , = P,(G) (A, = At(G))
denote the set of all elements of P(G) (A(G)) which can be expressed as a
product of / single elements of P{G) (A{G)). Thus if G is nilpotent of class
n, then Pn — An = {o}.

Let G be nilpotent of class at most 4. Since p(a) = p(b) and A(«-1) =
A(6-1) are both equivalent to ab~x e Z(G), the center of G, there is a
unique one-to-one mapping of P x onto Ax which maps p(a) to X(a~x).
Thus we have,

(1) |Pil = \AX\.

Further since [g, a, b] = [b, [a, g]][">o] = [b, [a, g]] for all g e G, we have
p(a)p(b) = A(a)k(b) which gives

(2) P2 = A2.

Also \g, a, b, c] = [c~\ [b-\ [a-\ g]]] for all g € G implies that p{a)p(b)p{c) =
)^-1) which gives

(3) P3 = Aa.

If p{a) = p(b)p(c), then

[g,b,c] = {g,a] = [a-\g][a-\g,a]

= C*-1. gH*-1, g. 6. c] = [a"1, g][g, «, 6, c] = [«-». g],

so that p(») = A(a"x) = p{b)p(c) which gives by (2) that
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(4) P1nP2 = A1nA2.

If p(a) = p(b)p(c)P(d), then \g, b, c, d] = \g, a] = [a~\ g][a~\ g, a] =
[ar\g], so that p(a) = A(a-X) = p(b)p(c)p(d) = A ^ A f c - 1 ^ - 1 ) "which
gives by (3) that

(5) P1nP3 = A1nA3.

Also from (2) and (3) we get

(6) P2nP3 = A2nA3.

Thus it follows from ( l ) - (6 ) , that

(7) \P\ = \A\.

In particular if G is nilpotent of class 2 then p(a) = A(a-1) and so P = A.
If G is nilpotent of class 3, then p(a)p(b) = ^ ( a - 1 )^ - 1 ) = A^- 1 )^" 1 ) =
k(a)k(b) and it follows from above that

(i) />(«) = p{b) if and only if X{a~l) = A^-1)
(ii) P(a) == p(6)p(c) if and only if AJar1) = A^-^A^"1)
(iii) p{a)p(b) = p{c)p(d) if and only if A ^ - 1 ^ - 1 ) = X{frx)X(drl).

Thus there exists an isomorphism of P onto A mapping p(a) to A(a-1)
for all a eG. Thus we have proved the following theorem:

THEOREM 2. Let G be a nilpotent group. Then (i) P(G) = A(G) if G
has class 2; (ii) P(G) ~ /1(G) */ G Aas c/ass 3 and (iii) |P(G)| = |yl(G)|
if G has class 4.

Next we prove the following theorem:

THEOREM 3. / / G is a nilpotent group of class 5, then P(G) and A(G)
are not in general isomorphic.

PROOF. TO prove this theorem we construct a group G of class precisely
5 and later we shall show that P ^ A.

First construct,

(8) A =gp{x1,x2,xa,xl},

as an elementary abelian group of order 5*. We then extend A by adjoining
an element a with relations,

(9) a8 = 1, xl = xxxt, x\ = x2x3, x% = x3xt, x% = xt.

It can be checked that a induces an automorphism of order 5 in A, so
that B = gp {A, a} is of order 55 and is a splitting extension of A by gp {a}.
In the same way we extend B by adjoining an element b with relations,

(10) b* = 1, x\ = xxx3, x\ = xaxt, x\ = xa, x\ = xt, a" = a.

As before C = gp {B, b} is of order 58 and is a splitting extension of B by
gp {&}. Finally we extend C by adjoining an element c, with relations,
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(11) c5 = 1, x{ = xlt x\ = x2, xc
3 = x3, x\ = xx, a" = ax?, be = bx*1.

It can be checked that G = gp {C, c} is of order 57 and is a splitting ex-
tension of C by gp {c}.

G is a metabe.ian group and can be regarded as generated by the
elements a, b and c with the following commutator relations:

[c, a] = xlt [c, b] = x2, [a, b] = 1,

(12) [c,a,a] = x2, [c, a, ft] = x3, [c, a, c] = 1,

[c, ft, fl] = a;3, [c, ft, ft] = *4, [c, ft, c] = 1,

[c, a, a, a] = x3, [c, a, a, a, a] = xt, [c, a, ft, ft] = 1.

Any element g e G can be written as:

(13) g = aubvcaz where «, «, w = 0, 1, 2, 3, 4

and
z = ajjx^xi where *, /, A, I = 0, 1, 2, 3, 4.

In what follows we shall prove that P(G) ^ A(G).
From relations (12), it can be verified that in P(G), p(a)p(a) = p(b).

We prove the following,

LEMMA 1. In P(G),

p(acix{x\)p{fl) = p(bx[x{x\),

where i, j , k = 0, 1, 2, 3, 4.

PROOF. Let g e G. Then we have

= [aubvc"z,acixi
1x$,a] by (13)

= [auft"cwz, c V ^ , a] [a-ftV^^, a, a] by (11)
= [auft", cixi

xx\,a~\\cwz, ft] by (10) and (11)
= [aufte, c', a] [auft«, x{, a] [a" ft*, a^, a] [cwz, ft]
= [c'f a

ufte, a ] - 1 [x[, aubv, a]-1 {x\, a"ft", a]"1 \cKz, ft]
= [c*. a, a"ft"]-1 [a^, a, ^ft"]"1 [«|, a, a"ft"]-1 [cwz, ft] by 2.7
= [[c, a] ' , a - f t ' ] - ^ ^ , fl]', a - f t ' ] - 1 ^ , a]*, a»6']-»[c-z, ft]
= & , a-6']-i [^, a»6"]-i [a*, a-6']"1 [fz, ft] by (12)
= [ « J ^ f «•*"]-» [c-i. ft]
= [a-ft'c-2, »Js4aS][a"ft'c-a, ft] by (10) and (11)
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The proofs of the following lemmas are omitted since they are long
and computational:

LEMMA 2. p(abicTsd[xi)p(a}) = p(&»ajjaj**)

where *, /, ft = 0, 1, 2, 3, 4; and r = 3* (mod 5), s = (3j—4t) (mod 5),
* = (3ft—4/+2*) (mod 5).

LEMMA 3. p(a2fcr;ela;|)/j(a4) = p(6»*Ja4a^)

where *,;, ft = 0, 1, 2, 3, 4; and r = 4t (mod 5), s = (4/—t) (mod 5),
t = (4ft-/) (mod 5).

LEMMA 4. /j(«2&3cr:rjx£)p(a2) = p(&«

where i, j , ft = 0, 1, 2, 3, 4; and r, s, t are as in Lemma 2.
We now prove the following,

LEMMA 5. In A(G), X(b2) does not belong to Az.

PROOF. Let hx = aibic]ez1 and h2 = albmcnz2 where *, /, ft, l,m,n —
0, 1, 2, 3, 4 and zlt z2 e G'. Suppose that A(62) = AfA^A^j), then
[&*. f] = [*•. [ht, g]] for all g e G, i.e. fe, 62]-i = [g, A1; AJ since G' is
abelian. In particular we have in turn

[c, a 'ft 'c^!, a}bncnz2~\ = [c, 62]"1;
[c, ctV, albm] = [c, 6]~2 \c, b, &]"1 by (11);
[c, V, albm] [c, a*, albm] [c, a*, V, albm] = [c, b]~*[c, b, ft]-1;
[c, V, b*] [c, V, a1] [c, a', bm] [c, a*, a1] [c, a*, a\ bm] [c, a', V, a1]

=>[c.b]-*[c,b,b]-\

Collecting the powers of [c, a, a], [c, a, a, a] and [c, a, a, a, a] from the
above equation, we get

(14) il+2 s 0 (mod 5)

(15) 2im+2ji+il(i+l-2) = 0 (mod 5)

il(ll)(l2)
6 ^ 6

+ +

+ &Ll}l + i s o (mod 5).
2

From (14) we have, either il = 3 or */ = 8.
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When il = 3, let t = 1 and I = 3. Then from (15) we have, m + 3 / + 3 = 0
(mod 5); which gives m = —(3/+3) (mod 5). Also from (16) we have,
mj+j+3m+2 = 0 (mod 5); so that 3 / 2 +;+7 = 0 (mod 5). But this is
not solvable for any integral value of / (we arrive at similar conclusion
by choosing * = 3 and 1=1).

When il = 8, let i = 2 and / = 4. Then from (15) we have, W+2/+3 = 0
(mod 5); which gives m = —(2/+3) (mod 5). Also from (16) we have,
mj-\-4m-\-4q = 0 (mod 5); so that j*-\-j-\-\ = 0 (mod 5). But this is again
not solvable for any integral value of / (we arrive at similar conclusion
by choosing i = 4 and 1 = 2). This completes the proof of lemma 5.

LEMMA 6. In A(G), X{b2) is prime.

PROOF. By lemma 5, it is sufficient to show that X{b2) does not belong
to A3, At or As.

But, for 1 = 3 , 4 , 5 , k(b*) e At gives in turn X(b2)k(a)X{a) = 0;
p(b2)p(a)p(a) = 0; [c, b2, a, a\ = 1; [c, b, a, a] = 1, which gives the required
contradiction.

We can now complete the proof of Theorem 3. Let P denote the set
of all prime elements a € P{G) such that a2 ^=0, a8 = 0, xP3(G) = 0;
and let A be the corresponding set of all prime elements fieA(G) such
that p2 # 0, /33 = 0, pA3(G) = 0.

If a = p{aibickz) e P, then aP 3 = 0 implies in particular that
[c, a'tf^z, a, a, a] = 1 and [a, aibic1ez, a, a, a] = 1 which give respectively
[c, a, a, a, a]* = 1 and [c, a, a, a, a]* = 1 so that we have * = 0 (mod 5)
and k = 0 (mod 5). Thus a = p(b*z) which by lemmas 1, 2, 3 and 4 implies
that a is not prime. Hence P = 0, the empty set.

On the other hand, by lemma 6, A (ft2) is prime and X2(b2) ^ 0,
A.3(b2) = 0, X(b2)A3(G) = 0 so that A ^ 0. Since under any isomorphism
of P onto A, P maps onto A, we have that P(G) ^ A(G). This completes
the proof.

Finally for » > 5 w e prove the following theorem,

THEOREM 4. For each integer n greater than 5, there exists a nilpotent
group © of class n such that P(&) =

PROOF. Let G be the group as constructed, in theorem 3, and let H
be the dihedral group of order 2n+1, given as,

H = gp {d, eld*" =l = e2, ede = d'1}.

Let © = G x H be the direct product of G and H, then we proceed to show
that © is the required group.

Since H is of class n ( > 5), it follows that © is of class n. Every element
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of © can be uniquely written as tfW&ze^d1 where i, /, k = 0, 1, 2, 3, 4;
e = 0, 1; I = 1, 2, • • •, 2" and z e G'.

Let .P(©) denote the set of all prime elements a e P(&) such that
a2 7t 0, a8 = 0, aP3(@) = 0; and let A(&) be the corresponding set of all
prime elements /3 e A(<&) such that /3Z ̂  0, /3s = 0, /&!,(©) = 0.

If a = p{aibichzeedl) e P{Q&), by using ocP3(©) = 0 we get, as in theorem
3, that i' = 0, k = 0; so that a = pftzeW). If e = 1, then a3 = 0 gives in
particular 1 = \d, Vzed1, Vzed1, b'zed1] = [d, e, e, e] = d~^ which is a con-
tradiction (since n > 5). Thus e = 0. Further aP3(@) = 0 gives in particular
1 = [e, bhdx, e, e, e] =• [e, d, e, e, e]1 = [d, e, e, e, e]~l = d~2*1, which gives
that / = 0 or I = ±2"-*. Thus a = P(b>z) or a = p^zd^2"'1). But by
lemmas 1, 2, 3 and 4, oL^fipfi'z); therefore a = p^zd^"*). Further,
since p(i±a"~4) = p{d**n~%)p(e), if p(b'z) = pigijpdz) then it can be easily
seen that p(6^±2""') = P{g^^l)p{gze) and hence P(@) = 0.

On the other hand, from theorem 3, we have A(62) e A(G) and hence
X(b*) e A(&) so that A(®) ^ 0. Thus by the argument used in the theorem
3, P(&)
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