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Abstract. It is proved that if every cyclic right /^-module is torsionless and R is a left
CS-ring then R is semiperfect left continuous with soc(RR) essential in RR. As a consequence
every right cogenerator, left CS-ring R is shown to be right pseudo-Frobenius and left con-
tinuous, and an example is given to show that R need not be left selfinjective. It is also
proved that if R is a left CS-ring and every cyclic right /^-module embeds in a free module,
then R is quasi-Frobenius if and only if J(R) c Z(RR).

1. Introduction. Right CS-rings with certain cogenerating (annihilator) conditions were
considered by Gomez-Pardo and Guil Asensio in [10] and [11]. For example they show that if
R is a right CS-ring and every cyclic (finitely generated) right 7?-module embeds in a free
module then R is right artinian (quasi-Frobenius). They also prove that if R is a right
cogenerator right CS-ring then R is right pseudo-Frobenius.

In this paper we consider these same classes of rings but with the left CS-condition
rather than the right CS-condition. We show that if R is a left CS-ring and every cyclic right
/^-module is torsionless, then R is a semiperfect left continuous ring with SOC(RR) C.CSS

 RR.

We use this result to show that if R is a right cogenerator left CS-ring then R is a right
pseudo-Frobenius, left continuous ring. An example of Dischinger and Miiller [5] shows that
the ring R need not be left selfinjective. We also prove that if R is a left CS-ring and every
cyclic right /^-module embeds in a free module, then R is quasi-Frobenius if and only if
J(R) c Z(RR).

Throughout this paper every ring R is associative with unity and all modules are unitary.
If MR is a right /^-module we write J{M), Z{M), soc(M) and E(M) for the Jacobson radical,
the singular submodule, the socle and the injective hull of M, respectively. We denote the
direct sum of k copies of M by M^k\ and the notation K Qess M means that K is an essential
submodule of M.

We frequently refer to the following conditions on a module MR:

The C\ -condition (or the CS-condition): Every submodule of M is essential in a direct sum-
mand of M.

The C2-comlition: Every submodule of M that is isomorphic to a summand of M is itself a
summand of M.

The module MR is called continuous if M satisfies both the C r and C2-conditions. The ring R
is called right CS (right continuous) if RR is a CS-module (a continuous module).

The left (respectively right) annihilator of a subset I of a ring R is denoted 1{X)
(respectively r(X)). The ring R is called right Kasch if every simple right /^-module embeds in
R (equivalently if l(T) ^ 0 for every maximal right ideal T of R). A right /^-module M is
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called torsionless if M is embedded in a direct product of copies of R. We often use the fact
that, if T is a right ideal of R, then R/T is torsionless as a right /^-module if and only if
rl(T) = T. A ring R is called right cogenerator if every right /^-module is torsionless, and R is
called a right PF-ring (pseudo-Frobenius ring) if it is right cogenerator and right selfinjective
(equivalently if it is semiperfect, right selfinjective and soc(RR) CCM R R ) . In [15] R is called a
right GPF-ring (generalized pseudo-Frobenius ring) if R is semiperfect, right P-injective and
SOC(RR) c e " RR. Here R is called right P-injective (principally injective) if every /?-homo-
morphism from a principal right ideal of R into R is given by left multiplication.

2. Annihilators and the CS-condition. We begin with a basic fact about annihilators of
right ideals which will be used several times.

LEMMA 2.1. Let C be a class of right ideals of R with the property that T 6 C implies bT G C
for all b e R. The following conditions are equivalent:

(\)rl(T) = Tfor all T <= C.
(2) r[l(T) n Rb] = T+r(b)for all T e C and all b e R.

Proof. Clearly (2) => (1). Given (1), observe that T + r(b) c r[l(T) n Rb] always holds. If
x e r[l(T) n Rb], then l(bT) c l{bx) (indeed, if y e l{bT) then ybT = 0, so yb € l(T) D Rb,
whence ybx = 0). But then bx e rl(bx) c r/(6r) = bT by hypothesis. If Ax = bt for / e T,
then (x - 0 e r(6) so x € 71+ /•(£>), as required.

REMARK. The class C in Lemma 2.1 could be any of the following classes of right ideals:
all; finitely generated; principal; semisimple; minimal or zero; small; singular.

LEMMA 2.2. Suppose that rl(T) = T for all right ideals T of R. If every complement left
ideal of R is principal, then R is semiperfect.

Proof. Let T be a right ideal, and let L be a left ideal maximal with respect to
l(T) n L = 0. By hypothesis, L = Rb,b € R, so T+ r(b) -Rby Lemma 2.1. It suffices (see
[14], Theorem 11.1.5) to show that r(b) is minimal with respect to this property (that is, Thas
an additive complement in R). But if R = T + C with C c r(b), then L = Rb<z lr(b) c l(Q.
Since l(T) n l(Q = 0, the choice of L gives L = l(Q, so C = rl(Q = r{L) = r(b), as required.

LEMMA 2.3. Suppose that R is a right Kasch, left CS-ring. Then R is left continuous with
soc(RR) Qess

 RR.

Proof. Every right Kasch ring satisfies the left C2-condition (see [21], Lemma 1.15), so if
is left continuous. By the left CS-condition, let soc(RR) Qess Re for e2 = ee R, so that
1 - e € r[soc(RR)]. But r[soc(RR)] = J(R) because R is right Kasch, so 1 - e e J(R). This
means that e = 1, and so SOC(RR) c.ess

 RR.

PROPOSITION 2.4. Suppose that R is a left CS-ring for which every cyclic right R-module is
torsionless. Then R is a semiperfect, left continuous ring with soc(RR) C.ess

 RR. In particular, R
is left finite dimensional.
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Proof. We have rl(T) — T for every right ideal T because R/T is torsionless. In partic-
ular, R is right Kasch and so is left continuous with soc(RR) c.ess

 RR by Lemma 2.3. Fur-
thermore, the left CS-condition shows that every complement left ideal is a summand, and so
is principal. Thus R is semiperfect by Lemma 2.2, so write R = Re\ ® • • • ® Re,, where each e,
is a local idempotent. Then each Ret is a CS-module and so is uniform. Thus R is left finite
dimensional.

It was proved by Gomez Pardo and Guil Asensio [11] that, for a right cogenerator ring
R, right CS implies right selfinjective. In other words, R is a right PF-ring (that is R is right
cogenerator, right selfinjective) if and only if R is a right cogenerator, right CS-ring. This
theorem extends all the known results on the subject. On the other hand, it is well-known [7]
that a ring R is a left and right PF-ring if and only if R is a right cogenerator, left selfinjective
ring. So it is natural to ask whether the result of Gomez Pardo and Guil Asensio can be
obtained if we replace the right CS-condition by the left CS-condition. In fact we have

PROPOSITION 2.5. Let R be a right cogenerator ring.
(1) If R is left CS then R is left continuous and right selfinjective (and so is right PF).
(2) IfR®R is CS as a left R-module then R is left and right PF.

Proof. (1) R is a semiperfect, left continuous ring by Proposition 2.4. In particular R has
a finite number of isomorphism classes of simple right (and left) /^-modules. Since R is a
right cogenerator, R is right selfinjective by [7, Proposition 24.9], and hence is a right
PF-ring.

(2) R is left continuous by (1), so is left selfinjective by [21, Proposition 1.21]. Hence R is
a left PF-ring; it is right PF by (1).

REMARK. A right cogenerator, left CS-ring need not be left selfinjective. In fact, an example
of Dischinger and Miiller [5] shows the existence of a local, left continuous right PF-ring which is
not left selfinjective.

Before proceeding, we record a fact about embeddings which will be used later. The
proof is straightforward.

LEMMA 2.6. If a uniform module U can be embedded in M\ ® • • • ® Mn where each

Mj ^ 0, then U embeds in M^for some k = 1, • • • , « .

In order to strengthen Proposition 2.5, we need the following well known lemma. Recall
that a module M is called finitely embedded (finitely cogenerated) if M has a finitely gener-
ated essential socle.

LEMMA 2.7. Every finitely embedded torsionless right R-module M embeds in a free module
R" of finite rank n.

Proof. See for example [8, Corollary 3.1.B] or [1, Propositions 10.2 and 10.7].

THEOREM 2.8. The following conditions are equivalent for a left CS-ring R.
(1) R is a right PF-ring.
(2) J(R) c Z{RR) and every 2-generated right R-module is torsionless.
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Proof. (1)=> (2). Every right PF-ring is a right selfinjective, right cogenerator ring.
(2)=^(1). By Proposition 2.4, R is a semiperfect, left continuous ring with

soc(RR) Qess
 RR. The fact that rl(T) = J for all right ideals T implies that R is left P-injective,

so soc(RR) c SOC(RR) by Theorem 1.14 in [16]. Thus, using (2),

soc(RR) c soc(RR) C r[Z(RR)] c r[J(R)] = soc(RR)

and it follows that soc(RR) c.ess
 RR. As R is left P-injective, this shows that R is a left GPF-

ring [15]. By Theorem 2.3 in [15], soc(eR) is simple and essential in eR for every local idem-
potent e of R. Write

R = e\R@-- ®enR

where {e\, • • -,e,,} is a complete set of orthogonal local idempotents of R. It follows that
soc(RR) c.ess RR, so it remains to show that R is right selfinjective. We do this by showing
that e/R is injective for each i — 1, •••,«.

Let a e E(etR). Then etR + aR is a finitely embedded torsionless right 7?-module SO, by
Lemma 2.7, let r : e,R + aR -> ©f=1e,,7? be an embedding where each e,, e {e\, • • •, <?„}. Then
e-,R + aR embeds in e^R for somey by Lemma 2.6. So let o : (e,R + aR) ->• e^R be monic. If
af.etR then CT(e,7?) is a proper submodule of the local module etjR, so o-(e,7?) c J(ejjR)
c Z(RR) by (2), a contradiction. Hence a e e,\/? so e,7? = £(e,7?) as required.

Recall [1] that a right artinian ring R is QF if and only if soc(RR) = soc(RR) and soc(eR)
and .soc(7?e) are simple for every local idempotent e of R. A result of Gomez Pardo
and Guil Asensio [11] asserts that if R is a right CS-ring and every cyclic right R-
module embeds in a free module, then R is right artinian. A ring R is called right min-
injective if each i?-homomorphism from a simple right ideal to R is given left multi-
plication. See [16].

THEOREM 2.9. Let R be a left CS-ring such that every cyclic right R-module embeds in a
free module. The following conditions are equivalent.

(1) R is QF.
(2) J(R) c Z(RR).
(3)soc(RR)£soc(RR).
(4) R is right mininjective.

Proof. (1) => (2). This is clear since R is right selfinjective.
(2) =>(3). R is semiperfect by Proposition 2.4 and so r(J) = soc(RR). Hence (2) gives

soc(RR) c r[Z(RR)} cr(J) = soc(RR).
(3) =» (1). Observe first that soc(RR) cess

 RR by Proposition 2.4, so soc(RR) c soc(RR).
Hence wc(«/?) = soc(RR) by (3). Next /? is semiperfect by Proposition 2.4, so write

R = Re\ ® • • • 0 Ren

where [e\, • • •, en\ is a complete set of local orthogonal idempotents. Since R is a left CS-ring
with soc( RR) c.ess

 RR, each Re, is uniform and so soc{Re,) is simple (and essential in Re,) for
each /.
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On the other hand, R is left P-injective because rl{T) = T for all right ideals T of R, so
Ret ¥ Rej implies that soc(Rei) ^ soc(Rej) by Lemma 3.4 in [16]. It follows that R is left
Kasch. Hence

soc{eiR) = ejSoc(RR) = eisoc( RR) = e,r(/) 9i (Re t/Jed* ^ 0

where M* denotes the dual module. But R is right continuous by Theorem 1.7 in [21]
because r(T) = T for all right ideals T of R. Hence soc(ejR) is simple and essential in e,R for
each / because e-,R is uniform. Moreover, this shows that RR is finitely embedded. Thus every
principal right /^-module is finitely embedded (it is embedded in R^ for some ri) so R is right
artinian and hence QF.

(4) => (3). This follows from Theorem 1.14 in [16].
(3) => (4). This is clear because (3) => (1).

3. Johns rings. According to Menal and Faith [8] a ring R is called right Johns if R is a
right noetherian ring in which every right ideal is an annihilator. In [9] R is called strongly
right Johns if every n x n matrix ring Mn(R) is right Johns. Strongly right Johns rings were
characterized by Faith and Menal (see [9], Theorem 1.1) as the right noetherian rings that are
left FP-injective (that is /?-homomorphisms from a finitely generated submodule of a free left
/^-module Finto R can be extended to F). It is not known if strongly right Johns rings are QF.

Several properties of right Johns rings were highlighted in [8] and a number of necessary
and sufficient conditions for a strongly right Johns ring to be QF were collected in [9]. In the
next proposition we deduce several new properties of these rings.

PROPOSITION 3.1. (1) If R is a right Johns ring then soc(RR) = soc(RR) ce M
 RR.

(2) If R is strongly right Johns then the following properties hold.
(a) lr(Rk)=Rkfor all minimal left ideals Rk of R.
(b) R is right mininjective.
(c) Rk is a minimal left ideal of R if and only ifkR is a minimal right ideal of R.
(d) The dual of every simple right R-module is simple. In particular l(T) is simple for

every maximal right ideal T of R.

Proof (1). By Lemma 2.2 in [8], it suffices to show that l(J) c m
R R where we write

J = J(R). If Rb n l(J) = 0 for some b e R, then R = r[Rb n /(/)] = r(b) + J by Lemma 2.1.
Hence r(b) = R, so b = 0 as required.

(2a). R is left mininjective because it is left FP-injective. Hence, if Rk is a minimal left
ideal of R then kR is a minimal right ideal of R by [16, Theorem 1.14]. This means J c. r(k)
so lr(k) c l(J) = S by Lemma 2.2 in [8], where we write S — soc( RR) = soc(RR). Thus lr(k) is
a semisimple left ^-module containing Rk, so it suffices to show that Rk Cesslr(k). Suppose
that 0 ^ y € lr(k). Observe first that r(k) c r(y) ^ R, whence r(k) = r(y) and lr(k) = lr(y).
Now suppose to the contrary that RknRy — 0. Then R = r(Rk n Ry) = r(k) + r(y) because
R is left FP-injective (see [7], Proposition 23.21). This implies that 0 = l[r(k) + r(y)]
= lr(k) D lr(y) = lr(k), a contradiction.

(2b). We have rl(T) = T for all right ideals T; in particular this holds for minimal right
ideals. This with (2a) proves (2b) by [16, Corollary 2.6], because soc(RR) = soc(RR) (see [8],
Lemma 2.2).
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(2c). This follows from Theorem 1.14 in [16].
(2d). R is right mininjective by (2b) and it is right Kasch because rl(T) = T for all right

ideals T. Hence the dual of every simple right /^-module is simple by Proposition 2.2 in [16].
The last statement now follows because l(T) = (R/T)d.

It was shown by Faith and Menal [8] that a right Johns, left finite dimensional ring R is
right artinian. In fact we can say more: By Lemma 6 in [4] and Lemma 2.2 in [8], R is also left
artinian. Moreover, by Theorem 1.7 in [21], R is right continuous. On the other hand, the
example provided by Faith and Menal in [8] shows that right Johns rings need not be left or
right continuous. Indeed, Example 3.8 below provides a left and right artinian, left Johns,
left continuous ring which is not right continuous. However, adding a left CS-condition to a
right Johns ring forces it to be quasi-Frobenius.

THEOREM 3.2. The following conditions on a ring R are equivalent.

(1) R is quasi-Frobenius.
(2) R is a right Johns, left CS-ring.

Proof. (1) => (2) is well known. Assume (2); we show that soc(RR) = soc(RR) and that
soc(Re) and soc(eR) are both simple for all primitive idempotents e e R. Since R is semi-
perfect by Lemma 2.2, let R = Re\ © • • • © Ren where {ei, • • •, e,,} is a complete set of pri-
mitive orthogonal idempotents of R. Since R is a left CS-ring, each Re, is uniform. Hence R
is left finite dimensional so, by the remark preceding this theorem, R is left and right artinian.
Moreover, Lemma 2.2 in [8] shows that soc( RR) = soc(RR).

Since R is a left CS-ring, soc(Re) is simple and essential in Re for every local idempotent
e of R. If 0^kesoc{eR), then l(k) 2 R(\ - e) + J, a maximal left ideal of R. Thus

R(l -e) + J, so

kR = rl{k) = eRD r(J) -eRD soc(RR) = soc(eR)

Thus soc(eR) is simple, completing the proof.

The right Johns rings are the right noetherian rings in which every right ideal is an
annihilator. We now consider the artinian case.

Recall that a ring R is called a right CEP-ring if every cyclic right i?-module is essentially
embedded in a projective module. These rings are right artinian [11] and right continuous
[21]. If M and N are right /^-modules we say (see [13]) that M is weakly N-injective if, for
every monomorphism o : N/K -» E(M), there exists XR C E(M) such that X = M and
o(N/K) c X. It was shown by Jain and Lopez-Permouth [13] that R is a semiperfect right
CEP-ring if and only if R is right artinian and every indecomposable projective right R-
module is weakly 7?-injective.

PROPOSITION 3.3. The following conditions are equivalent for a ring R.
(1) R is right artinian and rl(T) = T for all right ideals T of R.
(2) R is right artinian and rl(T) — Tfor all small right ideals T of R.
(3) R is right continuous and every cyclic right R-module embeds in a free module.
(4) R is right artinian and every indecomposable projective right R-module is weakly

R-injective.
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(5) R is a right CEP-ring.
(6) R is right perfect and every cyclic right R-module embeds in a free module.
(7) R is semiperfect with essential left socle and every cyclic right R-module embeds in a

free module.

Proof. (1) => (2). This is clear.
(2) => (3). By Lemma 1.5 in [21], we have lr(T) = J for all right ideals 7 of R. Hence R is

right continuous by Theorem 1.7 in [21]. If M = R/T is a cyclic right 7?-module then M is
torsionless because rl{T) — T, and M is finitely embedded because R is right artinian. Hence
M embeds in a free module by Lemma 2.7.

(3) => (4). R is right artinian by Corollary 2.9 in [11], so let {e\, • • •,en) be a basic set of
local idempotents. If 1 < / ' < « , we must show that P = e,R is weakly /?-injective. Hence let T
be a right ideal of R, and let a : R/T^- E(P) be an embedding. Since R is right CS, soc(P) is
simple and essential in P, and so P is uniform. It follows that R/T is uniform. On the other
hand, there is (by hypothesis) an embedding R/T ^ ©£L, euR where \ <U<n for each /.
By Lemma 2.6 there is an embedding 4> '• R/T-*- e,kR for some t^ e (1, •••,/?}, and we have

soc(e,kR) = soc(<t>(R/T)) S soc(R/T) S soc(E(P)) = soc(P)

It follows from Theorem 3.16 in [16] that e,kR = P. Now consider the following diagram.

0 —• R/T -U e,kR

E(P)

There exists a : e,kR -> E(P) such that ao(p = a. Then a is an embedding because <p is an
essential embedding, and a(R/T) = a{4>{R/T)) c a(e,kR) c £(/>). So if we take X = a(e,kR),
we have a(R/T) c A' C £(/>) and A' = a{e,kR) 2* e,kR ^ P. This proves that P is weakly R-
injective.

(4) => (5). This follows from Theorem 5.2 in [13].
(5) =» (6). This is because right CEP-rings are right artinian by [11].
(6) => (7). This is clear.
(7) => (1). We have rl(T) = T for all right ideals T of R because R/T embeds in a free

module. Hence R is left P-injective so, by Theorem 2.3 in [15], R has a finitely generated
essential right socle. Since every cyclic right /?-module is embedded in a free module, R is
right artinian. This proves (1).

Strengthening condition (3) in Proposition 3.3 leads to a new characterization of quasi-
Frobenius rings.

THEOREM 3.4. The following conditions are equivalent for a ring R.
(1) R is quasi-Frobenius.
(2) R is right CS and every 2-generated right R-module embeds in a free module.
(3) Every 2-generated right R-module is essentially embedded in a projective module.
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(4) R is right perfect and every 2-generated right R-module is embedded in a free module.
(5) R is semiperfect with essential left socle and every 2-generated right R-module is

embedded in a free module.

Proof. It is well known that (1) implies each of the other statements, (4) =>• (5) is clear,
and (3) => (2) by Proposition 1.10 in [21].

(2) => (5). By [11], R is right artinian, and hence semiperfect with essential left socle.
(5) => (1). R is right artinian and right continuous by Proposition 3.3. In particular, R is

semiregular with J = Z(RR) by Utumi [20]. Hence R is QF by Proposition 1.24 in [21].

Statement (5) in Theorem 3.4 extends a result of Rutter [19] in two directions: it replaces
"right perfect" by "semiperfect with essential left socle", and it replaces "every finitely gen-
erated right 7?-module is embedded in a free module" by "every 2-generated right /?-module
is embedded in a free module".

If we replace right artinian by left artinian in Proposition 3.3, we get the following result:

PROPOSITION 3.5. Suppose R is left artinian and rl(T) = T for all finitely generated, small
right ideals T of R. Then R is a right artinian, right continuous ring in which every right ideal is
an annihilator. In particular, every cyclic right R-module embeds in a free module.

Proof Let K be any small right ideal of R. Since R is left artinian, l(K) = l[k\, • • •, k,,}
for a finite subset {fc,, • • •, kn) c K. Thus rl(K) = rl{kx ,•••, k,,} = £ X i k'R £ K> a n d s o

rl(K) = K. Hence rl(T) - T for all right ideals of R by Lemma 1.5 in [21], and R is right
continuous by Theorem 1.7 in [21]. Thus R is right noetherian because it has ACC on right
annihilators (it has DCC on left annihilators). Hence R is right artinian by Hopkin's theo-
rem. Finally, the last assertion follows because rl(T) = Tfor all right ideals of R.

It is well known that if R is a left selfinjective ring then R is left continuous and satisfies
the following two conditions:

(Al) rl(T) = T for all finitely generated right ideal T of R; and
(A2) r(ADB) = r(A) + r(B) for all left ideals A and B of R.

In [21] several classes of non-injective semiperfect rings are given with annihilator conditions
which guarantee the continuity of the ring. More precisely the following result was proved
(see [21], Lemma 1.3 and Theorem 1.7).

essLEMMA 3.6. (1) Suppose R is a semiperfect ring in which SOC(RR) Qess
 RR, SOC(RR) C

RR and lr(K) = Kfor all minimal left ideals K of R. If L is a left ideal of R with L c e s s lr(L),
then L <zess Rffor somef2 = / e J?.

(2) Suppose R is a semiperfect ring in which SOC(RR) C
 ess RR and lr(K) = Kfor all small

left ideals K of R. Then R is left continuous and lr{T) = Tfor all left ideals T of R.

It is natural to ask whether the annihilator condition in (2) of Lemma 3.6 can be
replaced with condition (A2) above. Note that if R satisfies (A2) then L c e s s lr(L) for all left
ideals L of R. [Indeed, if x e lr(L) - L and RxDL = 0, then r{L)c.r{x) and
r(Rx fl L) = r(x) + r(L) = R, so x = 0, a contradiction.] In particular every complement
(closed) left ideal of R is an annihilator.
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The next proposition is now an immediate consequence of the above remarks, Lemma
3.6 and Lemmas 1.1 and 1.2 in [21].

PROPOSITION 3.7. Suppose that R is a semiperfect ring in which soc( RR) c e s s
 RR,

SOC(RR) ^CSSRR, and lr(K) = Kfor all minimal left ideals K of R. Then R is left continuous if
either of the following conditions hold:

(1) Every complement left ideal of R is an annihilator.
(2) r(AC\B) = r(A) + r (B) for all left ideals A and B of R.

EXAMPLE 3.8. Let AT be a field and a an isomorphism of K onto a subfield L where
[K : L] = n > 1. Let K[X; a] denote the ring of twisted left polynomials over K. Thus K[X; a]
is the set of all formal polynomials in the indeterminate A'with coefficients from A" written on
the left and with multiplication defined by Xa = a{a)X for all a e K. Let R = K[X; a]/(X2)
and write x for the coset determined by X. It can easily be verified that the only left ideals of
R are 0, J(R) = Rx = Kx and R. Thus R is a two-sided artinian left continuous ring which is
not right continuous. The ring R satisfies the following annihilator conditions: lr(A) = A and
r(A fl B) = r{A) + r{B) for all left ideals A and B of R. However R is not right continuous
and hence does not satisfy the annihilator condition l(TH S) = l(T) + l(S) for all right ideals
T and 5 of R.
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NOTE ADDED IN PROOF. Proposition 3.1 can be used to prove the following theorem
which settles an open question of Faith and Menal.

THEOREM. Every strongly right Johns ring is quasi-Frobenius.

Proof. Let R be a strongly right Johns ring. Then Sr is an essential right ideal of R and
/(Sr) = / b y Faith and Menal [8, Lemma 2.2], Moreover it suffices to show that R is semilocal
by [9, Corollary 1.3]. Since R is right noetherian, we have Sr = k\ R ® ... © k,,R, where each
kjR is simple. Hence

J = t(Sr) = l{k\R + ®+ k,,R) = rr?=1/(*,).

The result now follows from Proposition 3.1.
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