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Abstract

We present two implementations of Oppen’s pretty-printing algorithm in Haskell that meet

the efficiency of Oppen’s imperative solution but have a simpler and a clear structure. We start

with an implementation that uses lazy evaluation to simulate two co-operating processes. Then

we present an implementation that uses higher-order functions for delimited continuations to

simulate co-routines with explicit scheduling.

1 Introduction

Over 25 years ago, Derek Oppen (1980) published an imperative pretty-printer

that formats a document nicely within a given width. The algorithm is efficient: it

takes time linear in the size of the input and is independent of the given width.

Furthermore, the algorithm is optimally bounded, that is, for a partial input it already

produces that part of the output for which no further inspection of the input is

necessary. Oppen’s work inspired numerous pretty-printing libraries, in particular

several Haskell libraries (Hughes, 1995; Peyton Jones, 1997; Wadler, 2003); all

of these, however, are less efficient than Oppen’s libraries. Then Chitil (2001, 2005)

presented a purely functional Haskell implementation that has all the nice properties

of Oppen’s original algorithm. That implementation, however, uses an intricate lazy

coupling of two double-ended queues; it is quite complex and requires a special,

modified implementation of double-ended queues.

The key problem is that information about what is to be printed and information

about how it is to be printed does not become available at the same time. In this pearl

we present more straightforward implementations. Section 3.2 describes a solution

that makes sure that the information about how to format groups of text is passed

to the place where we know what to format; Section 3.3 describes a solution that

builds functions that know what to print and calls these functions once it is known

how to format. Our first solution (Swierstra, 2004) relies heavily on lazy evaluation,

whereas in the last one (Chitil, 2006) the scheduling of the necessary computation

has been made completely explicit.
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2 S. D. Swierstra and O. Chitil

2 Problem description

2.1 The basic combinators

We will present the different versions—each of which can be seen as a deforested

interpreter of a data type describing the structure to be printed—of our algorithm

as instances of the following class, which closely follows the interface introduced by

Wadler (2003):

type Indent = Int -- zero or positive

type Width = Int -- positive

type Layout = String

class Doc d where

text :: String → d

line :: d

group :: d → d

(<>) :: d → d → d

nest :: Indent → d → d

pretty :: Width → d → Layout

nil :: d

nil = text ""

prettyIO :: Doc d ⇒ Width → d → IO ()

prettyIO w d = putStrLn (pretty w d )

Each instance of the class Doc describes a way to format documents within a given

line width (to be referred to as w ). The function text produces a primitive document

containing just the String argument, line indicates a potential line break, and the

operator <> concatenates two documents. The function nest is used to control

indentation; it increments the indentation of the document in its second argument

by its first argument. Finally, the function pretty renders a document of type d given

a width of type Width , and prettyIO finally prints it.

How a document is to be formatted is governed by the group and line combinators.

All line markers directly contained in a group are to be either formatted as a space

or as a newline with indentation. In the first case, we say that the group is formatted

horizontally, otherwise vertically. All groups contained in a horizontally formatted

group are to be formatted horizontally too. All “top level” line markers are to be

printed as newlines, i.e., the implicit top group is to be formatted vertically.

The problem to be solved is to find the “best” layout from the set of layouts

described by a document. We define what is “best” in Section 2.2. Some might

consider the best layout to be the one that uses the least number of lines. However,

such an optimality criterion does not admit any bounded implementation; the end

of a document can influence a layout decision at the very beginning (Hughes, 1995).

An efficient algorithm computing such a shortest layout has been given by Swierstra

et al. (1999). Here, we will consider greedy algorithms.

Example. We can define a simple layout for lists of integers
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toDoc :: Doc d ⇒ [Int ] → d

toDoc = (text "["<>)

◦ foldr (<>) (text "]")

◦ intersperse (group (text ","<> line))

◦ map (text ◦ show )
which gives the following result:

> prettyIO 60 (toDoc [1..40])

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,

18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,

33, 34, 35, 36, 37, 38, 39, 40]

Because each line marker is contained in a separate group, it is formatted

horizontally if and only if the text up to the next line marker still fits on the current

line, and vertically otherwise. (The combination of group and line corresponds to

the “inconsistent blank” of Section 5 in Oppen, 1980.) Further examples can be

found in Wadler (2003).

2.2 Straightforward implementations

First, we present a specification of our algorithm in a number of steps. We start

with a basic specification. This specification is then refined to make it comply

with Oppen’s original specification. Next, we introduce extra efficiency requirements,

which make the problem harder. The solutions to these new problems form the core

content of this paper.

2.2.1 Basic specification

We can produce our layout by a simple pre-order traversal of the document tree,

i.e., the tree representing the group structure. During this traversal we keep track

of space remaining on the current output line. At the end of each group we check

whether it fits in the space available for this group.

To determine whether a group fits in the remaining space on a line, we compute

its total length, i.e., the sum of all the lengths sk of the text elements and the number

of line markers contained in the group, as if the whole document has been formatted

horizontally. Because we want to compute sizes sl for many segments, we maintain

the accumulated length pl for which the following invariant holds:
∑

i�k<j

sk = pj − pi

Since the accumulated lengths of preceding elements correspond to the position of

an element if the complete document were laid out horizontally we will refer to such

values as positions:

type Position = Int

We start by defining an instance Spec of Doc, which models a document as a

function of four parameters and three results:
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4 S. D. Swierstra and O. Chitil

type Remaining = Int

type Horizontal = Bool

type Spec = (Indent ,Width) → Horizontal

→ Position → Remaining

→ (Position , Remaining ,Layout)

To reduce the number of arguments in the algorithms given later, we have tupled the

indentation of the document with the global Width . The argument of type Position

is the position at the beginning of the represented document, and the result Position

is the position at the end. The Horizontal argument indicates whether the embracing

group is to be formatted horizontally or vertically. The Remaining values keep track

of the free space on the “current output line”: the argument tells us how much is

available at the beginning and the result tells how much is still left at the end of the

“current document.” Our basic specification now reads as follows:

instance Doc Spec where

text t iw h p r = (p + l , r − l , t) where l = length t

line iw h p r = (p + 1, rl , ll ) where (rl , ll ) = newLine iw h r

(dl <> dr ) iw h p r = (pr , rr , ll ++ lr )

where (pl , rl , ll ) = dl iw h p r

(pr , rr , lr ) = dr iw h pl rl

group d iw h p r = let v@(pd , , ) = d iw (pd − p � r) p r in v

nest j d (i ,w ) = d (i + j ,w )

pretty w d = let ( , , l ) = d (0,w ) False 0 w in l

newLine (i ,w ) True r = (r − 1, [’ ’] )

newLine (i ,w ) False r = (w − i , ’\n’ : replicate i ’ ’)

This algorithm depends on lazy evaluation, because the definition of group uses a

cyclic binding which both defines the endpoint pd of group and uses it. This design

pattern in which part of the result of a call is used to compute one of its arguments

is also known from the famous Repmin problem (Bird, 1984). If the difference

between the begin- and end-position of a group does not exceed the free space at

the beginning of the group (pd − p � r), we can format the group horizontally,

otherwise we have to resort to vertical formatting; we say that in such a case the

group extends beyond its maximal endpoint p + r . In the definition of pretty the

whole document is applied to False, expressing that line markers appearing outside

any group are always to be formatted as line breaks with an initial indentation of 0.

One might be tempted to combine the definition of newline with that of line,

writing

line p True r = (p + 1, r − 1, [’ ’] )

line (i ,w ) p False r = (p + 1,w − i , ’\n’ : replicate i ’ ’)

This however fails. To choose between the two alternatives we need the value of the

Horizontal argument; but this argument usually depends on an expression pd −p � r ,

since this line may be a part of the group, so it depends on the final position pd

of this group, and this is a value which is returned by the call and thus cannot be

used in deciding which alternative to take. Despite the fact that both alternatives
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contribute the same value to the position (p + 1), the last formulation of line forces

us to make a choice between the two alternatives too early.

2.2.2 Normalizing documents

Although probably not immediately obvious the given specification may produce
lines longer than w :

> prettyIO 6 (group (text "Hi" <> line <> text "you") <> text "!!!"))

Hi you!!!

whereas we would prefer:

Hi

you!!!

The cause of this behavior is that a group that still fits on a line may be followed

by further text without a separating line marker, and thus will end up on the current

line even if it extends beyond the end of the line; unfortunately the fact that a group

fits does not imply that all its trailing text elements will also fit. In our example,

formatting the preceding group vertically would have avoided lines becoming longer

than w . A simple preprocessing step deals with this problem, by moving all text

elements to the group to which their nearest preceding line marker belongs if it

exists. There are two ways to look at our documents: either as sequences of text

elements separated by line markers, or as tree structures built by group and nest

operators, where each node contains additional text elements and line markers.

So before formatting we first apply a document transformation that moves all

text elements such that no consecutive sequence of them extends beyond a group.

The transformation is based on the following laws:

group (text t <> d ) = text t <> group d

group d <> text t = group (d <> text t)

nest j (text t <> d ) = text t <> nest j d

nest j d <> text t = nest j (d <> text t)

(d1 <> d2 ) <> d3 = d1 <> (d2 <> d3 )

We introduce Norm d as a second instance of Doc. A Norm d is a function returning

two elements of type d : one containing the leading sequence of text elements to be

included in a preceding group, and the other the rest of the document. Furthermore,

each Norm d takes an argument, containing the leading text of its successor:

type Norm d = d → (d , d )

In this way we have introduced a backward traveling accumulating document,

containing a sequence of text elements (passed to it predecessor in the argument tt ,

trailing text). At each line marker we insert these accumulated text elements. As a

result, in a normalized document each group starts with a line marker if it contains

elements at all.

instance Doc d ⇒ Doc (Norm d ) where

text t tt = (text t <> tt , nil )

line tt = (nil , line <> tt)
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(dl <> dr ) tt = let (td l , sd l ) = dl td r

(td r , sdr ) = dr tt

in (td l , sd l <> sdr )

group d tt = mapsnd group (d tt)

nest j d tt = mapsnd (nest j ) (d tt)

pretty w d = let (td , sd ) = d nil in pretty w (td <> sd )

nil tt = (tt , nil )

mapsnd f (x , y) = (x , f y)

2.3 Extra requirements

2.3.1 Optimally bounded

If the outer element of the document is a group, our straightforward algorithm Spec

traverses the complete document tree before emitting any result; this is definitely

undesirable for large documents. So we introduce some extra requirements.
Our straightforward algorithm Spec is fully strict, as the following computation

demonstrates:

> prettyIO 4 (group (text "Hi" <> line <> text "you" <> undefined) :: Spec)

Program error: {undefined}

However, after having seen the strings "Hi" and "you" we can already conclude
that together they do not fit in a line of width four. So output can be produced
without inspecting any further elements, resulting in:

> prettyIO 4 (group (text "Hi" <> line <> text "you" <> undefined) :: ??? )

Hi

you

Program error: {undefined}

Based on a prefix of the document of size w we can always decide how to continue

formatting, because any group wider than the width-limit has to be formatted

vertically. We say that pretty is bounded if look-ahead into the input is limited by

the width w . We require our final program to be even optimally bounded, i.e., any part

of the output that can be produced without touching a ⊥ element in the input has

to be produced.1 Our Spec and Norm Spec instances do not fulfill the boundedness

requirements, because to determine the total horizontal size of a group it requires

all group elements to be defined.

2.3.2 Complexity

Of course, we want our algorithms to be in the class O(n), where n is the number of

elements in the input. However, with increased line width the length of the output,

when seen as a single long string, may increase, because we will generally have deeper

nestings and thus we may generate more white space. We could avoid this problem

1 To be precise, we do not consider partial strings. The argument of text is considered as an atomic
value that is added to the layout in one step.
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by representing a layout as a list of indentation–line pairs, [(Indent , String)], as

in Hughes (1995). However, for simplicity and practical applicability we produce a

single string and just consider generation of a sequence of white spaces as a constant

time operation. Given this caveat our specification is linear and we have to ensure

that this linearity remains fulfilled once we find optimally bounded solutions.

One may try to transform Spec into an optimally bounded version by having a

document return a (lazily constructed) list (ls :: [Int ]) containing the sizes of the

text elements and line markers in a group in which the lengths of earlier elements

come first, and by replacing the test pd − p � r by an incremental test ls ‘pruning ‘ r ,

which fails as soon as the accumulated sizes exceed the available free space:

pruning :: [Int ] → Remaining → Bool

(s : ss) ‘pruning ‘ r = (s � r) ∧ ss ‘pruning ‘ (r − s)

[ ] ‘pruning ‘ r = True

Although this modification makes the algorithm optimally bounded, its complexity

now suddenly depends on w , because the pruning is done for each group individually:

because the result ls of a document in a group will be traversed by pruning when

deciding whether this group fits, and is returned as part of the ls of the embracing

groups, pruning with nested groups will traverse the same (parts of) lists. Especially

with deeply nested groups this becomes a problem. For a document of the shape

group (group (group (....

the lists of the inner groups will be prefixes of their embracing groups. The pruning

process will become a linear search for the first one that passes the pruning test.

Thus the complexity of our solution becomes dependent on w .

At this point we may point out a subtlety. One might be inclined to think that if

the function pruning , as part of the pruning process of the father group, consumes

all the elements contributed by a subgroup without failing that subgroup will fit

irrespective of the decisions taken for its ancestors. Unfortunately, this is not the

case as the following example demonstrates:

prettyIO 15

(group ( text "this"

<> nest 9 (line <> group (text "takes"<> line <> text "four"))

<> line <> text "lines"))

which results in:

this

takes

four

lines

Because the outer group does not fit, the inner group is suddenly indented by nine

spaces. As a consequence the inner group does not fit either! So in order to take a

decision for an inner group, first we always have to decide whether its embracing

group fits. Only then we will precisely know how much free space is still left on the

line for this inner group.
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Fig. 1. The situation while pruning.

3 Solutions

In this section, we will present a sequence of solutions to the pretty-printing problem.

Before going into the actual solutions we will explain why we will use double-ended

queues in all our solutions.

3.1 Double-ended queues

We have seen how the idea of pruning avoids always scanning a complete group

before deciding whether it fits or not. The problem is how to share the scanning of

a group with the enclosed groups and thus to avoid the observed recomputations,

because it is this aspect that makes the pruning solution depend on the width w .

The fundamental idea, due to Oppen (1980), is to have two processes traverse the

document: a scanning process determines for all groups whether they fit or not and a

printing process uses that information to produce the pretty layout. Pruning ensures

that the scanning process never goes far ahead of the printing process.

To explain more precisely what the two processes do, we refer to Figure 1. In this

figure, we have sketched the group structure (without the line and text elements) of

some example input. We distinguish four kinds of nodes: decided, pending, traversed,

and untouched. The following are the kinds of nodes change while both processes

traverse the tree in prefix order:
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1. Nodes that form part of a group which we know how to format. We indicate

these as decided nodes. A decided group can be traversed by the printing

process up to the first pending or traversed subnode.

2. Nodes that have been traversed by the scanning process but are not decided

yet; they come in two kinds:

a. Nodes in groups that have been completely traversed by the scanning

process.

b. Nodes corresponding to the root of a subgroup we have entered, but not

yet left. We call these nodes pending.

3. Nodes that have not been inspected yet (untouched).

In this figure we have indicated the path consisting of pending group nodes that

leads from the top pending group to the point up to where the scanning process has

proceeded. When traversing the tree, this path will grow and shrink as a result of

pruning, and entering and leaving groups. We will refer to these nodes as the dequeue,

as it is a double-ended queue that can grow and shrink at the end and shrink at

the top. Each node of the second category corresponds to an open question: for the

pending node we expect an answer from the scanning process, and for the traversed

node we can decide once we know the decision for its father, so we can compute

how much space is available for the group. In the latter case the situation is similar

to the situation as handled in our original specification; traversed implies that the

total horizontal space needed for the group is known.

The first problem we address is what extra information we have to maintain while

investigating whether the top pending group fits, such that when we discover—when

pruning—that it does not fit, we can continue with the investigation of the next

pending group without reinspecting any values.

We focus on the path with nodes labeled pending in the figure. When scanning

following things may happen:

• We may conclude that the top pending group does not fit. Then we can take

the decision for all its traversed children in the same way as we did in Spec:

we know their horizontal sizes. So we can print all the elements up to the

group node that is next in the dequeue, without any further scanning. This

next group becomes the new top pending group.

• We may have traversed the innermost group, i.e., the group corresponding

to the last element of the dequeue; in this case we can mark the group as

traversed and remove it from the end of the dequeue.

• We encounter a new group, in which we extend the dequeue at the end with

an extra element.

We introduce the following pseudo-data-type for double-ended queues.2 Okasaki’s

banker’s dequeue implementation (Okasaki, 1998) supports all operations of O(1)

amortized time.

2 We will use the � only for matching, but never as a constructor.
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data Dequeue e = 〈〉 -- the empty dequeue

| e � Dequeue e -- prepend an element

| Dequeue e � e -- append an element

When we introduced the function pruning , the values to be pruned were collected

and moved to the start of the group; instead of this we build solutions in which

we carry along a dequeue containing the current state of the scanning process, and

we update this dequeue based on the result of pruning the values we encounter.

We perform a little bit of the pruning work for the top pending node whenever we

encounter a new element that takes up space.

We will now present a sequence of solutions, with increasing efficiency, but also

an increasing intricacy.

3.2 Bringing the arguments to the printing functions

Let us suppose for a moment that the scanning process manages to compute the

Horizontal (i.e., the Boolean indicating how to format a group) information efficiently

by carrying the dequeue along when traversing the tree. Then this creates a new

problem: the Horizontal values that become available while scanning have to be

made available to the printing process.

Our first step is to extend the algorithm with the computation of the complete list

of all needed Horizontal values (i.e., the Boolean values for all the groups), listed in

prefix order. In the function pretty at the root of the overall computation we pass

this list back as an argument to the root document, so it can be consumed in the

printing process; this design pattern was also used in the group function in the Spec

instance. The tricky part however is here that we also have an information flow in

the other direction:

1. The printing process computes the layout. It consumes the list of Horizontal

values and additionally returns Remaining values.

2. The pruning process computes the positions p, reads the Remaining values,

and thus produces the list of Horizontal values.

We use lazy evaluation to schedule the two parallel processes, each producing output

for the other.

Looking at the figure we see that for each group we have entered but not yet left

the node we have in the dequeue. In this node we store the relevant information for

each pending group: its maximal endpoint p + r :: Position and its (lazily evaluated)

Horizontal values for its traversed descendant groups.

type Horizontals = [Horizontal ]

type P = Horizontals -- Produced by the pruning process

type C = Horizontals -- Consumed by the printing process

type Dq = DeQueue (Position ,Horizontals)

We extend our algorithm such that it carries along two extra threaded variables:

a Dq on behalf of the pruning process and the list of unconsumed Horizontals on
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behalf of the printing process. Furthermore, we return the global list of Horizontals

to be used in pretty as part of the following result:

type State = (Position ,Dq ,C ,Remaining)

type Lazy = (Indent ,Width) → State → (State,Layout ,P )

We define three functions that update the Dq structure, two of which may

additionally return newly found Horizontal information:

enter :: Position → Dq → Dq

leave :: Position → Dq → (Dq ,P )

prune :: Position → Dq → (Dq ,P )

When descending into a new group we update the Dq by appending the maximal

endpoint of this group, while at the same time recording that we have no information

on its traversed children yet (the empty list [ ]):

enter mep q = q � (mep, [ ])

The function leave updates the Dq and possibly returns newly found P . The

function distinguishes three cases, based on the length of the dequeue:

0: We have already discovered that the group we are leaving does not fit, and so

we learn nothing new.

leave p 〈〉 = ( 〈〉, [ ])

1: We are leaving the current group. Since this node was not pruned away yet, we

conclude that the group fits. We also incorporate the Horizontals computed for

its children into the list of answers, so they show up in their correct position.

leave p ( 〈〉 � (mep, hs)) = ( 〈〉,True : hs)

>1: The last pending group changes status to traversed. We incorporate this

information, together with the information about its children into the node

of the group one level up, to be included later in the list of answers we are

constructing:

leave p (pp � (mep2 , hs2 ) � (mep1 , hs1 )) =

((pp � (mep2 , hs2 ++ [p � mep1 ] ++ hs1 ), [ ])

The third function, prune, is called when we visit a text element or a line marker,

because these are the only points where Layout is produced. The function prune

compares the current position p with the maximal endpoint of the top pending

group (if present). If this node still fits on the line, then we do nothing and return

the dequeue q unmodified; if we have reached a point where we can conclude that

the top pending group does not fit anymore once we include the next node, then we

insert False in the list of Horizontals we are producing, together with the information

of the traversed groups (together in C ); of course we have to continue pruning for

the next pending group, which has become the topmost:

prune p 〈〉 = ( 〈〉, [ ])

prune p q@((mep, hs) � qq)

| p � mep = (q , [ ])
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| True = let (q ′, hs new ) = prune p qq

in (q ′,False : hs ++ hs new )

Using these auxiliary functions we can now formulate a solution which fulfills all

requirements. In the case of a group we remember the current head of the list of

horizontal information, which tells us how the parent group is to be formatted, and

put this back at the head of the tail of the returned value, from which the children

have all taken away their Horizontal elements. The tail removes the Horizontal value

for the current group, which has served its purpose and is thus no longer needed.3

instance Doc Lazy where

text t iw (p, dq , hs , r)

= ((p + l , dq ′, hs , r − l ), t , as) where l = length t

(dq ′, as) = prune (p + l ) dq

line iw (p, dq , hs , r)

= ((p + 1, dq ′, hs , r ′), l ′, as) where (dq ′, as) = prune (p + 1) dq

(r ′, l ′) = newLine iw (head hs) r

(dl <> dr ) iw state

= (stater , ll ++ lr , asl ++ asr ) where (statel , ll , asl ) = dl iw state

(stater , lr , asr ) = dr iw statel

group d iw (p, dq , ˜(h : hs), r)

= ((pe, dq ′, h : tail hsd , rd ), ld , asd ++ as ′)

where (˜(pe, dqd , hsd , rd ), ld , asd ) = d iw (p, (enter (p + r) dq), hs , r)

(dq ′, as ′) = leave pe dqd

nest j d (i ,w ) = d (i + j ,w )

pretty w d = let ( , l , as) = d (0,w ) (0, 〈〉, (False : as),w )

in l

For the function group lazily accessing head hs and tail hs is essential. When

encountering a new group we may still be scanning for one of its remote ancestors,

and thus the constructor (:) of hs cannot be matched upon, because this part of

the list has not been produced yet. One might find this code quite elaborate. It

was originally written using an attribute grammar, in which all the different aspects

are described separately. The attribute grammar-based definition can be found in a

technical report by Swierstra (2004).

We implemented two co-operating sequential processes that are coupled through

lazy evaluation. The P list that is produced in the functions leave and prune

is passed as an argument to the function pretty and is being consumed in the

actual construction of the Layout and thus serves as a synchronizing buffer. The

communication from the printing process to the computation of the P list is a bit

more subtle: when storing the maximal endpoints p + r in the dequeue, the value

of r will in general not be known yet; only when we have concluded whether the

parent groups fit and have produced the output up to the beginning of the group,

this value gets known. Lazy evaluation enables us to refer to this yet unknown value.

3 For the sake of clarity we have encoded all list concatenations explicitly. In the actual implementation
these have to be replaced by more efficient versions.
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3.3 Bringing the printing functions to the arguments

The question arises whether we can make the exchange of information between the

scanning and the printing processes more explicitly, thus changing from a parallel

processes view to a co-routine view. The answer is affirmative: instead of computing

the P list and bringing it to the printing part, the scanning co-routine can build for

each group a function that constructs the actual layout (prints in our terminology),

based on its Horizontal parameter. So instead of storing Horizontal values in the

dequeue we store printing functions, to be called once we know their “horizontality.”

Thus evaluation of the printing and scanning co-routines is interleaved.

We introduce the following types:

type Out = Remaining → Layout

type OutGroup = Horizontal → Out → Out

The type Out is the type of a function that prints a suffix of a document, that is, from

a given point to its end; the function takes as argument the remaining free space on

a line and produces a Layout . The type OutGroup is used to represent the postponed

construction of the layout corresponding to the traversed part of a group. It takes

three arguments, one indicating how the group is to be formatted, a continuation

for the rest of the document, and the remaining free space at the beginning of this

group. The latter value remains synchronized with the actual output produced, and

the updated value is passed on to the continuation.

Instead of storing Horizontal values in the dequeue, we now store values of the

type OutGroup, which represent postponed printing:

type Dq = DeQueue (Position ,OutGroup)

type TreeCont = Position → Dq → Out

type Cont = (Indent ,Width) → TreeCont → TreeCont

The algorithm mainly initializes and then combines delimited continuations:

instance Doc Cont where

text t iw = scan l outText

where

l = length t

outText c r = t ++ c (r − l )

line (i ,w ) = scan 1 outLine

where

outLine True c r = ’ ’ : c (r − 1)

outLine False c r = ’\n’ : replicate i ’ ’ ++ c (w − i )

(dl <> dr ) iw = dl iw ◦ dr iw

group d iw = λc p dq → d iw (leave c) p (dq � (p, λh c → c))

nest j d (i ,w ) = d (i + j ,w )

pretty w d = d (0,w ) (λp dq r → "") 0 〈〉w
nil iw = λc → c

When scanning text and line documents we distinguish between the following

cases:
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• We already know that the group they belong to does not fit (represented by

the dequeue being empty). In this case we can immediately print the element.

• We are still waiting for this information to become available. In this case we

remember the printing obligation in the last element of the dequeue.

scan :: Width → OutGroup → TreeCont → TreeCont

scan l out c p 〈〉 = out False (c (p + l ) 〈〉)
scan l out c p (dq � (s , grp)) = prune c (p + l ) (dq � (s , λh → grp h ◦ out h))

Every time scanning increases the current position and the dequeue may be

nonempty, prune checks whether a pending dequeue element can be printed:

prune :: TreeCont → TreeCont

prune c p 〈〉 r = c p 〈〉r
prune c p dq@((s , grp) � dq ′) r | p > s + r = grp False (prune c p dq ′) r

| True = c p dq r

Finally, at the end of a group the last dequeue element—if it has not already been

pruned away—is printed or the print obligation is merged with the element for the

surrounding group.

leave :: TreeCont → TreeCont

leave c p 〈〉 = c p 〈〉
leave c p ( 〈〉 � (s1 , grp1 )) = grp1 True (c p 〈〉)
leave c p (pp � (s2 , grp2 ) � (s1 , grp1 )) =

c p (pp � (s2 , λh c → grp2 h (λr → grp1 (p � s1 + r) c r)))

In contrast to our previous solution, how the scanning co-routine treats the

elements of a group depends on whether the dequeue is empty. This distinction is

required for our more explicit scheduling of the computation, which does not use

lazy evaluation anymore. This solution also works in a strict setting.

4 Conclusions

As mentioned in the introduction many have tried to derive a backtrack-free

implementation of Oppen’s algorithm. Especially Hughes (1995) and Wadler (2003)

employed algebraic techniques, and one may wonder why they did not come up with

a solution satisfying all nice properties. We think the answer is that we are dealing

here with two mutually recursive processes, which run asynchronously. This is not

easy to express in a purely algebraic style.

We used the interface designed by Wadler; his implementation is bounded, but

not optimally bounded (Section 9 of Chitil, 2005 demonstrates the difference).

What is the difference between Chitil’s (2001, 2005) first pretty-printing solution

and the solutions presented here? It is the way in which the scanning process informs

the printing process about whether a group is to be printed horizontally or vertically.

Like our Lazy solution, Chitil’s first solution passes for every group a Boolean

Horizontal from the scanning process to the printing process. However, Chitil’s first

solution is based on the idea that the printing process has passed the information

what the Remaining space at the beginning of the group is to the scanning process
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and hence the Horizontal information should be passed backward along the same

way. The Remaining value of a group travels as part of the start position of the

group through the dequeue to the point where the scanning process uses it to decide

whether the group is to be formatted horizontally. Hence, Chitil’s first solution uses

a second dequeue with the same structure as the dequeue of pending group nodes

but with reversed data flow to pass a Horizontal value back to its group in the

printing process. In the middle of pretty-printing parts of the second dequeue do not

yet exist, but the defined elements can still be accessed using the identical and fully

defined structure of the first dequeue. The required close relationship between the

two dequeues implies that no standard dequeue implementation can be reused, the

special dequeue implementation is quite complex, and operations have a constant

but high time cost.

Our solutions presented here use a single standard dequeue. The Lazy solution

passes Horizontal information in a simple list to the printing process and the Cont

solution directly constructs printing functions. The latter corresponds to the co-

routine equivalent to our parallel processes view, which makes the scheduling of all

the computations explicitly visible. All lazy evaluation is gone. Ideally, we would

have liked to derive the second solution from the first; we did not manage to do

so. We hope this pearl will inspire others to investigate the transformation from the

parallel view into the co-routine view in other (less tricky) contexts.
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Berlin: Springer-Verlag, pp. 150–206.

Wadler, Philip. (2003) A prettier printer. In The Fun of Programming, Gibbons, Jeremy &

Moor, Oege de (eds). Hampshire: Palgrave Macmillan, pp. 223–244.

https://doi.org/10.1017/S0956796808006990 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006990

