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ANCESTRAL GRAPH WITH BIAS
IN GENE CONVERSION

SHUHEI MANO,∗ The Institute of Statistical Mathematics

Abstract

Gene conversion is a genetic mechanism by which one gene is ‘copied and pasted’ onto
another gene, where the direction can be biased between the different types. In this paper,
a stochastic model for biased gene conversion within a d-unlinked multigene family and
its diffusion approximation are developed for a finite Moran population. A connection
with a d-island model is made. A formula for the fixation probability in the absence
of mutation is given. A two-timescale argument is applied in the case of the strong
conversion limit. The dual process is generally shown to be a biased voter model, which
generates an ancestral bias graph for a given sample. An importance sampling algorithm
for computing the likelihood of the sample is deduced.
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1. Introduction

Gene conversion is a mechanism by which a double-strand break in a DNA molecule is
repaired using a homologous DNA molecule as a template. As a result, the homologous
DNA fragments become identical (i.e. one gene is ‘copied and pasted’ onto another gene). In
diploid organisms, gene conversion can occur between orthologous DNA molecules of paired
homologous chromosomes during recombination, referred to as allelic gene conversion.
Alternatively, ectopic gene conversion can occur among paralogous DNA molecules of
duplicated gene copies in different loci, called a multigene family.

Evolutionary mechanisms are not rigorously tuned. The direction of the conversion appears
biased towards G and C. According to this hypothesis, when an AT versus GC polymorphism
exists in homologous DNA molecules, the A or T variant is more likely to be converted to G or
C than the reverse. Regions of a genome that evolve rapidly have been regarded as being under
strong positive selection. Surprisingly enough, it was reported that many protein coding changes
in the fastest evolving genes of the human genome are not a result of positive selection but a result
of biased fixation of AT to GC mutations [1]. In the histone paralogous genes of humans and
mice, gene copies that belong to subfamilies with very similar sequences, which are presumably
undergoing ectopic gene conversion, have higher GC content than unique gene copies, which
are free from ectopic gene conversion [8]. The result of the bias in allelic gene conversion is
indistinguishable from that of natural selection, since the models are mathematically identical
to each other [17]. In contrast, the dynamics of ectopic gene conversion are poorly understood,
although some theoretical models have been developed [18], [23].

In this paper a stochastic model of the dynamics of bias in ectopic gene conversion in a
finite population is developed. A corresponding island model of population subdivision [24]
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with allele-dependent migration, with a diffusive limit identical to that of the model of ectopic
gene conversion, is introduced. The model is formulated in terms of a biased voter model [11]
on complete graphs, where the interactions between demes are complete and each deme is
a complete graph of sites. The biased voter model has a dual process and the limit process
generates a random graph for a given sample that is analogous to the coalescent genealogy [12].
We call the graph the ancestral bias graph. The ancestral bias graph is similar to the ancestral
selection graph, which was introduced by [13], but the ancestral bias graph is structured with
allele-dependent migration. An importance sampling algorithm that can be used to compute
the likelihood of a given sample is provided. The algorithm is applied to the mouse histone
H2A gene family data set.

2. The model

Consider a monoecious panmictic population that consists of N haploid individuals, who
have a size d (≥ 2)-unlinked multigene family (i.e. duplicated gene copies at unlinked d loci
on distinct chromosomes). Assume that the population evolves according to a continuous-time
Moran model, in which an individual produces one offspring at a time. The type of the offspring
is modified from that of the parent according to mutation and gene conversion mechanisms.
The offspring then replaces an individual chosen at random from the population. The offspring
may replace its own parent. The replaced individual is removed from the population, keeping
the population size constant. We assume that an individual reproduces at a rate of λN .

Assume that in the multigene family there are two types of gene: allele A and allele a. Let
c (0 < c < 1) be the probability with which a gene at a particular locus in an offspring is
converted by a gene of any one of the other d − 1 loci in the offspring with equal probability.
Only a subset of the total conversion events involves different alleles. Among such conversion
events involving different alleles, let (1 + b)/2 be the fraction of these events that results in an
allele a being converted by an allele A, and, similarly, let (1−b)/2 be the fraction of the events
that result in an allele A being converted by an allele a, where 0 ≤ b ≤ 1. The conversion event
is biased if b > 0 [18]. The probability with which an allele a is converted by an allele A, and
an allele A is converted by an allele a is c(1 + b)/(d − 1) and c(1 − b)/(d − 1), respectively.
For example, when d = 3, an individual of type AAa produces an offspring of type Aaa, aAa,
and AAA with probabilities c(1 −b)/2, c(1 −b)/2, and c(1 +b), respectively. For each locus,
an offspring will have the same allelic type as the parent with probability 1−u and will have the
other type with probability u. The coincidence of a gene conversion or a mutation is ignored.

The state of the population at time t can be represented as a continuous-time Markov chain
WN(t) = (WN

α (t)), where WN
α (t) is the number of individuals of type α ∈ {A, a}d in the

population at time t . If WN(t) = w, the transition to w + eα − eβ (β �= α) occurs at a rate of

λNwα

wβ

N

(
1 −

∑
γ �=α

qαγ

)
+ λN

wβ

N

∑
γ �=α

wγ qγα, (2.1)

where qαβ is the probability with which an individual of type α changes to type β. For example,
qAAa,Aaa = c(1−b)/2+u(1−u)2. Other transitions are impossible; for example, w to w±eα

is impossible since the population size is constant. Then, if we see the αth component, the
transition to wα + 1 occurs at a rate of

λNwα

N − wα

N

(
1 −

∑
γ �=α

qαγ

)
+ λN

N − wα

N

∑
γ �=α

wγ qγα
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and the transition to wα − 1 occurs at a rate of

λNwα

wα

N

∑
γ �=α

qαγ + λN

wα

N

∑
γ �=α

wγ (1 − qγα).

Let XN
i (t) denote the fraction of allele a in the ith locus at time t . The limiting diffusion

approximation is obtained by setting λN = N/2, assuming that Nu → θ and Nc → γ as
N → ∞. Since E[XN

i (1) − xi] = mi(x) + o(1), E[(XN
i (1) − xi)

2] = xi(1 − xi) + o(1), and
E[(XN

i (1) − xi)
4] = o(1) for i = 1, 2, . . . , d, where

mi(x) = γ ′

2
(x̄ − xi) + θ

2
(1 − 2xi) − b

γ ′

2d

[
(1 − 2xi)

∑
j �=i

xj + (d − 1)xi

]
,

XN(·) converges weakly to the limit diffusion in the space of paths ω : [0, ∞) → [0, 1]d [5]
with generator

L = L0 − bL1, (2.2)

where

L0 =
d∑

i=1

xi(1 − xi)

2

∂2

∂x2
i

+ γ ′

2

d∑
i=1

(x̄ − xi)
∂

∂xi

+ θ

2

d∑
i=1

(1 − 2xi)
∂

∂xi

,

L1 = γ ′

2d

d∑
i=1

[
(1 − 2xi)

∑
j �=i

xj + (d − 1)xi

]
∂

∂xi

.

Here, x̄ is the arithmetic mean of x and γ ′ = dγ /(d − 1).
It is noteworthy that the generator (2.2) also appears as the diffusive limit of the d-island

model [24] with allele-dependent migration. The interesting correspondence between a model
of a multigene family with gene conversion and a d-island model was previously mentioned
in [15]. Here, in the current model of a multigene family with biased gene conversion, the
corresponding d-island model with allele-dependent migration gives a far more intuitive picture
of the dual process than the original model of a multigene family (see Section 4).

A d-island model is a subdivided population consisting of d demes, where each deme is
occupied by N haploid individuals and all pairs of demes can exchange migrants symmetrically.
The population evolves according to a continuous-time Moran model, in which an individual
produces one offspring at a time. The allelic type of the offspring is modified from that of
the parent according to the mutation mechanism. The offspring then replaces an individual
chosen at random from the same deme or an individual chosen at random from any of the
other demes. The offspring may replace its own parent. The replaced individual is removed
from the deme, keeping the deme sizes constant. We assume that an individual reproduces at a
rate λN and replaces an individual of the same deme. In addition, during the migration process,
alleles A and a replace an individual in another deme at rates λNξA and λNξa , respectively. An
offspring will have the same allelic type as the parent with probability 1 − u and will have the
other type with probability u. Here ξA = c(1 + b)/(d − 1) and ξa = c(1 − b)/(d − 1) with
0 ≤ b ≤ 1, where c (0 < c < 1) is the probability of migration. The migration mechanism
has allele-dependent bias if b > 0.

The state of the population at time t can be represented as a continuous-time Markov chain
ZN(t) = (ZN

i (t)), where ZN
i (t) is the number of individuals of allele A in the ith deme at
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time t . If ZN(t) = z, the transition to z + ei occurs at a rate of

λN

(
zi + ξA

∑
k �=i

zk

)
N − zi

N
(1 − u) + λN

[
(N − zi) + ξa

∑
k �=i

(N − zk)

]
N − zi

N
u, (2.3)

and the transition to z − ei occurs at a rate of

λN

[
(N − zi) + ξa

∑
k �=i

(N − zk)

]
zi

N
(1 − u) + λN

(
zi + ξA

∑
k �=i

zk

)
zi

N
u. (2.4)

Let Xi(t) = Zi(t)/N denote the frequency of allele A in the ith deme at time t . The limiting
diffusion approximation is obtained by setting λN = N/2, assuming that Nu → θ and Nc → γ

as N → ∞. XN(·) converges weakly to the limit diffusion in [0, 1]d , whose generator is
identical to the generator of the model of biased gene conversion in a multigene family (2.2).

3. Fixation probability

The fate of a single mutant is important in molecular evolutionary problems. By using a
birth–death process, an expression of the fixation probability of a single mutant in the weak
conversion limit (γ → 0, where γ = Nc) was obtained [23]. In contrast, when γ is large, the
effects of bias upon the fixation probability can be significant, as was observed recently using
computer simulations [15]. However, no analytical expression has been obtained.

In this section the mutation rate is set to 0 (i.e. u = 0). A path of the continuous-time Moran
model will eventually be absorbed into either of the absorbing states 0 and 1, since without
mutation allele A cannot recover in a population fixed by allele a, and vice versa. For the
diffusive limit of the continuous-time Moran model, we have the following lemma.

Lemma 3.1. The extremal stationary states of the diffusive limit of the continuous-time Moran
model taking values in [0, 1]d and governed by generator (2.2) are δ0 and δ1.

Proof. Let ν be a extremal stationary state. The system of equations for µ∞
a = 〈ν, Xa〉,

where Xa = ∏d
i=1 X

ai

i and 〈ν, f 〉 = ∫
ν(dx)f (x), is obtained by applying Itô’s formula to Xa

with generator (2.2). That is,

{ d∑
i=1

ai(ai − 1)

2
+ γ

2
(1 + b)

d∑
i=1

ai

}
µ∞

a

=
d∑

i=1

ai(ai − 1)

2
µ∞

a−ei
+ γ ′

d

∑
i<j

ai{(1 − b)µ∞
a−ei+ej

+ 2bµ∞
a+ej

}.

This implies that µ∞
a = µ∞

e1
for all a �= 0. Thus, we have ν = µ∞

e1
δ1 + (1 − µ∞

e1
)δ0.

Theorem 3.1. For the diffusive limit of the continuous-time Moran model, the fixation
probability of allele a with X(0) = p is

π(p) = p̄ −
{
(d − 1)[p̄ + p̄(1 − p̄)γ ′] + 2

d

∑
i<j

pipj

}
b + O(b2). (3.1)
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Proof. Let µa(t) = E[X(t)a]. By Lemma 3.1 and Lebesgue’s dominated convergence
theorem, limt→∞ µa(t) = µ∞

e1
= π(p). Consider the expansion of the Laplace transform of

the moments µa(t) as a power series in b: µ̃a(s) = µ̃
(0)
a (s) + µ̃

(1)
a (s)b + · · · . At the zeroth

order in b we have the system of equations

(s + γ ′)µ̃(0)
ei

− γ ′

d

d∑
j=1

µ̃(0)
ej

= pi, i = 1, 2, . . . , d,

with solution

µ̃(0)
ei

(s) = p̄

s
+ pi − p̄

s + γ ′ , i = 1, 2, . . . , d.

By applying the inverse Laplace transform, we have µ
(0)
e1 = p̄ + (p1 − p̄)e−γ ′t . In the same

manner, for i = 1, 2, . . . , d,
(

s

2
+ 1 + γ ′

)
µ̃

(0)
2ei

− µ̃(0)
ei

− γ ′

d

n∑
j=1

µ̃
(0)
ei+ej

= p2
i

2
,

and, for i �= j, i, j = 1, 2, . . . , d,

(s + 2γ ′)µ̃(0)
ei+ej

− γ ′

d

n∑
k=1

(µ̃
(0)
ej +ek

+ µ̃
(0)
ei+ek

) = pipj .

These equations can be solved for µ̃
(0)
2ei

and µ̃
(0)
ei+ej

. At the first order in b, we have the following
system of equations: for i = 1, 2, . . . , d,

(s + γ ′)µ̃(1)
ei

− γ ′

d

n∑
j=1

µ̃(1)
ej

= γ ′

d

{
(d − 2)µ̃(0)

ei
+

d∑
j=1

µ̃(0)
ej

− 2
∑
j (�=i)

µ̃
(0)
ei+ej

}
.

Then

µ̃(1)
ei

(s) = a0

s
+

d∑
j=1

aj

s − sj
, i = 1, 2, . . . , d,

where

a0 = (d − 1)p̄{1 + γ ′(1 − p̄)} − 2

d

∑
i<j

pipj .

Here the sj (< 0) are eigenvalues of generator (2.2) and the aj �=0 are constants independent
of s. Then, by applying the inverse Laplace transform, the lemma follows.

Remark 3.1. In the weak conversion limit (γ → 0), the expression for the fixation probability
(3.1) with p = e1/N in large N agrees with Equation (8) of [23], which was obtained by a
different method.

Remark 3.2. It may seem curious that the effects of bias (linear term in b) do not vanish in the
weak conversion limit (γ → 0). Of course, the linear term disappears without gene conversion
(c = 0). If gene conversion is extremely weak, all loci are monomorphic except for very short
periods of time when a single locus is segregating. An allele fixes in the polymorphic locus
and after a long period of time biased gene conversion creates another polymorphic locus. The
process continues until all loci are fixed by the same allele. Since the locus-by-locus spreading
is biased, the bias is effective even when gene conversion is extremely weak (see [23]).
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When b = 1, all conversion events involving different alleles result in an allele a being
converted by an allele A.

Theorem 3.2. When b = 1,

π(p) = {1 − (1 − p̄)dγ + O(γ 2)}
d∏

i=1

pi.

Proof. The fixation probability satisfies the Kolmogorov backward equation

(L0 − L1)π(x) = 0 (3.2)

with π(0) = 0 and π(1) = 1. Assuming that π(x) = ∑
a cax

a , (3.2) gives c1 = 1 − dγ +
O(γ 2), c1+ei

= γ c1, and ca = O(γ 2) for a �= 1, 1 + ei , where i = 1, 2, . . . , d.

4. Strong conversion limit

Let us define the strong conversion limit with allele-dependent migration as dNb → β as
N → ∞. Interestingly, the strong conversion limit of the continuous-time Moran model of
biased gene conversion within a d-unlinked multigene family has a limiting diffusion whose
generator is identical to that of the very fundamental one-locus diffusion with directional
selection. Various results known for the process also hold for the strong conversion limit
of the biased gene conversion model.

By applying the singular perturbation theory, Ethier and Nagylaki [6] obtained a diffusion
approximation of Markov chains with two time scales. Consider the continuous-time Moran
model for the d-island population subdivision with allele-dependent migration, whose transition
rates are given by (2.3) and (2.4) with λN = 1. Consider the mean of the frequencies
X̄N(t) = ∑d

i=1 XN
i (t)/d and the deviations from the mean YN

i (t) = XN
i (t) − X̄N(t), i =

1, 2, . . . , d. Set ε−1
N = dN/2/(1 + c) and δ−1

N = 1. Asymptotically, as N → ∞, the
infinitesimal variances and means of X̄N(·/εN) are

ε−1
N E[X̄N(1) − x̄] = m(x̄, y) + o(1), (4.1)

ε−1
N E[(X̄N(1) − x̄)2] = v(x̄, y) + o(1), (4.2)

where

m(x̄, y) = βc

1 + c

{
x̄ − d

d − 1

[
x̄2 − 1

d2

d∑
i=1

(yi + x̄)2
]}

+ dθ

2
(1 − 2x̄),

v(x̄, y) = x̄ − c

1 + c

d

d − 1
x̄2 + c − d + 1

(1 + c)d(d − 1)

d∑
i=1

(yi + x̄)2.

Those of YN(·/δN) are

δ−1
N E[YN(1) − y] = f (x̄, y) + o(1), (4.3)

where f (x̄, y) = −dcy/(d − 1). Also,

ε−1
N E[(X̄N(1) − x̄)4] = o(1), δ−1

N var(yN(1)) = o(1). (4.4)
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According to Theorem 3.3 of [6], under conditions (4.1)–(4.4) and using the fact that the zero
solution of

δ−1∞ [Y (k + 1, x̄, y) − Y (k, x̄, y)] = f (x̄, Y (k, x̄, y)), Y (0, x̄, y) = y,

for k = 0, 1, . . . is globally asymptotically stable, YN(t/εN) → 0 in probability for every
t > 0, and X̄N(·/εN) converges weakly to a diffusion process on the surface y = 0.

Theorem 4.1. The continuous-time Moran model for the d-island population subdivision with
allele-dependent migration whose transition rates are given by (2.3) and (2.4) has the limiting
diffusion of strong migration in [0, 1] with generator

x̄(1 − x̄)

2

∂2

∂x̄2 −
[

βc

1 + c
x̄(1 − x̄) − dθ

2
(1 − 2x̄)

]
∂

∂x̄
. (4.5)

This generator also appears as the strong conversion limit of the continuous-time Moran model
of biased gene conversion within a d-unlinked multigene family with transition rates (2.1).

Remark 4.1. The generator (4.5) is identical to that of the diffusion process of the one-
locus, two-allele model with directional selection and selection intensity 2βc/(1 + c). In
strong migration limits of population subdivision considered in [16], the effects of population
subdivision disappear and the panmictic diffusion holds if the migration is conservative. In
contrast, in the strong conversion limit of the continuous-time Moran model of biased gene
conversion, the effects of a multigene structure remain as an effective selection.

Remark 4.2. The continuous-time Moran model for one-locus, two-alleles with directional
selection can be formulated using the biased voter model and the dual has a limit process that
generates the ancestral selection graph [13]. The continuous-time Moran model of biased gene
conversion has an analogue of the ancestral selection graph, which we call the ancestral bias
graph (see Section 5). In the strong conversion limit, the process generating the ancestral bias
graph should converge into the process generating the ancestral selection graph with selection
intensity 2βc/(1 + c). A direct proof of this observation without using the duality argument
seems difficult.

5. Ancestral bias graph

The above introduced d-island model with allele-dependent migration also has a formulation
in terms of the biased voter model on a set of complete graphs. Denote by I = (Ii), Ii =
{1, 2, . . . , N}, i = 1, 2, . . . , d, sets of sites, where Ii is the set of sites in the ith graph. The
biased voter model is a continuous-time Markov process whose state at time t is denoted by
ηt : I → {A, a}. If x ∈ Ii , and ηt (x) = A or ηt (x) = a, then x is occupied by an individual
of allelic type A or, respectively, a at time t . The process {ηt ; t ≥ 0} evolves according to the
following rules.

(i) For x = 1, 2, . . . , N and i = 1, 2, . . . , d, the individual at x ∈ Ii produces an offspring
at rate λN within Ii .

(ii) The offspring has the same allelic type as the parent with probability 1 − u and has the
other type with probability u.

(iii) For x = 1, 2, . . . , N and i, j = 1, 2, . . . , d, j �= i, the individual at x ∈ Ii produces an
offspring in Ij at rates depending on the allelic type. If ηt (x) = A, the rate is λNξA; if
ηt (x) = a, the rate is λNξa . Furthermore, ξA − ξa = 2cb/(d − 1).
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(iv) At the time when the birth event occurs, one of the N sites is chosen at random and the
individual at this site is replaced by the offspring. The offspring is allowed to replace its
own parent.

This process can be visualized as a percolation process [4], [10], and the construction is
similar to that of the continuous-time Moran model with selection [13]. The idea is to construct
the process using a collection of independent Poisson processes by drawing arrows on the space–
time coordinate system I × [0, ∞). These arrows indicate where and when the offspring is
produced and sent. We begin by connecting arrows to each timeline at the times of arrivals
in a Poisson process that describes the birth process. For each (x, y) ∈ I 2

i , i = 1, 2, . . . , d,
let {Wx,y

i,s ; s ≥ 1} denote the times of arrivals in a Poisson process with rate λN/N . For

each (x, y) ∈ Ii × Ij , i, j = 1, 2, . . . , d, i �= j , let {Zx,y
i,j,s; s ≥ 1} denote the times of

arrivals in a Poisson process with rate λNξA/N . Let {Ux,y
i,j,s; s ≥ 1} and {V x,y

i,s ; s ≥ 1},
i, j = 1, 2, . . . , d, i �= j , be sequences of independent, uniformly distributed random variables
in (0, 1). For times W

x,y
i,s , we draw an arrow from x ∈ Ii to y ∈ Ii to indicate the birth of

an offspring at x that is sent to y. For times Z
x,y
i,j,s , we draw an arrow from x ∈ Ii to y ∈ Ij

to indicate the birth of an offspring at x that is then sent to y. If U
x,y
i,j,s < ξa/ξA, we place a

‘δ’ at the tip of the arrow; otherwise, we label the arrow with a ‘2’. In other words, we have
δ-arrows and 2-arrows entering a site y at rates λNξa and λN(ξA − ξa), respectively. Then, the
following rule will apply: type-A individuals can give birth through both types of arrow, but
type-a individuals can only give birth through δ-arrows. The process {V x,y

i,s ; s ≥ 1} is used as
the mutation process; if V

x,y
i,s < u, a mutation occurs. We represent a mutation event by filled

circles on the arrows. A realization of the percolation diagram in the case d = 2 and N = 4 is
shown in Figure 1. Here I1 and I2 are the left and the right graphs, respectively. If the set of
sites occupied by type-a individuals is initially {1} ∈ I2 then, at time t , the set of sites occupied
by type-a individuals is {2} ∈ I1 and {3} ∈ I2. The paths of the as are indicated by thick
lines. By reversing time, the ancestral history of individuals at sites are followed and, thus,
their types are determined. The resulting process is called the dual process. A realization of the
dual process, which was obtained from Figure 1 by simply reversing time and the direction of
the arrows, is shown in Figure 2. Here, the ancestral history of a sample consists of individuals
at sites {1, 2} ∈ I1 and {1} ∈ I2 at dual time 0, indicated by thick lines.

Consider the dual process of a sample of size n = (ni), i = 1, 2, . . . , d, at time 0 taken from
a population, when the mutation rate is set to 0 (i.e. u = 0). Assume that there are k particles
in the limiting process. A coalescing event occurs when a particle crosses an unmarked arrow
and lands on the site of a different particle contained in the dual process. This occurs at rates

λNki

ki − 1

N
= ki(ki − 1)

2
, i = 1, 2, . . . , d. (5.1)

A migration event occurs when a particle crosses a δ-arrow. This occurs at a rate of

λNξani

N − kj

N
→ (1 − b)γ

2(d − 1)
ki as N → ∞ (5.2)

for i, j = 1, 2, . . . , d, j �= i. A branching event occurs when a particle crosses a 2-arrow.
This occurs at a rate of

λN(ξA − ξa)ki

N − kj

N
→ bγ

d − 1
ki as N → ∞, (5.3)

for i, j = 1, 2, . . . , d, i �= j . The original particle continues along the continuing path, and
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0
1 2 3 4

I2I1

1 2 3 4

t

2

δ

δ

Figure 1: A graphical representation of the biased voter model for the case d = 2 and N = 4. If, initially,
the set of as is {1} ∈ I2 then at time t the set of as is {2} ∈ I1 and {3} ∈ I2. The paths of the as are

indicated by thick lines.

0

1 4
I2

2 3
I1

1 2 3 4
t

δ

δ

2

Figure 2: A graphical representation of the dual process of the biased voter model. The ancestral history
of a sample consists of individuals at sites {1, 2} ∈ I1 and {1} ∈ I2 at dual time 0, indicated by thick lines.
The ultimate ancestor is in {1} ∈ I2, at dual time t . If the ultimate ancestor is a then the true genealogy

contains the dotted line and does not contain the dashed line.

the new particle that arose from the branching follows the 2-arrow (incoming path). The new
particle can land on a site that is already contained in the dual process. The event, which
was called collision in [13], occurs with probability kj /N , and can be ignored in the limit
N → ∞. An analogue of the coalescent genealogy can be obtained by rescaling time and the
parameters as λN = N/2, ξA = c(1 + b)/(d − 1), and ξa = c(1 − b)/(d − 1) with Nc → γ

as N → ∞. We call the limiting process {Gn(t); t ≥ 0} the ancestral bias graph, which
consists of three components: the set-valued process {An,i (t); t ≥ 0, i = 1, 2, . . . , d}, the
jump process {Rm; m ≥ 1}, and the label process {(βm, γm); m ≥ 1}. Here An,i (t) is the set
of particles in the ith deme at time t , Rm is the time of the mth event, and βm and γm denote
branched particles or coalesced particles at the mth event, respectively.
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Let the size process An(t) = (|An,i (t)|), i = 1, 2, . . . , d. Then {An(t); t ≥ 0} is a
d-dimensional birth and death process with rates (5.1)–(5.3) in the state space Z

d+. The process
is similar to the process that was introduced in [21] to analyze stationary states and the stability
of the stepping stone model involving directional selection. By either a direct application of
Itô’s formula or using rules to generate an ancestral bias graph for a sample that consists of
allele a, we obtain the following duality relation. The proofs are essentially the same as the
proof of Theorem 2.1 of [14] for the size process of the ancestral selection graph.

Lemma 5.1. The moment dual of the birth and death process An(t) is the Wright–Fisher
diffusion X(t) in [0, 1]d governed by generator (2.2):

Ep[X(t)n] = En[pAn(t)].
Corollary 5.1. The joint probability generating function of the stationary measure of the birth
and death process (πA) with rates (5.1)–(5.3) is

EπA
[pA] = π(p),

where π(p) is the fixation probability given in Theorem 3.1. In particular,

πA(ei ) = 1

d
− b

(
d − 1

d
− γ

)
+ O(b2),

πA(2ei ) = b
γ

d
+ O(b2),

πA(ei + ej ) = b
2

d
(1 + γ ) + O(b2),

for i, j = 1, 2, . . . , d, i �= j . Other configurations have probabilities of order O(b2).

If the process hits |An(t)| = 1 for the first time, we call the particle at that time the
ultimate ancestor. When 0 < b < 1, the ultimate ancestor always exists because the state
space is irreducible. In contrast, when b = 1, the ultimate ancestor can never exist as long
as #{i; ni ≥ 1} ≥ 2. The state space is reducible and states ni = 0 for some i are transient.
Therefore, if ni = 0 for some i, πA(n) = 0. Moreover, the fixation probability given in
Theorem 3.2 gives the following result.

Corollary 5.2. When b = 1,

πA(1) = 1 − dγ + O(γ 2), πA(1 + ei ) = γπA(1) for i = 1, 2, . . . , d.

Other configurations have probabilities of order O(γ 2).

Theorem 5.1. Let Wn be the waiting time to the ultimate ancestor of a sample of n genes. Then
E[We1 ] = 0 and

r(n)E[Wn] =
d∑

i=1

ni(ni − 1)E[Wn−ei
] +

∑
i �=j

2bγ ni

d − 1
E[Wn+ej

]

+
∑
i �=j

(1 − b)γ ni

d − 1
E[Wn−ei+ej

] + 2,

where r(n) = ∑d
i=1 ni{ni − 1 + γ (1 + b)}.

https://doi.org/10.1239/jap/1363784436 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1363784436


Ancestral bias graph 249

Proof. This is clear by considering the waiting time until the first event in the birth and death
process with rates (5.1)–(5.3).

Corollary 5.3. For a sample of size 2,

E[W2ei
] = d + b

2(dγ )3 + (d − 1){8(dγ )2 + (10d2 + 7d − 2)γ + 2(d − 1)(2d − 1)}
3γ {dγ + 2(d − 1)} ,

+ O(b2),

E[Wei+ej
] = d + d − 1

γ
+ b

2d2γ 3 + 2(d − 1){3d2γ + 2(d2 − 1)}
3γ {dγ + 2(d − 1)} + O(b2),

for i, j = 1, 2, . . . , d, i �= j .

Consider superimposing the mutation process, denoted by {Yi; t ≥ 0, i = 1, 2, . . . , d}, on
the ancestral bias graph. The rate isλNuki → θki/2 asN → ∞ for i = 1, 2, . . . , n. Depending
on the type of the ultimate ancestor and the mutation events along the branches, certain parts
of the ancestral bias graph may not be accessible to individuals since only individuals of allelic
type A may cross 2-arrows. In Figure 2, if the allelic type of the ultimate ancestor is a then
the true genealogy contains the dotted line and does not contain the dashed line. In contrast,
if the allelic type of the ultimate ancestor is A, then the true genealogy contains the dashed
line. To simulate the joint distribution of a sample of size n from a large population that is in
equilibrium, we proceed as follows.

(i) Construct an ancestral bias graph starting with n particles, until the first time it reaches
the ultimate ancestor.

(ii) Choose the ultimate ancestor’s type for the sample according to the stationary measure
of the diffusion process governed by generator (2.2) (see Section 6).

(iii) Run the mutation process forward along the ancestral bias graph starting at the ultimate
ancestor.

In step (iii), the type of particle that continues after the meeting of incoming and continuing
branches (branching event in the dual process) is identical to Table 2 of [13], in which types ‘1’
and ‘2’ are ‘a’ and ‘A’, respectively.

As for the ancestral selection graph [13], the effects of bias on the ancestral bias graph when
imposing the mutation process are insignificant when the mutation rate is very large or very
small.

Lemma 5.2. Denote the time to the most recent common ancestor by TMRCA. When θ = 0,
the distribution of TMRCA does not depend on b and is identical to that of the d-island model of
population subdivision without bias. When θ � bγ , the distribution of TMRCA is also identical
to the model without bias.

Proof. The proof is essentially the same as that of Theorem 3.12 of [13].

6. Sampling distributions

Suppose that n genes are sampled from a population. A sample configuration is denoted by
(na, nA), where n = na + nA, and na,i and nA,i are the numbers of allele a and allele A in the

https://doi.org/10.1239/jap/1363784436 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1363784436


250 S. MANO

ith deme, respectively. Let p(n) be the multinomial sampling distribution, or the likelihood,
of a sample of n genes taken from a population in equilibrium:

p(n) = EπX

[ d∏
i=1

ni !
na,i ! nA,i !X

na,i

i (1 − Xi)
nA,i

]
. (6.1)

Theorem 6.1. The sampling distribution p(n) satisfies

r(n)p(n) =
d∑

i=1

[(na,i − 1)nip(n − ea,i) + (nA,i − 1)nip(n − eA,i)]

+ θ

d∑
i=1

[(nA,i + 1)p(na − ea,i + eA,i) + (na,i + 1)p(n + ea,i − eA,i)]

+ (1 − b)γ ′

d

∑
i,j �=i

ni

[
na,j + 1

nj + 1
p(n − ea,i + ea,j )

+ nA,j + 1

nj + 1
p(n − eA,i + eA,j )

]

+ 2bγ ′

d

∑
i,j �=i

[
nA,i(nA,j + 1)

nj + 1
p(n + eA,j ) + ni(na,j + 1)

nj + 1
p(n + ea,j )

+ (na,i + 1)(nA,j + 1)

nj + 1
p(n + ea,i − eA,i + eA,j )

]
,

where r(n) = ∑d
i=1 ni{ni − 1 + θ + γ (1 + b)}. The probabilities with negative arguments

are 0. The boundary condition is

p(ea,i) = ρ, p(eA,i) = 1 − ρ, i = 1, 2, . . . , d.

Proof. The proof follows by a direct application of Itô’s formula to the moments in (6.1).
It can also be proved via the rules used to generate the ancestral bias graph when imposing the
mutation process [13].

Remark 6.1. In the weak mutation limit (θ → 0), p(na) = p(e1) = ρ for any nonzero na ∈
span{ea,1, ea,2, . . . , ea,d}, p(0, nA) = 1−ρ for any nonzero nA ∈ span{eA,1, eA,2, . . . , eA,d},
and p(n) = 0 for any nonzero n /∈ {span{ea,1, ea,2, . . . , ea,d}, span{eA,1, eA,2, . . . , eA,d}},
because the sample allelic type is solely determined by the allelic type of the ultimate ancestor.
For example, if a sample of size 2 is taken from the ith deme, p(2ea,i) + p(2eA,i) = 1 and
p(ea,i + eA,i) = 0.

Corollary 6.1. For a sample of size 1,

p(ea,i) = 1

2
− (1 + 2θ + γ ′)γ

2{γ ′/d + 2θ(1 + 2θ + γ ′)}b + O(b2), i = 1, 2, . . . , d,

and, for a sample of size 2,

p(2ea,i) = γ ′/d + θ + (1 + 2θ + γ ′)(θ − bγ )

2{γ ′/d + 2θ(1 + 2θ + γ ′)} + O(b2), (6.2)

p(ea,i + ea,j ) = γ ′/d + (1 + 2θ + γ ′)(θ − bγ )

2{γ ′/d + 2θ(1 + 2θ + γ ′)} + O(b2), (6.3)
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p(ea,i + eA,i) = θ(2θ + γ ′)
γ ′/d + 2θ(1 + 2θ + γ ′)

+ O(b2),

p(ea,i + eA,j ) = θ(1 + 2θ + γ ′)
2{γ ′/d + 2θ(1 + 2θ + γ ′)} + O(b2),

for i, j = 1, 2, . . . , d, i �= j . We obtain p(2eA,i) and p(eA,i + eA,j ) from (6.2) and (6.3),
respectively, by replacing b with (−b). These expressions reduce to those in the model without
bias when θ � bγ (see Lemma 5.2). The effects of bias (linear term in b) vanish in the weak
conversion limit (γ → 0) (cf. Remark 3.2), but the effects do not vanish in the weak mutation
limit (cf. Lemma 5.2).

Remark 6.2. The identity coefficients in a multigene family were defined by [19]. For unlinked
loci, the average probability of identity at the same locus is p(2ea,i) + p(2eA,i), and that at
different loci of the same or homologous chromosomes is p(ea,i + ea,j ) + p(eA,i + eA,j ).
When b = 0, these expressions reduce to Equations (12) of [19].

7. Importance sampling

The state space of the ancestral histories of a sample is huge and closed-form expressions
for the likelihood are not available. Griffiths and Tavaré [9] introduced an importance sampling
method on the ancestral process back in time. Stephens and Donnelly [22] constructed an
efficient proposal distribution, and De Iorio and Griffiths [2] characterized the proposal
distribution in terms of the generator of the dual diffusion process, which describes the
population gene frequencies. De Iorio and Griffiths [3] applied the method to construct
an importance sampling algorithm for computing the likelihood of samples in subdivided
population models.

A history {Hk; k = 0, −1, . . . ,−m} is defined as the set of ancestral configurations at
the embedded events in the Markov process where coalescence, migration, branching, and
mutation events take place. Here H0 denotes the current state (sample configuration), and
H−m denotes the state when an ultimate ancestor is reached (eA,i or ea,i). The system of
equations given in Theorem 6.1 is written as p(Hk) = ∑

{Hk−1} p(Hk | Hk−1)p(Hk−1). The
importance sampling representation is based on finding a good approximation to the reverse
chain probabilities p̂(Hk−1 | Hk). The importance sampling representation is then

p(H0) = Ep̂

[
p(H0 | H−1)

p̂(H−1 | H0)
· · · p(H−m+1 | H−m)

p̂(H−m | H−m+1)
p(H−m)

]
≈ 1

M

M∑
i=1

p(H (i))

p̂(H (i))
p̂(H0),

(7.1)
where Ep̂ denotes the expectation taken over histories in the reverse direction with the
reverse chain transition probabilities p̂(Hk−1 | Hk), and H (1), H (2), . . . , H (M) are indepen-
dent sample paths from the reverse chain.

From (6.1), it follows that

π(α | i, n)p(n) = EπX [(Xiδα,a + (1 − Xi)δα,A)qn(X)] (7.2)

and

π(β | j, n + ea,iδα,a + eA,iδα,A)π(α | i, n)p(n)

= EπX [(Xj δβ,a + (1 − Xj)δβ,A)(Xiδα,a + (1 − Xi)δα,A)qn(X)], (7.3)
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where

qn(x) =
d∏

i=1

ni !
na,i ! nA,i !x

na,i

i (1 − xi)
nA,i

and π(α | i, n) is the probability that an additional gene taken from deme i is of allelic type
α given that we have a configuration n. Assume that (7.2) and (7.3) hold for an approximate
sampling distribution p̂(n) obtained by setting [3]

EπX

[
Li

∂

∂Xi

qn(X)

]
= 0,

where

Li = xi(1 − xi)

2

∂

∂xi

+ γ ′

2
(x̄ − xi) + θ

2
(1 − 2xi) − b

γ ′

2d

[
(1 − 2xi)

∑
j �=i

xj + (d − 1)xi

]
,

yielding a system of equations for π̂(α | i, n), which is an approximation of π(α | i, n) for
α = a, A and i = 1, 2, . . . , d. That is, we obtain

ri π̂(a | i, n) = na,i + θ + (1 − b)γ ′

d

∑
j �=i

π̂ (a | j, n)

+ 2bγ ′

d

nA,i(ni + 1)

na,i + 1
π̂(a | i, n)

∑
j �=i

π̂ (A | j, n + ea,i) (7.4)

and

ri π̂(A | i, n) = nA,i + θ + (1 − b)γ ′

d

∑
j �=i

π̂ (A | j, n)

+ 2bγ ′

d

∑
j �=i

[
(ni + 1)2

nA,i + 1
π̂(A | i, n)π̂(a | j, n + eA,i)

+ (ni + 1)π̂(a | i, n)π̂(A | j, n + ea,i)

]
, (7.5)

where ri = ni + 2θ + γ . The system has the solution

π̂(α | i, n) =
(

nα,i + θ

γ ′/d
+

d∑
j=1

nα,j − nα,i

γ ′/d + rj

)(
γ ′/d + ri

γ ′/d
−

d∑
j=1

γ ′/d + ri

γ ′/d + rj

)−1

+O(b). (7.6)

When b = 0, (7.6) is the exact probability that an additional gene taken from deme i is of allelic
type α given that we have a configuration n. Even for b > 0, solving the quadratic system of
equations (7.4) and (7.5) is computationally expensive. Using expression (7.6) with b = 0 and
renormalizing the proposal distribution is practically useful.

From Bayes’ rule, p(Hk−1 | Hk)=p(Hk | Hk−1)p(Hk−1)/p(Hk), but the p(Hk−1)/p(Hk)

are unknown. The importance sampling proposal distribution is obtained by substituting π̂ for
π in p(Hk−1)/p(Hk), with the importance weights given by

p(Hk | Hk−1)

p̂(Hk−1 | Hk)
= p̂(Hk)

p̂(Hk−1)
.
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For example, in the case Hk = n and Hk−1 = n + ea,i − eA,i + eA,j , the proposal distribution
is

p̂(Hk−1 | Hk) = p(Hk | Hk−1)
p̂(n + ea,i − eA,i + eA,j )

p̂(n − eA,i)

p̂(n − eA,i)

p̂(n)

= 2bγ ′

d

(na,i + 1)(nA,j + 1)

r(n)(nj + 1)

× ni(nj + 1)

(na,i + 1)(nA,j + 1)
π̂(A | j, n + ea,i − eA,i)π̂(a | i, n − eA,i)

× nA,i

ni π̂(A | i, n − eA,i)

= 2bγ nA,i π̂(A | j, n + ea,i − eA,i)π̂(a | i, n − eA,i)

(n − 1)r(n)π̂(A | i, n − eA,i)
,

and the importance weight is

(na,i + 1)(nA,j + 1)π̂(A | i, n − eA,i)

nA,i(nj + 1)π̂(A | j, n + ea,i − eA,i)π̂(a | i, n − eA,i)
.

The proposal distribution and respective importance weights for the other cases are summarized
in Table 1.

In (7.1) p(H−m) is equal to either ρ or 1−ρ. A closed-form expression for ρ is not available,
but it is easily obtained by using the perfect simulation (coupling from the past) [7], [20]. For
the perfect simulation, a parent-independent mutation model, where an allele mutates to A

and a with equal probability conditional on a mutation occurring with mutation rate 2u, is
useful. The parent-independent mutation model is probabilistically equivalent to the mutation
model discussed in previous sections, but the treatment in the perfect simulation becomes much
simpler.

Table 1.

Hk−1 Proposal distribution Importance weight

n − ea,i
na,i (na,i − 1)

r(n)π̂(a | i, n − ea,i )

ni

na,i
π̂(a | i, n − ea,i )

n − eA,i
nA,i(nA,i − 1)

r(n)π̂(A | i, n − eA,i)

ni

nA,i
π̂(A | i, n − eA,i)

n − ea,i + eA,i
θna,i π̂(A | i, n − ea,i )

r(n)π̂(a | i, n − ea,i )

(nA,i + 1)π̂(a | i, n − ea,i )

na,i π̂(A | i, n − ea,i )

n + ea,i − eA,i
θnA,i π̂(a | i, n − eA,i)

r(n)π̂(A | i, n − eA,i)

(na,i + 1)π̂(A | i, n − eA,i)

nA,i π̂(a | i, n − eA,i)

n − ea,i + ea,j
(1 − b)γ ′na,i π̂(a | j, n − ea,i )

dr(n)π̂(a | i, n − ea,i )

ni(na,i + 1)π̂(a | i, n − ea,i )

na,i (nj + 1)π̂(a | j, n − ea,i )

n − eA,i + eA,j
(1 − b)γ ′nA,i π̂(A | j, n − eA,i)

dr(n)π̂(A | i, n − eA,i)

ni(nA,j + 1)π̂(A | i, n − eA,i)

nA,i(nj + 1)π̂(A | j, n − eA,i)

n + ea,j
2bγ ′niπ̂(a | j, n)

dr(n)

na,j + 1

(nj + 1)π̂(a | j, n)

n + eA,j
2bγ ′nA,i π̂(A | j, n)

dr(n)

nA,j + 1

(nj + 1)π̂(A | j, n)
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Consider simulating a sample of size 1 from the ancestral bias graph. We can prove the
following theorem on the expected number of events until the ancestral bias graph couples for
a sample of size 1.

Theorem 7.1. Consider the strong conversion limit (dNb → β as N → ∞). Let T be an
exponential random variable with rate θ/4. Let M be the number of events in an ancestral bias
graph initiated with a single branch, up to time T in the past. The expected number of events
until the ancestral bias graph couples is bounded above by E[M]. Furthermore,

lim
β→∞ E

[
M

β2

]
≤ (4c)2

θ
.

Proof. For the first part, the proof is the same as that of Theorem 1 of [7]. For the second part,
according to Remark 4.2, the problem is reduced to finding a bound for the expected number
of events until the ancestral selection graph with selection intensity 2βc/(1 + c) initiated with
a single branch couples. Theorem 1 of [7] gives the required result.

8. Example: mouse histone gene family

Exon sequences of members of a mouse histone H2A gene family (single exon gene and 393
base pairs in length), which consists of 20 gene copies distributed at six unlinked loci in the
mouse genome, were retrieved from Ensembl release 63 (see http://www.ensembl.org/). The
GC content at the third codon position was 90.2%, which is significantly higher than average
GC content in the mouse genome. The substitution rate was estimated to be 2.0 × 10−9 per
site per generation, noting that the sequence divergence between the mouse sequence and the
homologous rat sequence at the third codon position is 16%, assuming that the mouse–rat
divergence time is 20 million years and the average generation time is 0.5 years. If substitution
occurs symmetrically among nucleotides, two-thirds of the substitutions occur between AT
and GC. Under neutrality, the mutation rate between AT and GC is u = 1.3 × 10−9. The actual
process of conversion involves a piece of a gene. Here, a nucleotide site was considered to be
a unit of conversion and linkage among them was also ignored. Nucleotides of the third codon
position were analyzed, where AT and GC nucleotides are regarded as allelic types a and A,
respectively. Assuming that the data set comes from d = 20 loci of a single chromosome
and the maximum likelihood estimate of θ , γ , and b, which jointly maximize the composite
likelihood of the 131 nucleotide sites, was obtained by using the importance sampling algorithm
introduced in Section 7. The estimates were θ̂ = 0.0008, γ̂ = 0.04, and b̂ = 0.07. Then, the
conversion rate per site per nucleotide would be ĉ = 6.5 × 10−8.
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