ALMOST CONVERGENCE, SUMMABILITY AND ERGODICITY

J. PETER DURAN

1. Introduction. 1.1. The notion of almost convergence introduced by Lorentz [15] has been generalized in several directions (see, for example [1; 8; 11; 14; 17]). It is the purpose of this paper to give a generalization based on the original definition in terms of invariant means. This is effected by replacing the shift transformation by an "ergodic" semigroup \mathscr{A} of positive regular matrices in the definition of invariant mean. The resulting " \mathscr{A} -invariant means" give rise to a summability method which we dub \mathscr{A} -almost convergence.

In section 3 we study the set $L(\mathscr{A})$ of \mathscr{A} -invariant means. We show that there is a sublinear functional P_+ on the space of bounded sequences such that each member of $L(\mathscr{A})$ may be regarded as a Hahn-Banach extension with respect to P_+ of the limit functional on the space of convergent sequences. This generalizes results in [8; 13; 17]. In section 4 we characterize the space of \mathscr{A} -almost convergent sequences, unifying and generalizing results in [1; 8; 15; 17].

Matrix methods stronger than \mathscr{A} -almost convergence are characterized in section 5. We prove also that when \mathscr{A} is suitably restricted such methods always exist. Section 6 is devoted to examples. Here we use a theorem of Eberlein [9] to show that the logarithmic method contains the collective Hausdorff method for bounded sequences.

In section 7 we generalize results in [3] and [4] concerning the multiplicative behaviour of the \mathscr{A} -almost convergent sequences. Section 8 is concerned with matrix transformations of spaces of almost convergent sequences (cf. [19]).

The author wishes to thank Professor W. F. Eberlein for several helpful discussions.

2. Preliminaries. 2.1. We denote by \mathscr{M} the Banach spaces of all bounded sequences of real number $x = (x_0, x_1, \ldots)$ with norm

$$||x|| = \sup_{n} |x_n|.$$

Each member of \mathcal{M} has a continuous extension to a function on βN , the Stone-Čech compactification of the nonnegative integers. The space $C(\beta N)$ of all continuous real-valued functions on βN is thus naturally isomorphic to \mathcal{M} . We shall therefore not distinguish between these spaces in the sequel.

Received October 24, 1972.

For each $x \in \mathcal{M}$ we write $\limsup x$ (respectively $\limsup x_n$ for $\limsup x_n$ (respectively, $\limsup \inf_n x_n$). If $x \in c$, the space of convergent sequences, we write $\limsup x$ for $\lim_n x_n$. We denote by c_0 the space of all sequences which converge to 0. If $x \in \mathcal{M}$, |x| denotes the sequence defined by $|x|_n = |x_n|$.

2.2 For $x \in \mathcal{M}$, let \tilde{x} denote the restriction of x to $\beta \mathbf{N} \setminus \mathbf{N}$. The map $x \mapsto \tilde{x}$ is a continuous surjection of \mathcal{M} onto $C(\beta \mathbf{N} \setminus \mathbf{N})$. If we denote the natural norm in $C(\beta \mathbf{N} \setminus \mathbf{N})$ by $|| \quad ||_0$ then we have $||\tilde{x}||_0 = \limsup |x|$.

Now let A be a positive regular matrix. A may be thought of as a bounded linear operator on \mathscr{M} . Since A is regular $A(c_0) \subseteq c_0$. Hence A induces an operator \widetilde{A} on $C(\beta N \setminus N)$ defined by $\widetilde{A}\widetilde{x} = \widetilde{A}\widetilde{x}$. It has the following easily verifiable properties.

(2.2.1) $\tilde{A} \ge 0$ (i.e. $\tilde{A}\tilde{x} \ge 0$ whenever $\tilde{x} \ge 0$)

- (2.2.2) $\widetilde{A}\widetilde{u} = \widetilde{u}$ where $u = (1, 1, \ldots)$
- $(2.2.3) \quad ||\tilde{A}||_0 = 1$

2.3. A functional $\phi \in \mathcal{M}^*$ is called a mean if $\phi(u) = 1, \phi \ge 0$ (i.e., $\phi(x) \ge 0$ whenever $x \ge 0$). By the Riesz Representation Theorem we may think of a mean as a probability measure on βN . We shall denote by L the set of all means supported in $\beta N \setminus N$. Again by the Riesz Representation Theorem we may think of L as contained in $C(\beta N \setminus N)^*$. The viewpoint we adopt will be dictated by convenience.

3. \mathscr{A} -invariant means. 3.1. Let \mathscr{A} be a semigroup of positive regular matrices. Multiplication can be thought of either as matrix multiplication or as composition of operators on \mathscr{M} .

Definition. An \mathscr{A} -invariant mean is an element ϕ of L satisfying $\phi(x) = \phi(Ax)$ for all $A \in \mathscr{A}$ and $x \in \mathscr{M}$. We denote by $L(\mathscr{A})$ the (possibly empty) set of all \mathscr{A} -invariant means. \mathscr{A} is said to be admissible if $L(\mathscr{A}) \neq \emptyset$.

3.2. In order to develop a theory with content we shall place certain regularity restrictions on the semigroup \mathscr{A} . Specifically, we shall usually demand the \mathscr{A} be ergodic in the following sense:

Definition. \mathscr{A} is ergodic if there is a net $\{A_{\alpha}\}$ of matrix operators on \mathscr{M} , called a system of averages for \mathscr{A} , which satisfies:

(3.2.1) for each α and each $x \in \mathcal{M}$, $\tilde{A}_{\alpha}\tilde{x}$ is in the closed convex hull (in $C(\beta N \setminus N)$) of the set $\{\tilde{A}\tilde{x} | A \in \mathcal{A}\}$, and

(3.2.2) $\lim_{\alpha} ||\tilde{A}_{\alpha}\tilde{x} - \tilde{A}_{\alpha}\tilde{A}\tilde{x}||_{0} = 0$ for each $A \in \mathscr{A}$ and $x \in \mathscr{M}$.

Our definition is derived from the definition of an ergodic semigroup given in [7]. It follows that if \mathscr{A} is abelian or, more generally amenable, then \mathscr{A} is ergodic [5].

We assume for the rest of this section that \mathscr{A} is ergodic.

3.3. We wish to characterize the set $L(\mathscr{A})$. As a first step in this direction let l denote the functional defined on c by $l(x) = \lim x$. It will turn out that there is a sublinear functional defined on \mathscr{M} such that $L(\mathscr{A})$ consists precisely of all the Hahn-Banach extensions of l with respect to this functional.

Definition. For $x \in \mathcal{M}$ we define

$$P_{+}(x) = \lim_{\alpha} \sup \lim \sup A_{\alpha} x$$
$$P_{-}(x) = \lim \inf \lim \inf A_{\alpha} x.$$

We summarize the elementary properties of P_+ and P_- in the following

LEMMA.

(3.3.1)
$$P_{\pm}(x) \ge 0 \text{ if } x \ge 0,$$

(3.3.2) $P_{\pm}(ax) = aP_{\pm}(x) \text{ if } a \ge 0, a \in \mathbf{R},$

- $(3.3.3) \quad P_+(x+y) \leq P_+(x) + P_+(y),$
- (3.3.4) $P_{\pm}(x Ax) = 0$ for all $A \in \mathcal{A}$, $x \in \mathcal{M}$, and

$$(3.3.5) \quad P_+(x) = -P_-(-x)$$

Proof. We prove only 3.3.4.

$$|P_{+}(x - Ax)| \leq \lim_{\alpha} \sup \lim_{\alpha} \sup |A_{\alpha}x - A_{\alpha}Ax|$$
$$= \lim_{\alpha} \sup ||\tilde{A}_{\alpha}\tilde{x} - \tilde{A}_{\alpha}\tilde{A}\tilde{x}||_{0}$$
$$= 0$$

by 3.2.2. Similarly, $P_{-}(x - Ax) = 0$.

3.4. THEOREM. Let $\phi \in \mathcal{M}^*$. Then $\phi \in L(\mathcal{A})$ if and only if $P_{-}(x) \leq \phi(x) \leq P_{+}(x)$ for each $x \in \mathcal{M}$.

Proof. Suppose that $\phi \in L(\mathscr{A})$. If $x \in \mathscr{M}$, then $\phi(x) = \phi(A_{\alpha}x)$ because by 3.2.1 $\tilde{A}_{\alpha}\tilde{x}$ is a uniform limit of convex combinations of functions of the form $\tilde{A}\tilde{x}, A \in \mathscr{A}$ and ϕ is supported in $\beta N \setminus N$. Moreover since ϕ is a mean

$$\phi(A_{\alpha}x) \leq \phi(\sup \{A\tilde{x}(t) | t \in \beta \mathbf{N} \setminus \mathbf{N}\} \cdot u) = \limsup A_{\alpha}x.$$

Since α is arbitrary we conclude that $\phi(x) \leq P_+(x)$. 3.3.5 now shows that $P_-(x) \leq \phi(x)$.

Suppose conversely that $\phi \in \mathcal{M}^*$ and $P_{-}(x) \leq \phi(x) \leq P_{+}(x)$ for all $x \in \mathcal{M}$. If $x \geq 0$ we have $0 \leq P_{-}(x) \leq \phi(x)$. Hence $\phi \geq 0$. Since $P_{\pm}(u) = 1$, ϕ is a mean. The \mathcal{A} -invariance of ϕ follows from 3.3.4. That ϕ is supported in

 β N\N is a consequence of the easily verified fact that $P_{\pm}(x) = 0$ if $x \in c_0$. Hence $\phi \in L(\mathscr{A})$.

Several convenient corollaries follow from the preceding theorem.

3.5. COROLLARY. $L(\mathcal{A})$ consists exactly of all the Hahn-Banach extensions of l to \mathcal{M} with respect to P_+ . In particular, $L(\mathcal{A})$ is not empty.

3.6. COROLLARY. (a) $P_+(x) = \lim_{\alpha} \lim_{\alpha} \sup A_{\alpha}x = \inf_{\alpha} \lim_{\alpha} \sup A_{\alpha}x.$

(b) $P_{-}(x) = \lim_{\alpha} \lim \inf A_{\alpha}x = \sup_{\alpha} \lim \inf A_{\alpha}x$.

Proof. We prove only (a). It suffice to show that $P_+(x) = \inf_{\alpha} \limsup A_{\alpha}x$. The inequality \geq being obvious, we need only show that $P_+(x) \leq \limsup A_{\alpha}x$ for each α . This follows from the proof of Theorem 3.4 and Corollary 3.7.

3.7. COROLLARY. For each $x \in \mathcal{M}$, $P_+(x) = \sup \{\phi(x) | \phi \in L(\mathcal{A})\}$ and $P_-(x) = \inf \{\phi(x) | \phi \in L(\mathcal{A})\}.$

Proof. If $\phi \in L(\mathscr{A})$ then by Theorem 3.4 $\phi(x) \leq P_+(x)$ so $P_+(x) \geq \sup \{\phi(x) | \phi \in L(\mathscr{A})\}$. However, the Hahn-Banach Theorem and Corollary 3.5 imply that for given x we may choose $\phi \in L(\mathscr{A})$ such that $\phi(x) = P_+(x)$. This proves the first half of the corollary. The second half is proved similarly.

The idea of the above proof is found in [8].

4. \mathscr{A} -almost convergence. 4.1. Let \mathscr{A} be an admissible semigroup of positive regular matrices.

Definition. $x \in \mathcal{M}$ is said to be \mathscr{A} -almost convergent to a real number a if $\phi(x) = a$ for all $\phi \in L(\mathscr{A})$. This is written $F(\mathscr{A}) - \lim x = a$ or simply $F - \lim x = a$ when the semigroup is clear from the context. The space of all \mathscr{A} -almost convergent sequences is denoted by $F(\mathscr{A})$ or simply F.

It is clear that $F = F_0 \bigoplus \mathbf{R}u$ where F_0 consists of all sequences which are \mathscr{A} -almost convergent to 0 and \mathbf{R} is the set of real numbers. F_0 is a closed subspace of \mathscr{M} since it is an intersection of kernels of continuous linear functionals. Hence F is closed as well. Note also that both F and F_0 are invariant under \mathscr{A} .

If $x \in \mathcal{M}$ is summable by some matrix $A \in \mathcal{A}$, say lim Ax = a, then $F(\mathcal{A}) - \lim x = a$ as is easily seen. Hence the matrices in \mathcal{A} are consistent for bounded sequences.

4.2. The archetypal example of \mathscr{A} -almost convergence is, of course, almost convergence itself. Here \mathscr{A} consists of the iterates of the shift matrix S defined by $(Sx)_m = x_{m+1}$. Another example is Banach-Hausdorff summability [8]. These and other examples will be discussed more fully below.

4.3. Now suppose that \mathscr{A} is ergodic. We are in a position to characterize the \mathscr{A} -almost convergent sequences. If $E \subseteq \mathscr{M}$, let $\overline{sp} E$ denote the closed span of E. If $E \subseteq C(\beta N \setminus N)$ let $\overline{sp}^{\circ}E$ denote its closed span in $C(\beta N \setminus N)$.

J. PETER DURAN

THEOREM. Let $a \in \mathbf{R}$. The following conditions on a sequence $x \in \mathcal{M}$ are equivalent.

- (4.3.1) $F \lim x = a$.
- (4.3.2) $\lim_{\alpha} ||\tilde{A}_{\alpha}\tilde{x} a\tilde{u}||_{0} = 0.$
- $(4.3.3) \quad P_+(x) = P_-(x) = a.$
- (4.3.4) $\tilde{x} \in \bar{sp}^{0}{\{\tilde{y} \tilde{A}\tilde{y} | y \in \mathcal{M}, A \in \mathcal{A}\}} + a\tilde{u}.$
- (4.3.5) $x \in \overline{\operatorname{sp}}(c_0 + \{y Ay | y \in \mathcal{M}, A \in \mathcal{A}\}) + au.$

Proof. The equivalence of the first three conditions follows immediately from the definitions of $F - \lim$ and P_{\pm} and from Corollary 3.7. For the remainder of the proof we assume without loss of generality that a = 0.

Suppose now that 4.3.2 is satisfied, i.e. suppose that $\tilde{A}_{\alpha}\tilde{x} \to 0$ in the norm of $C(\beta \mathbf{N} \setminus \mathbf{N})$. Then $\tilde{x} = \lim_{\alpha} (\tilde{x} - \tilde{A}_{\alpha}\tilde{x})$ so that 4.3.4 will follow if we can show that for each α , $\tilde{x} - \tilde{A}_{\alpha}\tilde{x} \in \overline{\mathrm{sp}}^{0}\{\tilde{y} - \tilde{A}\tilde{y}|y \in \mathcal{M}, A \in \mathcal{A}\}$. By 3.2.1, $\tilde{A}_{\alpha}\tilde{x}$ is a limit of convex combinations of images of \tilde{x} under members of \mathcal{A} . If $\sum \alpha_{i}\tilde{A}_{i}\tilde{x}$ is such a combination then

$$\widetilde{x} - \sum lpha_i \widetilde{A}_i \widetilde{x} = \sum lpha_i (\widetilde{x} - \widetilde{A}_i \widetilde{x}) \in \overline{\operatorname{sp}}{}^0 \{ \widetilde{y} - \widetilde{A} \widetilde{y} | y \in \mathscr{M}, A \in \mathscr{A} \}.$$

This proves 4.3.4.

To prove that 4.3.4 implies 4.3.5 suppose that

 $\tilde{x} \in \overline{\mathrm{sp}}{}^{0}{\{\tilde{y} - \tilde{A}\tilde{y} | y \in \mathcal{M}, A \in \mathcal{A}\}}.$

It will suffice to produce a sequence in $c_0 + \operatorname{sp}\{y - Ay | y \in \mathcal{M}, A \in \mathcal{A}\}$ which converges weakly to x. (Here sp denotes linear span.)

Now clearly there is a sequence $\{w^n\} \subseteq \text{sp} \{y - Ay | y \in \mathcal{M}, A \in \mathcal{A}\}$ such that $||\tilde{x} - \tilde{w}^n||_0 \to 0$ and we can assume that $||\tilde{w}^n||_0 \leq ||x|| + 1/2$.

For each *n* we can choose an integer K_n such that $|w_k^n| \leq ||x|| + 1$ whenever $k \geq K_n$. Further, $\{K_n\}$ can be chosen to increase to infinity.

Define z^n by

$$z_k^n = \begin{cases} x_k - w_k^n, \text{ if } k < K_n \\ 0, & \text{ if } k \ge K_n. \end{cases}$$

Clearly $z^n \in c_0$ for each n.

Our object is to show that $z^n + w^n$ converges to x weakly in \mathcal{M} . For this we must prove that $\{z^n + w^n\}$ is uniformly bounded and converges to x pointwise on βN .

Now

$$|z_k^n + w_k^n| = \begin{cases} |x_k|, \text{ if } k < K_n \\ |w_k^n|, \text{ if } k \ge K_n \end{cases}$$

Hence $||z^n + w^n|| \leq ||x|| + 1$ for all n.

Let $t \in \beta \mathbb{N} \setminus \mathbb{N}$ be fixed. Then $z^n(t) + w^n(t) = w^n(t) \to x(t)$. If $k \in \mathbb{N}$ is fixed, choose N so that $K_n \ge k$ whenever $n \ge N$. Then $z_k^n + w_k^n = x_k$ for $n \ge N$. It follows that $z^n + w^n \to x$ pointwise on $\beta \mathbb{N}$.

To see that 4.3.5 implies 4.3.1, let $\phi \in L(\mathscr{A})$. $\phi(c_0) = \{0\}$ because ϕ is supported in $\beta N \setminus N$. Also $\phi(y - Ay) = 0$ for all $y \in \mathscr{M}$ and $A \in \mathscr{A}$. Linearity and continuity of ϕ now imply that $\phi(x) = 0$. Since ϕ is arbitrary, $F - \lim x = 0$.

4.4. *Remark*. It is clear that in 4.3.4 and 4.3.5 we may replace \mathscr{A} by any subset of \mathscr{A} which generates it as a semi-group.

5. Matrices containing \mathscr{A} -almost convergence. 5.1. Definition. Suppose that \mathscr{A} is admissible and B is a regular matrix. B is said to contain \mathscr{A} -almost convergence if $c_B \supseteq F$ where $c_B = \{x \in \mathscr{M} | Bx \in c\}$ is the bounded convergence field of B.

5.2. THEOREM. Let \mathscr{A} be ergodic. The regular matrix B contains \mathscr{A} -almost convergence if and only if each matrix of the form B(I - A), $A \in \mathscr{A}$, maps \mathscr{M} into c_0 . Moreover, in this case $\lim Bx = F(\mathscr{A}) - \lim x$ for each $x \in F(\mathscr{A})$. (I is the identity matrix.)

Remark. It will be clear from the proof and Remark 4.4 that it suffices to consider only those matrices B(I - A) where A lies in some set of generators for \mathcal{A} .

5.3. Recall that a matrix is a Schur matrix if it maps \mathscr{M} into c. We shall need the following elementary facts about Schur matrices (see [16]). (5.3.1) If $D = (d_{m,n})$ is a Schur matrix, then $\lim_{m \to \infty} d_{m,n} = \delta_n$ exists for each n and $\lim_{m \to \infty} Dx = \sum_{n=0}^{\infty} \delta_n x_n$ for each $x \in \mathscr{M}$.

(5.3.2) A matrix D maps \mathscr{M} into c_0 if and only if

$$\lim_{m}\sum_{n=0}^{\infty} |d_{m,n}| = 0.$$

5.4. We recall also the fact that a matrix D maps c_0 into itself if and only if

(5.4.1)
$$||D|| = \sup_{m} \sum_{n=0}^{\infty} |d_{m,n}| < +\infty$$
, and

(5.4.2) $\lim_{m} d_{m,n} = 0 \text{ for each } n.$

5.5. Proof of Theorem 5.2. Suppose that $c_B \supseteq F$. Since $x - Ax \in F_0$ for each x by 4.3.5, $B(I - A)(\mathcal{M}) \subseteq c$, i.e. B(I - A) is a Schur matrix. Now $B(I - A)(c_0) \subseteq c_0$ because B, A and I are regular. Hence $\lim_{m} \{B(I - A)\}_{m,n} = 0$ for each n by 5.4.2. It follows from 5.3.1 that $B(I - A)(\mathcal{M}) \subseteq c_0$.

Suppose conversely that $B(I - A)(\mathcal{M}) \subseteq c_0$ for each $A \in \mathcal{A}$. Since B is regular it maps $c_0 + \{x - Ax | x \in \mathcal{M}, A \in \mathcal{A}\}$ into c_0 . It follows from 4.3.5 and the fact that B is a bounded operator on \mathcal{M} that $B(F_0) \subseteq c_0$. Hence

J. PETER DURAN

 $B(F) \subseteq c$ and $F - \lim x = \lim Bx$ for all $x \in F$ since $F = F_0 \bigoplus \mathbf{R}u$ and B is regular.

Remark. It is an immediate consequence of Theorem 5.2 and 5.3.2 that B sums every almost convergent sequence if and only if B is strongly regular. This is a theorem of Lorentz [15]. (Cf. also [18; 1].)

5.6. Theorem 5.2 gives a necessary and sufficient condition for a regular matrix to contain \mathscr{A} -almost convergence. However, it leaves unanswered the question of whether there are any such matrices. We have been unable to answer this question in general. We give a partial answer in the following

THEOREM. Let A be a positive regular matrix and assume that A is triangular, i.e., $a_{m,n} = 0$ when m < n. Let $\mathscr{A} = \{A^n | n = 0, 1, ...\}$. Then there is a regular matrix B which contains \mathscr{A} -almost convergence. Moreover B may be chosen to be positive.

Remark. We must produce a matrix B such that $B(I - A)(\mathcal{M}) \subseteq c_0$. We shall assume without loss of generality that $\sum_{n=0}^{\infty} a_{m,n} \leq 1$, $a_{m,m} < 1$ for each m because A differs from such a matrix only by a matrix which maps \mathcal{M} into c_0 .

5.7. The proof of the theorem will be preceded by a definition and two lemmas.

Definition. A matrix D satisfies condition (K) if

(5.7.1) $d_{m,n} = 0$ for m < n,

(5.7.2) $d_{m,m} > 0$ for all *m*, and

(5.7.3) $d_{m,n} \leq 0$ for $0 \leq n < m$.

LEMMA. If D satisfies condition (K) then D^{-1} is positive.

Proof. It suffices to prove the lemma for finite (square) matrices. We do this by induction on the size of the matrix. The lemma is obvious for 1×1 matrices.

Now suppose the lemma is true for $k \times k$ matrices. Let D be a $(k + 1) \times (k + 1)$ matrix satisfying (K). Let $C = D^{-1}$. Then C is triangular. Since the matrix obtained from C by deleting the last row and last column is the inverse of the matrix obtained from D by deleting the last row and last column and this latter matrix is a $k \times k$ matrix satisfying (K), it follows that $c_{i,j} \ge 0$ for $i = 0, 1, \ldots, k - 1$ and all j. Thus, it remains to show that $c_{k,j} \ge 0$ for $j = 0, 1, \ldots, k$.

If j = k, $c_{k,j} = d_{k,k}^{-1} > 0$.

Suppose that j < k. Then

$$0 = (DC)_{k,j} = \sum_{i=0}^{k} d_{k,i} c_{i,j} = \sum_{i=j}^{k} d_{k,i} c_{i,j}.$$

Hence

$$d_{k,k}c_{k,j} = -\sum_{i=j}^{k-1} d_{k,i}c_{i,j}$$

But for $j \leq i \leq k - 1$, $c_{i,j} \geq 0$ by induction while $d_{k,i} \leq 0$ since D satisfies condition (K). Hence $d_{k,k}c_{k,j} \geq 0$ and since $d_{k,k} > 0$, $c_{k,j} \geq 0$.

5.8. Now let $C = (I - A)^{-1}$. I - A satisfies condition (K) so $C \ge 0$ by Lemma 5.7.

Lemma. $||C|| = \infty$.

Proof. Suppose ||C|| were finite. Then I - A would be an invertible transformation on \mathcal{M} . By 4.3.5 we would have $u \in F_0$. This is absurd.

5.9. Proof of Theorem 5.6. We claim first that for each $k = 1, 2, \ldots c_{n+k,n} \leq c_{n,n}$. For k = 1 we have

$$c_{n+1,n} = \frac{a_{n+1,n}}{1 - a_{n+1,n+1}} c_{n,n} \leqslant c_{n,n}$$

because $a_{n+1,n} \leq 1 - a_{n+1,n+1}$. Assuming the claim is true for $c_{n+1,n}, \ldots, c_{n+k-1,n}$, we have

$$c_{n+k,n} = \frac{1}{1 - a_{n+k,n+k}} \{ a_{n+k,n} c_{n,n} + \ldots + a_{n+k,n+k-1} \cdot c_{n+k-1,n} \}$$

$$\leqslant \frac{1}{1 - a_{n+k,n+k}} \{ a_{n+k,n} + \ldots + a_{n+k,n+k-1} \} c_{n,n} \leqslant c_{n,n},$$

proving the claim.

Set $\gamma_m = \sum_{n=0}^{\infty} c_{m,n}$. By Lemma 5.8 there is an increasing sequence $\{m_k\}$ of positive integers such that $\gamma_{mk} \to \infty$. Define a matrix B by $b_{k,n} = c_{mk,n}/\gamma_{mk}$. Then clearly $B \ge 0$, $\sum_{n=0}^{\infty} b_{k,n} = 1$ for every k and $\lim_k b_{k,n} = 0$ for every n by the claim and the choice of m_k . Thus B is a positive regular matrix. Moreover

$$\sum_{n=0}^{\infty} |\{B(I-A)\}_{k,n}| = 1/\gamma_{mk} \to 0.$$

By the remark following Theorem 5.2 and 5.3.2, B contains \mathscr{A} -almost convergence.

5.10. Before giving some examples we draw a corollary from Theorem 5.6.

COROLLARY. If \mathscr{A} is generated by a single triangular matrix, then $L(\mathscr{A})$ is infinite dimensional.

More generally, if \mathscr{A} is an admissible semigroup such that there is a regular matrix containing \mathscr{A} -almost convergence, then $L(\mathscr{A})$ is infinite dimensional.

Proof. By Theorem 5.6, we need only prove the second statement. If $L(\mathscr{A})$ were finite dimensional, then F_0 and hence F would have finite codimension

in \mathcal{M} . If B is a regular matrix such that $c_B \supseteq F$, then c_B would have finite codimension in \mathcal{M} also. However, it is well-known that there is no such regular matrix.

6. Examples. 6.1. Let \mathscr{A} consist of the positive regular Hausdorff matrices. Then \mathscr{A} -almost convergence coincides with the notion of Banach-Hausdorff summation introduced in [8]. (That any \mathscr{A} -invariant mean is a Banach limit follows from the fact that \mathscr{A} contains a strongly regular matrix.) The well-known decomposition of a regular Hausdorff matrix into its positive and negative parts shows that any bounded sequence which is summed by some regular Hausdorff matrix is Banach-Hausdorff summable. Thus Banach-Hausdorff summation is a generalization of the collective Hausdorff method for bounded sequences.

Let H denote the Hölder-Cesaro matrix. Eberlein has announced the following surprising result [9]:

6.1.1. If A is any regular Hausdorff method, then

$$\lim_{n} ||\tilde{H}^{n} - \tilde{H}^{n}\tilde{A}||_{0} = 0.$$

The foregoing theorem states that the sequence $\{H^n\}$ of iterates of H is a system of averages for \mathscr{A} . Since H is itself a Hausdorff matrix, an immediate consequence of 6.1.1 is

6.1.2. The notions of Banach-Hausdorff summation and $\{H^n : n = 0, 1, ...\}$ -almost convergence coincide.

Garten and Knopp [11] term a sequence $x H_{\infty}$ -summable if $\lim_{n} \lim \inf H^{n}x = \lim_{n} \limsup_{n \to \infty} \operatorname{Him}_{x}$. If follows that from 6.1.1 and 4.3.3 that a bounded sequence x is H_{∞} -summable if and only if it is Banach-Hausdorff summable. Thus H_{∞} -summation is a good deal stronger than ordinary Hölder summation for it sums any bounded sequence summed by *any* regular Hausdorff method.

6.2. The results of the preceding paragraph allow us to prove the following

THEOREM. The regular matrix A contains Banach-Hausdorff summation if and only if

(6.2.1)
$$\lim_{m} \sum_{n=0}^{\infty} \left| \frac{n}{n+1} a_{m,n} - \sum_{l=n+1}^{\infty} \frac{a_{m,l}}{l+1} \right| = 0.$$

For example, the logarithmic matrix $L^{(1)}$ defined by

$$L_{m,n}^{(1)} = \begin{cases} \frac{1}{n \log m}, & \text{if } 1 \leq n \leq m \text{ and } m > 1\\ 0, & \text{otherwise,} \end{cases}$$

is such a matrix.

Proof. Since Banach-Hausdorff summation coincides with $\{H^n : n = 0, 1, ...\}$ -almost convergence, Theorem 5.2 shows that A contains Banach-Hausdorff

summation if and only if $A(I - H)(\mathcal{M}) \subseteq c_0$. A short calculation combined with 5.3.2 shows that this is the case if and only if 6.2.1 holds. That the logarithmic matrix is such a matrix is verified in a straightforward way.

Remarks. Fuchs has shown that there is no matrix which contains the collective Hausdorff method for *all* sequences [10]. Theorem 6.2 shows that for bounded sequences the situation is quite different – such matrices do indeed exist. Also, since H_{∞} -summation is strictly stronger than ordinary Hölder summation, the second part of the theorem generalizes (for bounded sequences) the classical theorem that logarithmic summation is stronger than Hölder summation (see [12]).

Borwein [2, Theorem 5] has shown that if x is any sequence summed by $L^{(1)}$ and A is any regular Hausdorff method, then x is summed by $L^{(1)}A$. The second part of the Theorem 6.2 shows that for bounded sequences we can say considerably more, viz. if x is a bounded sequence and A is any regular Hausdorff matrix, then $L^{(1)}x$ and $L^{(1)}Ax$ differ only by a sequence which converges to 0.

6.3. We say that a bounded sequence x is Banach-logarithmic $(B - L^{(1)})$ summable to a if $\phi(x) = a$ whenever $\phi \in L$ has the property that $\phi(y) = \phi(L^{(1)}y)$ for all $y \in \mathcal{M}$. This is simply almost convergence with respect to the semigroup generated by $L^{(1)}$.

The question now arises: "Which matrices contain $B - L^{(1)}$ summation?" Theorem 5.2 gives one kind of answer to this question. In order to give concrete examples, we define the logarithmic matrix of order k by

$$L_{m,n}^{(k)} = \begin{cases} \frac{1}{n \log n \dots \log_{k-1} n \cdot \log_k m}, & \text{if } k \leq n \leq m \\ 0, & \text{otherwise.} \end{cases}$$

Here $\log_k x$ is defined inductively as $\log_1 x = \log x$, $\log_k x = \log_{k-1}(\log x)$. We now have

6.4. THEOREM. For each $k = 1, 2, ..., L^{(k+1)}$ contains $B - L^{(k)}$ summation. ($B - L^{(k)}$ summation is defined in the obvious way.)

Proof. Let k > 1 be fixed. We must show that $L^{(k+1)}(I - L^{(k)})$ maps \mathcal{M} into c_0 . By 5.3.2 this means we must show that

$$\lim_{m} \sum_{n=0}^{\infty} |L^{(k+1)}(I-L^{(k)})_{m,n}| = 0,$$

i.e.

(*)
$$\lim_{m} \sum_{n=k+1}^{m} \left| \frac{1}{n \dots \log_{k} n \log_{k+1} m} - \sum_{l=n}^{m} \frac{1}{l \dots \log_{k} l \cdot \log_{k+1} m} \cdot \frac{1}{n \dots \log_{k-1} n \log_{k} l} \right|$$
$$= 0.$$

Now the sum involved in (*) is

$$(**) \qquad \frac{1}{\log_{k+1}m} \sum_{n=k+1}^{m} \frac{1}{n \dots \log_{k-1}n} \left| \frac{1}{\log_{k}n} - \sum_{l=n}^{m} \frac{1}{l \dots \log_{k-1}l (\log_{k}l)^{2}} \right|$$

For convenience, let us write

$$f(\mathbf{x}) = \frac{1}{\mathbf{x} \cdot \log \mathbf{x} \dots \log_{k-1} \mathbf{x} (\log_k \mathbf{x})^2}$$

Then

$$(**) \leq \frac{1}{\log_{k+1}m} \sum_{n=k+1}^{m} \frac{1}{n \dots \log_{k-1}n}$$

$$\left\{ \left| \frac{1}{\log_{k}n} - \int_{n}^{m} f(x)dx \right| + \left| \sum_{l=n}^{m} f(l) - \int_{n}^{m} f(x)dx \right| \right\}$$

$$\leq \frac{1}{\log_{k+1}m} \left\{ \frac{1}{\log_{k}m} \sum_{n=k+1}^{m} \frac{1}{n \dots \log_{k-1}n} + \sum_{n=k+1}^{\infty} \frac{1}{n^{2} \dots (\log_{k}n)^{2}} \right\}$$

$$\sim \frac{1}{\log_{k+1}m} \to 0 \text{ as } m \to \infty.$$

6.5. The question of whether there is a matrix which contains $B - L^{(k)}$ summability for all k is answered by the following general

THEOREM. Let $\{A^{(n)}\}\$ be a sequence of positive regular triangular matrices. Let \mathscr{A}_n be the semigroup generated by $A^{(n)}$ and assume that $F(\mathscr{A}_{n+1}) \supseteq F(\mathscr{A}_n)$ for $n = 1, 2, \ldots$. Then there is a regular matrix B such that $c_B \supseteq F(\mathscr{A}_n)$ for each n.

Proof. Let $C^{(s)} = I - A^{(s)}$. By Theorem 5.6 there are positive regular matrices $B^{(k)}$ such that $B^{(k)}C^{(s)}(\mathcal{M}) \supseteq c_0$ for $s = 1, \ldots, k$. Let us write b(m, n; k) for $B_{m,n}^{(k)}$.

Choose m_1 such that

(a)
$$b(m_1, 1; 1) \leq 2^{-1}$$
,

(b)
$$\sum_{n=0}^{\infty} b(m_1, n; 1) \ge 2^{-1}$$
, and

(c)
$$\sum_{n=0}^{\infty} |(B^{(1)}C^{(1)})_{m_1,n}| \leq 2^{-1}.$$

Now suppose that m_1, \ldots, m_{k-1} have been chosen so that for $j = 1, \ldots, k - 1$

$$(a') \qquad b(m_j, i; j) \leq 2^{-j} \text{ for } 1 \leq i \leq j,$$

(b')
$$\sum_{n=0}^{\infty} b(m_j, n; j) \ge \frac{1}{j+1}$$
, and

(c')
$$\sum_{n=0}^{\infty} |(B^{(j)}C^{(i)})_{m_j,n}| \leq 2^{-j} \text{ for } 1 \leq i \leq j.$$

382

It is easy to see that m_k can then be chosen so that (a'), (b') and (c') are satisfied for j = 1, ..., k.

Set $b(i, n) = b(m_i, n; i)$. Then clearly B is regular and $BC^{(s)}(\mathcal{M}) \subseteq c_0$ for all s.

7. Multipliers. 7.1. Let \mathscr{A} be an admissible semigroup. We shall suppose throughout this section that there is at least one matrix which contains \mathscr{A} -almost convergence.

Definition. $x \in \mathcal{M}$ is called a multiplier if F if $xy \in F$ whenever $y \in F$. (Multiplication is coordinatewise.) We denote the set of multipliers of F by \mathcal{M}_{F} .

Note that $\mathscr{M}_F \subseteq F$ because $u \in F$.

It is the purpose of this section to characterize the space \mathcal{M}_F . When F consists of the sequences which are almost convergent in the ordinary sense, this has been done by Chou [3] and Chou and the author [4]. The results we obtain are direct generalizations of these theorems.

7.2. THEOREM. If $x \in \mathcal{M}_F$ and $y \in F$, then

 $F - \lim xy = (F - \lim x)(F - \lim y).$

Proof. Let A by any member of \mathscr{A} . It suffices to show that for all $z \in \mathscr{M}$, $F - \lim x(z - Az) = 0$

Let B be any regular matrix such that $c_B \subseteq F$. Since $x(z - Az) \in F$, $B(x(z - Az)) \in c$ for all $z \in \mathcal{M}$. We must show that in fact $B(x(z - Az)) \in c_0$ for all $z \in \mathcal{M}$. An application of the second part of Theorem 5.2 will then give the desired result.

Let M[x] be the matrix with entries $x_m \delta_{m,n}$ where $\delta_{m,n}$ is the Kronecker delta. Then $B(x \cdot (z - Az)) = B \cdot M[x] \cdot (I - A)(z)$. Thus $B \cdot M[x] \cdot (I - A)$ is a Schur matrix. Hence by 5.3.1 and 5.4.2 we will be done if we can show that $B \cdot M[x] \cdot (I - A)(c_0) \subseteq c_0$. This, however is obvious since B, M[x] and I - Aeach map c_0 into itself.

7.3. If $\phi \in L$, let supp ϕ denote the support of ϕ .

Definition. $K^F = \overline{U}\{ \text{supp } \phi | \phi \in L(\mathscr{A}) \}$. K^F is called the support set of the method F.

If $B \subseteq \mathbf{N}$ we denote by B^* the closure of B in $\beta \mathbf{N}$ minus B itself. χ_B is the characteristic sequence (function) of B.

7.4. LEMMA. $K^F = \bigcap \{B^* | B \subseteq \mathbb{N} \text{ and } F - \lim \chi_B = 1\}$

Proof. Suppose that $B \subseteq \mathbb{N}$ and $F - \lim \chi_B = 1$. Then B^* is a closed set in $\beta \mathbb{N} \setminus \mathbb{N}$ and $\phi(B^*) = \phi(\chi_B) = 1$ for each $\phi \in L(\mathscr{A})$. Hence supp $\phi \subseteq B^*$ and $K^F \subseteq B^*$.

Now suppose that $t \in \beta N \setminus N$ and $t \notin K^F$. Since K^F is compact and the sets

 $\{B^*|B \subseteq \mathbf{N}\}\$ form a basis for the topology of $\beta \mathbf{N} \setminus \mathbf{N}$, there is a set $B \subseteq \mathbf{N}$ such that B^* contains K^F but not t. If $\phi \in L(\mathscr{A})$ then $\phi(\chi_B) = \phi(B^*) = 1$ so $F - \lim \chi_B = 1$. It follows that

 $t \notin \cap \{B^* | B \subseteq \mathbf{N}, F - \lim \chi_B = 1\}.$

7.5. We are now in a position to prove the following

THEOREM. The following conditions on a sequence $x \in \mathcal{M}$ are equivalent:

(7.5.1)
$$x \in \mathcal{M}_F$$
 and $F - \lim x = a$,

- $(7.5.2) \quad F \lim (x au)^2 = 0,$
- $(7.5.3) \quad \tilde{x} \equiv a \text{ on } K^F,$

(7.5.4) For each $\epsilon > 0$ the characteristic function of the set $\{n : |x_n - a| \leq \epsilon\}$ is \mathscr{A} -almost convergent to 1.

Proof. That 7.5.1 implies 7.5.2 follows immediately from Theorem 7.2.

That 7.5.2 implies 7.5.3 is obvious since $(x - au)^2$ is a nonnegative continuous function and each $\phi \in L(\mathscr{A})$ is a regular Borel measure.

Now suppose that $\tilde{x} \equiv a$ on K^F . Let $y \in F$, say $F - \lim y = b$. Then if $\phi \in L(\mathcal{A})$,

$$\phi(xy) = \int_{\sup \phi} \tilde{x}\tilde{y}d\phi = a \int_{\sup \phi} yd\phi = a \cdot \phi(y) = ab.$$

Thus $xy \in F$ and $x \in \mathcal{M}_F$. Taking y = u in the above computation we see that $F - \lim x = a$.

The equivalence of 7.5.3 and 7.5.4 is proved exactly as in [3].

7.6. As in [3], we have

COROLLARY. Let χ_B be the characteristic function of $B \subseteq \mathbb{N}$. χ_B is a multiplier if and only if it is almost convergent to 0 or 1.

8. Matrix transformations of spaces of almost convergent sequences.

8.1. We shall need the following lemma of Attala [1, Lemma 3.2].

LEMMA. Let $\{\tilde{A}_n\}$ be a sequence of operators on $C(\beta N \setminus N)$ induced by matrices. Then $||\tilde{A}_n||_0 \to 0$ if and only if $||\tilde{A}_n \tilde{x}||_0 \to 0$ for each $x \in \mathcal{M}$.

8.2. Let B be an infinite matrix. Let

$$||B|| = \sup_{m} \sum_{n=0}^{\infty} |b_{m,n}|.$$

We recall the well-known facts that $||B|| < +\infty$ if and only if $B(\mathcal{M}) \subseteq \mathcal{M}$ if and only if $B(c_0) \subseteq \mathcal{M}$. Moreover if $||B|| < +\infty$ then ||B|| is the norm of B considered as an operator on \mathcal{M} .

8.3. We assume throughout the remainder of the paper that \mathscr{A} is an ergodic semigroup and that $\{A_n\}$ is a system of averages for \mathscr{A} which is a sequence.

LEMMA. Let B be an infinite matrix. Then $F(\mathscr{A}) - \lim Bx = 0$ for all $x \in \mathscr{M}$ if and only if $||B|| < +\infty$ and $||\tilde{A}_n \tilde{B}||_0 \to 0$.

Proof. Lemma 8.3 is an immediate consequence of 4.3.2, 8.1 and 8.2.

8.4. Now let \mathscr{C} be an ergodic semigroup. We have the following generalization of a theorem of Schaefer [19].

THEOREM. Let B be an infinite matrix. $B(F(\mathscr{C})) \subseteq F(\mathscr{A})$ and $F(\mathscr{A}) - \lim Bx = F(\mathscr{C}) - \lim x$ for all $x \in F(\mathscr{C})$ if and only if

 $(8.4.1) \quad ||B|| < +\infty,$

(8.4.2)
$$F(\mathscr{A}) - \lim_{m} \sum_{n=0}^{\infty} b_{m,n} = 1, and$$

(8.4.3)
$$F(\mathscr{A}) - \lim_{m} b_{m,n} = 0$$
 for each n ,

(8.4.4)
$$||\tilde{A}_n \tilde{B}(\tilde{I} - \tilde{C})||_0 \to 0$$
 for each $C \in \mathscr{C}$.

Proof. Suppose that $B(F(\mathscr{C})) \subseteq F(\mathscr{A})$ and $F(\mathscr{A}) - \lim Bx = F(\mathscr{C}) - \lim x$ for each $x \in F(\mathscr{C})$. Then $||B|| < +\infty$ by 8.2 since $c_0 \subseteq F(\mathscr{C})$ and $F(\mathscr{A}) \subseteq \mathscr{M}$. 8.4.2 follows because

$$u \in F(\mathscr{C}), F(\mathscr{C}) - \lim u = 1 \text{ and } (Bu)_m = \sum_{n=0}^{\infty} b_{m,n}$$

8.4.3 follows by similar reasoning applied to the sequence $e^n = (0, \ldots, 0, 1, 0, \ldots)$ where 1 appears in the *n*th position. 8.4.4 is an immediate consequence of 8.3 and the fact that $F(\mathcal{C}) - \lim (x - Cx) = 0$ for all x (4.3.5).

Conversely suppose that 8.4.1 through 8.4.4 are satisfied. By 8.4.3, $F(\mathscr{A}) - \lim Be^n = 0$ for all *n*. Hence $F - \lim Bx = 0$ whenever $x \in c_0$ since *B* is linear and $||B|| < +\infty$. By 8.4.4 and Lemma 8.3 $F(\mathscr{A}) - \lim B(x - Cx) = 0$ for all *x*. We now use the linearity and continuity of *B* to conclude from 4.3.5 that $F(\mathscr{A}) - \lim Bx = 0$ whenever $F(\mathscr{A}) - \lim x = 0$. This, combined with 8.4.3 proves the theorem.

Remark. Condition 8.4.4 has a concrete reformulation, for if D is any infinite matrix satisfying $D(c_0) \subseteq c_0$ then it is easily seen that

$$||\tilde{D}||_0 = \lim_m \sup \sum_{n=0}^{\infty} |d_{m,n}|.$$

8.5. COROLLARY. $B(c) \subseteq F(\mathscr{A})$ and $F(\mathscr{A}) - \lim Bx = \lim x \text{ for all } x \in c$ if and only if (8.5.1) $||B|| < +\infty$,

(8.5.2) $F(\mathscr{A}) - \lim b_{m,n} = 0$ for all n, and

(8.5.3) $F(\mathscr{A}) - \lim_{m} \sum_{n=0}^{\infty} b_{m,n} = 1.$

Proof. We simply take $\mathscr{A} = \{I\}$ in Theorem 8.4.

Remark. This generalizes a theorem of J. P. King [14].

8.6. COROLLARY. $F(\mathscr{C}) \subseteq F(\mathscr{A})$ if and only if $||\tilde{A}_n(\tilde{I} - \tilde{C})||_0 \to 0$ for each $C \in \mathscr{C}$.

Proof. Take B = I in Theorem 8.4.

Remark. The corollary is Theorem 2.2 of [1] when both \mathscr{C} and \mathscr{A} are cyclic.

8.7. *Remark*. We do not include the corollary obtained by the choice $\mathscr{A} = \{I\}$ since a sharper result (viz. Theorem 6.2) has already been given.

References

- 1. R. Atalla, On the inclusion of a bounded convergence field in the space of almost convergent sequences, Glasgow Math. J. 31 (1972), 82–90.
- 2. D. Borwein, A logarithmic method of summability, J. London Math. Soc. 33 (1958), 212-220.
- 3. C. Chou, The multipliers for the space of almost convergent sequences, Illinois J. Math. 16 (1972), 687-694.
- 4. C. Chou and J. P. Duran, Multipliers for the space of almost-convergent functions on a semigroup, Proc. Amer. Math. Soc. 39 (1973), 125-128.
- 5. M. M. Day, Means for the bounded functions and ergodicity of bounded representations of semigroups, Trans. Amer. Math. Soc. 69 (1950), 276-291.
- D. Dean and R. A. Raimi, Permutations with comparable sets of invariant means, Duke Math. J. 27 (1960), 467-480.
- W. F. Eberlein, Abstract ergodic theorems and weak almost periodic functions, Trans. Amer. Math. Soc. 67 (1949), 217-240.
- 8. Banach-Hausdorff limits, Proc. Amer. Math. Soc. 1 (1950), 662-665.
- 9. —— On Hölder summability of infinite order, Notices Amer. Math. Soc. 19 (1972), A-164; Abstract #691-46-21.
- W. H. J. Fuchs, On the "collective Hausdorff method", Proc. Amer. Math. Soc. 1 (1950), 26-30.
- 11. V. Garten and K. Knopp, Ungleichungen zwischen Mittlewerten von Zahlenfolgen und Funktionen, Math. Z. 42 (1937), 365–388.
- 12. G. H. Hardy, Divergent series (Oxford University Press, Oxford, 1949).
- 13. M. Jerison, On the set of generalized limits of bounded sequences, Can. J. Math. 9 (1957), 79–89.
- 14. J. P. King, Almost summable sequences, Proc. Amer. Math. Soc. 17 (1966), 1219-1225.
- 15. G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167-190.
- G. M. Petersen, Almost convergence and uniformly distributed sequences, Quart. J. Math. Oxford Ser. 2, 7 (1956), 188-191.
- 17. R. A. Raimi, On Banach's generalized limits, Duke Math. J. 26 (1959), 17-28.

386

- 18. Invariant means and invariant matrix methods of summability, Duke Math. J. 33 (1966), 1–12.
- 19. P. Schaefer, Matrix transformations of almost convergent sequences, Math. Z. 112 (1969), 321-325.

University of Puerto Rico, Mayaguez, Puerto Rico