ALMOST CONVERGENCE, SUMMABILITY AND ERGODICITY

J. PETER DURAN

1. Introduction. 1.1. The notion of almost convergence introduced by Lorentz [15] has been generalized in several directions (see, for example $[\mathbf{1 ; 8}$; $\mathbf{1 1 ; 1 4 ; 1 7]) . ~ I t ~ i s ~ t h e ~ p u r p o s e ~ o f ~ t h i s ~ p a p e r ~ t o ~ g i v e ~ a ~ g e n e r a l i z a t i o n ~ b a s e d ~ o n ~ t h e ~}$ original definition in terms of invariant means. This is effected by replacing the shift transformation by an "ergodic" semigroup \mathscr{A} of positive regular matrices in the definition of invariant mean. The resulting " \mathscr{A}-invariant means" give rise to a summability method which we dub \mathscr{A}-almost convergence.

In section 3 we study the set $L(\mathscr{A})$ of \mathscr{A}-invariant means. We show that there is a sublinear functional P_{+}on the space of bounded sequences such that each member of $L(\mathscr{A})$ may be regarded as a Hahn-Banach extension with respect to P_{+}of the limit functional on the space of convergent sequences. This generalizes results in $[\mathbf{8 ; 1 3 ; 1 7}]$. In section 4 we characterize the space of \mathscr{A}-almost convergent sequences, unifying and generalizing results in $[\mathbf{1 ; 8 ; 1 5 ;}$ 17].

Matrix methods stronger than \mathscr{A}-almost convergence are characterized in section 5 . We prove also that when \mathscr{A} is suitably restricted such methods always exist. Section 6 is devoted to examples. Here we use a theorem of Eberlein [9] to show that the logarithmic method contains the collective Hausdorff method for bounded sequences.

In section 7 we generalize results in [3] and [4] concerning the multiplicative behaviour of the \mathscr{A}-almost convergent sequences. Section 8 is concerned with matrix transformations of spaces of almost convergent sequences (cf. [19]).

The author wishes to thank Professor W. F. Eberlein for several helpful discussions.
2. Preliminaries. 2.1. We denote by \mathscr{M} the Banach spaces of all bounded sequences of real number $x=\left(x_{0}, x_{1}, \ldots\right)$ with norm

$$
\|x\|=\sup _{n}\left|x_{n}\right|
$$

Each member of \mathscr{M} has a continuous extension to a function on $\beta \mathbf{N}$, the Stone-Čech compactification of the nonnegative integers. The space $C(\beta \mathbf{N})$ of all continuous real-valued functions on $\beta \mathbf{N}$ is thus naturally isomorphic to \mathscr{M}. We shall therefore not distinguish between these spaces in the sequel.

Received October 24, 1972.

For each $x \in \mathscr{M}$ we write $\lim \sup x($ respectively $\lim \inf x)$ for $\lim \sup _{n} x_{n}$ (respectively, $\lim _{\inf }^{n} x_{n}$). If $x \in c$, the space of convergent sequences, we write $\lim x$ for $\lim _{n} x_{n}$. We denote by c_{0} the space of all sequences which converge to 0 . If $x \in \mathscr{M},|x|$ denotes the sequence defined by $|x|_{n}=\left|x_{n}\right|$.
2.2 For $x \in \mathscr{M}$, let \tilde{x} denote the restriction of x to $\beta \mathbf{N} \backslash \mathbf{N}$. The map $x \mapsto \tilde{x}$ is a continuous surjection of \mathscr{M} onto $C(\beta \mathbf{N} \backslash \mathbf{N})$. If we denote the natural norm in $C(\beta \mathbf{N} \backslash \mathbf{N})$ by $\left\|\left\|\|_{0} \text { then we have }\right\| \tilde{x}\right\|_{0}=\lim \sup |x|$.

Now let A be a positive regular matrix. A may be thought of as a bounded linear operator on \mathscr{M}. Since A is regular $A\left(c_{0}\right) \subseteq c_{0}$. Hence A induces an operator \tilde{A} on $C(\beta \mathbf{N} \backslash \mathbf{N})$ defined by $\tilde{A} \tilde{x}=\widetilde{A x}$. It has the following easily verifiable properties.

$$
\begin{align*}
& \tilde{A} \geqq 0 \text { (i.e. } \tilde{A} \tilde{x} \geqq 0 \text { whenever } \tilde{x} \geqq 0) \tag{2.2.1}\\
& \tilde{A} \tilde{u}=\tilde{u} \text { where } u=(1,1, \ldots) \\
& \|\tilde{A}\|_{0}=1
\end{align*}
$$

2.3. A functional $\phi \in \mathscr{M}^{*}$ is called a mean if $\phi(u)=1, \phi \geqq 0$ (i.e., $\phi(x) \geqq 0$ whenever $x \geqq 0$). By the Riesz Representation Theorem we may think of a mean as a probability measure on $\beta \mathbf{N}$. We shall denote by L the set of all means supported in $\beta \mathbf{N} \backslash \mathbf{N}$. Again by the Riesz Representation Theorem we may think of L as contained in $C(\beta \mathbf{N} \backslash \mathbf{N})^{*}$. The viewpoint we adopt will be dictated by convenience.
3. \mathscr{A}-invariant means. 3.1. Let \mathscr{A} be a semigroup of positive regular matrices. Multiplication can be thought of either as matrix multiplication or as composition of operators on \mathscr{M}.

Definition. An \mathscr{A}-invariant mean is an element ϕ of L satisfying $\phi(x)=$ $\phi(A x)$ for all $A \in \mathscr{A}$ and $x \in \mathscr{M}$. We denote by $L(\mathscr{A})$ the (possibly empty) set of all \mathscr{A}-invariant means. \mathscr{A} is said to be admissible if $L(\mathscr{A}) \neq \emptyset$.
3.2. In order to develop a theory with content we shall place certain regularity restrictions on the semigroup \mathscr{A}. Specifically, we shall usually demand the \mathscr{A} be ergodic in the following sense:

Definition. \mathscr{A} is ergodic if there is a net $\left\{A_{\alpha}\right\}$ of matrix operators on \mathscr{M}, called a system of averages for \mathscr{A}, which satisfies:
(3.2.1) for each α and each $x \in \mathscr{M}, \widetilde{A}_{\alpha} \tilde{x}$ is in the closed convex hull (in $C(\beta \mathbf{N} \backslash \mathbf{N}))$ of the set $\{\tilde{A} \tilde{x} \mid A \in \mathscr{A}\}$, and
(3.2.2) $\quad \lim _{\alpha}\left\|\widetilde{A}_{\alpha} \tilde{x}-\widetilde{A}_{\alpha} \tilde{A} \tilde{x}\right\|_{0}=0$ for each $A \in \mathscr{A}$ and $x \in \mathscr{M}$.

Our definition is derived from the definition of an ergodic semigroup given in [7]. It follows that if \mathscr{A} is abelian or, more generally amenable, then \mathscr{A} is ergodic [5].

We assume for the rest of this section that \mathscr{A} is ergodic.
3.3. We wish to characterize the set $L(\mathscr{A})$. As a first step in this direction let l denote the functional defined on c by $l(x)=\lim x$. It will turn out that there is a sublinear functional defined on \mathscr{M} such that $L(\mathscr{A})$ consists precisely of all the Hahn-Banach extensions of l with respect to this functional.

Definition. For $x \in \mathscr{M}$ we define

$$
\begin{aligned}
& P_{+}(x)=\lim _{\alpha} \sup \lim \sup A_{\alpha} x \\
& P_{-}(x)=\lim _{\alpha} \inf \lim \inf A_{\alpha} x .
\end{aligned}
$$

We summarize the elementary properties of P_{+}and P_{-}in the following
Lemma.

$$
\begin{align*}
& P_{ \pm}(x) \geqq 0 \text { if } x \geqq 0 \tag{3.3.1}\\
& P_{ \pm}(a x)=a P_{ \pm}(x) \text { if } a \geqq 0, a \in \mathbf{R} \\
& P_{+}(x+y) \leqq P_{+}(x)+P_{+}(y) \\
& P_{ \pm}(x-A x)=0 \text { for all } A \in \mathscr{A}, x \in \mathscr{M}, \text { and } \\
& P_{+}(x)=-P_{-}(-x)
\end{align*}
$$

Proof. We prove only 3.3.4.

$$
\begin{aligned}
\mid P_{+} & (x-A x)\left|\leqslant \lim _{\alpha} \sup \lim \sup \right| A_{\alpha} x-A_{\alpha} A x \mid \\
& =\lim _{\alpha} \sup \left\|\widetilde{A}_{\alpha} \tilde{x}-\widetilde{A}_{\alpha} \tilde{A} \tilde{x}\right\|_{0} \\
& =0
\end{aligned}
$$

by 3.2 .2 . Similarly, $P_{-}(x-A x)=0$.
3.4. Theorem. Let $\phi \in \mathscr{M}^{*}$. Then $\phi \in L(\mathscr{A})$ if and only if $P_{-}(x) \leqq \phi(x) \leqq P_{+}(x)$ for each $x \in \mathscr{M}$.

Proof. Suppose that $\phi \in L(\mathscr{A})$. If $x \in \mathscr{M}$, then $\phi(x)=\phi\left(A_{\alpha} x\right)$ because by 3.2.1 $\widetilde{A}_{\alpha} \tilde{x}$ is a uniform limit of convex combinations of functions of the form $\tilde{A} \tilde{x}, A \in \mathscr{A}$ and ϕ is supported in $\beta \mathbf{N} \backslash \mathbf{N}$. Moreover since ϕ is a mean

$$
\phi\left(A_{\alpha} x\right) \leqq \phi(\sup \{\widetilde{A} \tilde{x}(t) \mid t \in \beta \mathbf{N} \backslash \mathbf{N}\} \cdot u)=\lim \sup A_{\alpha} x .
$$

Since α is arbitrary we conclude that $\phi(x) \leqq P_{+}(x)$. 3.3.5 now shows that $P_{-}(x) \leqq \phi(x)$.

Suppose conversely that $\phi \in \mathscr{M}^{*}$ and $P_{-}(x) \leqq \phi(x) \leqq P_{+}(x)$ for all $x \in \mathscr{M}$. If $x \geqq 0$ we have $0 \leqq P_{-}(x) \leqq \phi(x)$. Hence $\phi \geqq 0$. Since $P_{ \pm}(u)=1$, ϕ is a mean. The \mathscr{A}-invariance of ϕ follows from 3.3.4. That ϕ is supported in
$\beta \mathbf{N} \backslash \mathbf{N}$ is a consequence of the easily verified fact that $P_{ \pm}(x)=0$ if $x \in c_{0}$. Hence $\phi \in L(\mathscr{A})$.

Several convenient corollaries follow from the preceding theorem.
3.5. Corollary. $L(\mathscr{A})$ consists exactly of all the Hahn-Banach extensions of l to \mathscr{M} with respect to P_{+}. In particular, $L(\mathscr{A})$ is not empty.
3.6. Corollary. (a) $P_{+}(x)=\lim _{\alpha} \lim \sup A_{\alpha} x=\inf _{\alpha} \lim \sup A_{\alpha} x$.
(b) $P_{-}(x)=\lim _{\alpha} \lim \inf A_{\alpha} x=\sup _{\alpha} \lim \inf A_{\alpha} x$.

Proof. We prove only (a). It suffice to show that $P_{+}(x)=\inf _{\alpha} \lim \sup A_{\alpha} x$. The inequality \geqq being obvious, we need only show that $P_{+}(x) \leqq \lim \sup A_{\alpha} x$ for each α. This follows from the proof of Theorem 3.4 and Corollary 3.7.
3.7. Corollary. For each $x \in \mathscr{M}, P_{+}(x)=\sup \{\phi(x) \mid \phi \in L(\mathscr{A})\}$ and $P_{-}(x)=\inf \{\phi(x) \mid \phi \in L(\mathscr{A})\}$.

Proof. If $\phi \in L(\mathscr{A})$ then by Theorem $3.4 \phi(x) \leqq P_{+}(x)$ so $P_{+}(x) \geqq \sup$ $\{\phi(x) \mid \phi \in L(\mathscr{A})\}$. However, the Hahn-Banach Theorem and Corollary 3.5 imply that for given x we may choose $\phi \in L(\mathscr{A})$ such that $\phi(x)=P_{+}(x)$. This proves the first half of the corollary. The second half is proved similarly.

The idea of the above proof is found in [8].
4. \mathscr{A}-almost convergence. 4.1. Let \mathscr{A} be an admissible semigroup of positive regular matrices.

Definition. $x \in \mathscr{M}$ is said to be \mathscr{A}-almost convergent to a real number a if $\phi(x)=a$ for all $\phi \in L(\mathscr{A})$. This is written $F(\mathscr{A})-\lim x=a$ or simply $F-\lim x=a$ when the semigroup is clear from the context. The space of all \mathscr{A}-almost convergent sequences is denoted by $F(\mathscr{A})$ or simply F.

It is clear that $F=F_{0} \oplus \mathbf{R} u$ where F_{0} consists of all sequences which are \mathscr{A}-almost convergent to 0 and \mathbf{R} is the set of real numbers. F_{0} is a closed subspace of \mathscr{M} since it is an intersection of kernels of continuous linear functionals. Hence F is closed as well. Note also that both F and F_{0} are invariant under \mathscr{A}.

If $x \in \mathscr{M}$ is summable by some matrix $A \in \mathscr{A}$, say $\lim A x=a$, then $F(\mathscr{A})-\lim x=a$ as is easily seen. Hence the matrices in \mathscr{A} are consistent for bounded sequences.
4.2. The archetypal example of \mathscr{A}-almost convergence is, of course, almost convergence itself. Here \mathscr{A} consists of the iterates of the shift matrix S defined by $(S x)_{m}=x_{m+1}$. Another example is Banach-Hausdorff summability [8]. These and other examples will be discussed more fully below.
4.3. Now suppose that \mathscr{A} is ergodic. We are in a position to characterize the \mathscr{A}-almost convergent sequences. If $E \subseteq \mathscr{M}$, let $\overline{\text { sp }} E$ denote the closed span of E. If $E \subseteq C(\beta \mathbf{N} \backslash \mathbf{N})$ let $\overline{\mathrm{sp}}^{0} E$ denote its closed span in $C(\beta \mathbf{N} \backslash \mathbf{N})$.

Theorem. Let $a \in \mathbf{R}$. The following conditions on a sequence $x \in \mathscr{M}$ are equivalent.
(4.3.2) $\lim _{\alpha}\left\|\widetilde{A}_{\alpha} \tilde{x}-a \tilde{u}\right\|_{0}=0$.
(4.3.4) $\tilde{x} \in \overline{\operatorname{sp}}^{0}\{\tilde{y}-\tilde{A} \tilde{y} \mid y \in \mathscr{M}, A \in \mathscr{A}\}+a \tilde{u}$.
(4.3.5) $x \in \overline{\mathrm{sp}}\left(c_{0}+\{y-A y \mid y \in \mathscr{M}, A \in \mathscr{A}\}\right)+a u$.

Proof. The equivalence of the first three conditions follows immediately from the definitions of $F-\lim$ and $P_{ \pm}$and from Corollary 3.7. For the remainder of the proof we assume without loss of generality that $a=0$.

Suppose now that 4.3.2 is satisfied, i.e. suppose that $\widetilde{A}_{\alpha} \widetilde{x} \rightarrow 0$ in the norm of $C(\beta \mathbf{N} \backslash \mathbf{N})$. Then $\tilde{x}=\lim _{\alpha}\left(\tilde{x}-\widetilde{A}_{\alpha} \tilde{x}\right)$ so that 4.3 .4 will follow if we can show that for each $\alpha, \tilde{x}-\widetilde{A}_{\alpha} \tilde{x} \in \overline{\operatorname{sp}}^{0}\{\tilde{y}-\tilde{A} \tilde{y} \mid y \in \mathscr{M}, A \in \mathscr{A}\}$. By 3.2.1, $\widetilde{A}_{\alpha} \tilde{x}$ is a limit of convex combinations of images of \tilde{x} under members of \mathscr{A}. If $\sum \alpha_{i} \widetilde{A}_{i} \tilde{x}$ is such a combination then

$$
\tilde{x}-\sum \alpha_{i} \widetilde{A}_{i} \tilde{x}=\sum \alpha_{i}\left(\tilde{x}-\widetilde{A}_{i} \tilde{x}\right) \in \overline{\operatorname{sp}}^{0}\{\tilde{y}-\tilde{A} \tilde{y} \mid y \in \mathscr{M}, A \in \mathscr{A}\} .
$$

This proves 4.3.4.
To prove that 4.3.4 implies 4.3.5 suppose that

$$
\tilde{x} \in \overline{\operatorname{sp}}^{0}\{\tilde{y}-\tilde{A} \tilde{y} \mid y \in \mathscr{M}, A \in \mathscr{A}\}
$$

It will suffice to produce a sequence in $c_{0}+\operatorname{sp}\{y-A y \mid y \in \mathscr{M}, A \in \mathscr{A}\}$ which converges weakly to x. (Here sp denotes linear span.)

Now clearly there is a sequence $\left\{w^{n}\right\} \subseteq \operatorname{sp}\{y-A y \mid y \in \mathscr{M}, A \in \mathscr{A}\}$ such that $\left\|\tilde{x}-\tilde{w}^{n}\right\|_{0} \rightarrow 0$ and we can assume that $\left\|\tilde{w}^{n}\right\|_{0} \leqq\|x\|+1 / 2$.

For each n we can choose an integer K_{n} such that $\left|w_{k}{ }^{n}\right| \leqq| | x \|+1$ whenever $k \geqq K_{n}$. Further, $\left\{K_{n}\right\}$ can be chosen to increase to infinity.

Define z^{n} by

$$
z_{k}^{n}= \begin{cases}x_{k}-w_{k}^{n}, & \text { if } k<K_{n} \\ 0, & \text { if } k \geqq K_{n} .\end{cases}
$$

Clearly $z^{n} \in c_{0}$ for each n.
Our object is to show that $z^{n}+w^{n}$ converges to x weakly in \mathscr{M}. For this we must prove that $\left\{z^{n}+w^{n}\right\}$ is uniformly bounded and converges to x pointwise on $\beta \mathbf{N}$.

Now

$$
\left|z_{k}^{n}+w_{k}^{n}\right|=\left\{\begin{array}{l}
\left|x_{k}\right|, \text { if } k<K_{n} \\
\left|w_{k}^{n}\right|, \text { if } k \geqq K_{n} .
\end{array}\right.
$$

Hence $\left\|z^{n}+w^{n}\right\| \leqq\|x\|+1$ for all n.

Let $t \in \beta \mathbf{N} \backslash \mathbf{N}$ be fixed. Then $z^{n}(t)+w^{n}(t)=w^{n}(t) \rightarrow x(t)$. If $k \in \mathbf{N}$ is fixed, choose N so that $K_{n} \geqq k$ whenever $n \geqq N$. Then $z_{k}{ }^{n}+w_{k}^{n}=x_{k}$ for $n \geqq N$. It follows that $z^{n}+w^{n} \rightarrow x$ pointwise on $\beta \mathbf{N}$.

To see that 4.3.5 implies 4.3.1, let $\phi \in L(\mathscr{A}) . \phi\left(c_{0}\right)=\{0\}$ because ϕ is supported in $\beta \mathbf{N} \backslash \mathbf{N}$. Also $\phi(y-A y)=0$ for all $y \in \mathscr{M}$ and $A \in \mathscr{A}$. Linearity and continuity of ϕ now imply that $\phi(x)=0$. Since ϕ is arbitrary, $F-\lim$ $x=0$.
4.4. Remark. It is clear that in 4.3 .4 and 4.3 .5 we may replace \mathscr{A} by any subset of \mathscr{A} which generates it as a semi-group.
5. Matrices containing \mathscr{A}-almost convergence. 5.1. Definition. Suppose that \mathscr{A} is admissible and B is a regular matrix. B is said to contain \mathscr{A}-almost convergence if $c_{B} \supseteq F$ where $c_{B}=\{x \in \mathscr{M} \mid B x \in c\}$ is the bounded convergence field of B.
5.2. Theorem. Let \mathscr{A} be ergodic. The regular matrix B contains \mathscr{A}-almost convergence if and only if each matrix of the form $B(I-A), A \in \mathscr{A}$, maps \mathscr{M} into c_{0}. Moreover, in this case $\lim B x=F(\mathscr{A})-\lim x$ for each $x \in F(\mathscr{A})$. (I is the identity matrix.)

Remark. It will be clear from the proof and Remark 4.4 that it suffices to consider only those matrices $B(I-A)$ where A lies in some set of generators for \mathscr{A}.
5.3. Recall that a matrix is a Schur matrix if it maps \mathscr{M} into c. We shall need the following elementary facts about Schur matrices (see [16]).
(5.3.1) If $D=\left(d_{m, n}\right)$ is a Schur matrix, then $\lim _{m} d_{m, n}=\delta_{n}$ exists for each n and $\lim D x=\sum_{n=0}^{\infty} \delta_{n} x_{n}$ for each $x \in \mathscr{M}$.
(5.3.2) A matrix D maps \mathscr{M} into c_{0} if and only if

$$
\lim _{m} \sum_{n=0}^{\infty}\left|d_{m, n}\right|=0
$$

5.4. We recall also the fact that a matrix D maps c_{0} into itself if and only if
(5.4.1) $\quad\|D\|=\sup _{m} \sum_{n=0}^{\infty}\left|d_{m, n}\right|<+\infty$, and
(5.4.2) $\lim _{m} d_{m, n}=0$ for each n.
5.5. Proof of Theorem 5.2. Suppose that $c_{B} \supseteq F$. Since $x-A x \in F_{0}$ for each x by 4.3.5, $B(I-A)(\mathscr{M}) \subseteq c$, i.e. $B(I-A)$ is a Schur matrix. Now $B(I-A)\left(c_{0}\right) \subseteq c_{0}$ because B, A and I are regular. Hence $\lim _{m}\{B(I-A)\}_{m, n}=$ 0 for each n by 5.4.2. It follows from 5.3.1 that $B(I-A)(\mathscr{M}) \subseteq c_{0}$.

Suppose conversely that $B(I-A)(\mathscr{M}) \subseteq c_{0}$ for each $A \in \mathscr{A}$. Since B is regular it maps $c_{0}+\{x-A x \mid x \in \mathscr{M}, A \in \mathscr{A}\}$ into c_{0}. It follows from 4.3.5 and the fact that B is a bounded operator on \mathscr{M} that $B\left(F_{0}\right) \subseteq c_{0}$. Hence
$B(F) \subseteq c$ and $F-\lim x=\lim B x$ for all $x \in F$ since $F=F_{0} \oplus \mathbf{R} u$ and B is regular.

Remark. It is an immediate consequence of Theorem 5.2 and 5.3.2 that B sums every almost convergent sequence if and only if B is strongly regular. This is a theorem of Lorentz [15]. (Cf. also [18; 1].)
5.6. Theorem 5.2 gives a necessary and sufficient condition for a regular matrix to contain \mathscr{A}-almost convergence. However, it leaves unanswered the question of whether there are any such matrices. We have been unable to answer this question in general. We give a partial answer in the following

Theorem. Let A be a positive regular matrix and assume that A is triangular, i.e., $a_{m, n}=0$ when $m<n$. Let $\mathscr{A}=\left\{A^{n} \mid n=0,1, \ldots\right\}$. Then there is a regular matrix B which contains \mathscr{A}-almost convergence. Moreover B may be chosen to be positive.

Remark. We must produce a matrix B such that $B(I-A)(\mathscr{M}) \subseteq c_{0}$. We shall assume without loss of generality that $\sum_{n=0}^{\infty} a_{m, n} \leqq 1, a_{m, m}<1$ for each m because A differs from such a matrix only by a matrix which maps \mathscr{M} into c_{0}.
5.7. The proof of the theorem will be preceded by a definition and two lemmas.

Definition. A matrix D satisfies condition (K) if
(5.7.1) $\quad d_{m, n}=0$ for $m<n$,
(5.7.2) $\quad d_{m, m}>0$ for all m, and
(5.7.3) $\quad d_{m, n} \leqq 0$ for $0 \leqq n<m$.

Lemma. If D satisfies condition (K) then D^{-1} is positive.
Proof. It suffices to prove the lemma for finite (square) matrices. We do this by induction on the size of the matrix. The lemma is obvious for 1×1 matrices.

Now suppose the lemma is true for $k \times k$ matrices. Let D be a $(k+1) \times$ $(k+1)$ matrix satisfying (K). Let $C=D^{-1}$. Then C is triangular. Since the matrix obtained from C by deleting the last row and last column is the inverse of the matrix obtained from D by deleting the last row and last column and this latter matrix is a $k \times k$ matrix satisfying (K), it follows that $c_{i, j} \geqq 0$ for $i=0,1, \ldots, k-1$ and all j. Thus, it remains to show that $c_{k, j} \geqq 0$ for $j=0,1, \ldots, k$.

If $j=k, c_{k, j}=d_{k, k}^{-1}>0$.
Suppose that $j<k$. Then

$$
0=(D C)_{k, j}=\sum_{i=0}^{k} d_{k, i} c_{i, j}=\sum_{i=j}^{k} d_{k, i} c_{i, j}
$$

Hence

$$
d_{k, k} c_{k, j}=-\sum_{i=j}^{k-1} d_{k, i} c_{i, j}
$$

But for $j \leqq i \leqq k-1, c_{i, j} \geqq 0$ by induction while $d_{k, i} \leqq 0$ since D satisfies condition (K). Hence $d_{k, k} c_{k, j} \geqq 0$ and since $d_{k, k}>0, c_{k, j} \geqq 0$.
5.8. Now let $C=(I-A)^{-1}$. $I-A$ satisfies condition (K) so $C \geqq 0$ by Lemma 5.7.

Lemma. $\|C\|=\infty$.
Proof. Suppose $\|C\|$ were finite. Then $I-A$ would be an invertible transformation on \mathscr{M}. By 4.3.5 we would have $u \in F_{0}$. This is absurd.
5.9. Proof of Theorem 5.6. We claim first that for each $k=1,2, \ldots c_{n+k, n} \leqq$ $c_{n, n}$. For $k=1$ we have

$$
c_{n+1, n}=\frac{a_{n+1, n}}{1-a_{n+1, n+1}} c_{n, n} \leqslant c_{n, n}
$$

because $a_{n+1, n} \leqq 1-a_{n+1, n+1}$. Assuming the claim is true for $c_{n+1, n}, \ldots, c_{n+k-1, n}$, we have

$$
\begin{aligned}
c_{n+k, n} & =\frac{1}{1-a_{n+k, n+k}}\left\{a_{n+k, n} c_{n, n}+\ldots+a_{n+k, n+k-1} \cdot c_{n+k-1, n}\right\} \\
& \leqslant \frac{1}{1-a_{n+k, n+k}}\left\{a_{n+k, n}+\ldots+a_{n+k, n+k-1}\right\} c_{n, n} \leqslant c_{n, n},
\end{aligned}
$$

proving the claim.
Set $\gamma_{m}=\sum_{n=0}^{\infty} c_{m, n}$. By Lemma 5.8 there is an increasing sequence $\left\{m_{k}\right\}$ of positive integers such that $\gamma_{m k} \rightarrow \infty$. Define a matrix B by $b_{k, n}=c_{m k, n} / \gamma_{m k}$. Then clearly $B \geqq 0, \sum_{n=0}^{\infty} b_{k, n}=1$ for every k and $\lim _{k} b_{k, n}=0$ for every n by the claim and the choice of m_{k}. Thus B is a positive regular matrix. Moreover

$$
\sum_{n=0}^{\infty}\left|\{B(I-A)\}_{k, n}\right|=1 / \gamma_{m k} \rightarrow 0 .
$$

By the remark following Theorem 5.2 and 5.3.2, B contains \mathscr{A}-almost convergence.
5.10. Before giving some examples we draw a corollary from Theorem 5.6.

Corollary. If \mathscr{A} is generated by a single triangular matrix, then $L(\mathscr{A})$ is infinite dimensional.

More generally, if \mathscr{A} is an admissible semigroup such that there is a regular matrix containing \mathscr{A}-almost convergence, then $L(\mathscr{A})$ is infinite dimensional.

Proof. By Theorem 5.6, we need only prove the second statement. If $L(\mathscr{A})$ were finite dimensional, then F_{0} and hence F would have finite codimension
in \mathscr{M}. If B is a regular matrix such that $c_{B} \supseteq F$, then c_{B} would have finite codimension in \mathscr{M} also. However, it is well-known that there is no such regular matrix.
6. Examples. 6.1. Let \mathscr{A} consist of the positive regular Hausdorff matrices. Then \mathscr{A}-almost convergence coincides with the notion of Banach-Hausdorff summation introduced in [8]. (That any \mathscr{A}-invariant mean is a Banach limit follows from the fact that \mathscr{A} contains a strongly regular matrix.) The wellknown decomposition of a regular Hausdorff matrix into its positive and negative parts shows that any bounded sequence which is summed by some regular Hausdorff matrix is Banach-Hausdorff summable. Thus BanachHausdorff summation is a generalization of the collective Hausdorff method for bounded sequences.

Let H denote the Hölder-Cesaro matrix. Eberlein has announced the following surprising result [9]:
6.1.1. If A is any regular Hausdorff method, then

$$
\lim _{n}\left\|\widetilde{H}^{n}-\widetilde{H}^{n} \widetilde{A}\right\|_{0}=0
$$

The foregoing theorem states that the sequence $\left\{H^{n}\right\}$ of iterates of H is a system of averages for \mathscr{A}. Since H is itself a Hausdorff matrix, an immediate consequence of 6.1.1 is
6.1.2. The notions of Banach-Hausdorff summation and $\left\{H^{n}: n=0,1, \ldots\right\}$ almost convergence coincide.

Garten and Knopp [11] term a sequence $x H_{\infty}$-summable if $\lim _{n} \lim \inf H^{n} x=$ $\lim _{n} \lim \sup H^{n} x$. If follows that from 6.1.1 and 4.3.3 that a bounded sequence x is H_{∞}-summable if and only if it is Banach-Hausdorff summable. Thus H_{∞}-summation is a good deal stronger than ordinary Hölder summation for it sums any bounded sequence summed by any regular Hausdorff method.
6.2. The results of the preceding paragraph allow us to prove the following

Theorem. The regular matrix A contains Banach-Hausdorff summation if and only if

$$
\begin{equation*}
\lim _{m} \sum_{n=0}^{\infty}\left|\frac{n}{n+1} a_{m, n}-\sum_{l=n+1}^{\infty} \frac{a_{m, l}}{l+1}\right|=0 . \tag{6.2.1}
\end{equation*}
$$

For example, the logarithmic matrix $L^{(1)}$ defined by

$$
L_{m, n}^{(1)}=\left\{\begin{array}{cl}
\frac{1}{n \log m}, & \text { if } 1 \leqslant n \leqslant m \text { and } m>1 \\
0, & \text { otherwise }
\end{array}\right.
$$

is such a matrix.
Proof. Since Banach-Hausdorff summation coincides with $\left\{H^{n}: n=0,1, \ldots\right\}$ almost convergence, Theorem 5.2 shows that A contains Banach-Hausdorff
summation if and only if $A(I-H)(\mathscr{M}) \subseteq c_{0}$. A short calculation combined with 5.3 .2 shows that this is the case if and only if 6.2 .1 holds. That the logarithmic matrix is such a matrix is verified in a straightforward way.

Remarks. Fuchs has shown that there is no matrix which contains the collective Hausdorff method for all sequences [10]. Theorem 6.2 shows that for bounded sequences the situation is quite different - such matrices do indeed exist. Also, since H_{∞}-summation is strictly stronger than ordinary Hölder summation, the second part of the theorem generalizes (for bounded sequences) the classical theorem that logarithmic summation is stronger than Hölder summation (see [12]).

Borwein [2, Theorem 5] has shown that if x is any sequence summed by $L^{(1)}$ and A is any regular Hausdorff method, then x is summed by $L^{(1)} A$. The second part of the Theorem 6.2 shows that for bounded sequences we can say considerably more, viz. if x is a bounded sequence and A is any regular Hausdorff matrix, then $L^{(1)} x$ and $L^{(1)} A x$ differ only by a sequence which converges to 0 .
6.3. We say that a bounded sequence x is Banach-logarithmic $\left(B-L^{(1)}\right)$ summable to a if $\phi(x)=a$ whenever $\phi \in L$ has the property that $\phi(y)=$ $\phi\left(L^{(1)} y\right)$ for all $y \in \mathscr{M}$. This is simply almost convergence with respect to the semigroup generated by $L^{(1)}$.

The question now arises: "Which matrices contain $B-L^{(1)}$ summation?" Theorem 5.2 gives one kind of answer to this question. In order to give concrete examples, we define the logarithmic matrix of order k by

$$
L_{m, n}^{(k)}=\left\{\begin{array}{cl}
\frac{1}{n \log n \ldots \log _{k-1} n \cdot \log _{k} m}, & \text { if } k \leqslant n \leqslant m \\
0, & \text { otherwise }
\end{array}\right.
$$

Here $\log _{k} x$ is defined inductively as $\log _{1} x=\log x, \log _{k} x=\log _{k-1}(\log x)$.
We now have
6.4. Theorem. For each $k=1,2, \ldots, L^{(k+1)}$ contains $B-L^{(k)}$ summation. ($B-L^{(k)}$ summation is defined in the obvious way.)

Proof. Let $k>1$ be fixed. We must show that $L^{(k+1)}\left(I-L^{(k)}\right)$ maps \mathscr{M} into c_{0}. By 5.3.2 this means we must show that

$$
\lim _{m} \sum_{n=0}^{\infty}\left|L^{(k+1)}\left(I-L^{(k)}\right)_{m, n}\right|=0
$$

i.e.
(*) $\quad \lim _{m} \sum_{n=k+1}^{m} \left\lvert\, \frac{1}{n \ldots \log _{k} n \log _{k+1} m}\right.$

$$
\left.-\sum_{l=n}^{m} \frac{1}{l \ldots \log _{k} l \cdot \log _{k+1} m} \cdot \frac{1}{n \ldots \log _{k-1} n \log _{k} l} \right\rvert\,
$$

$$
=0
$$

Now the sum involved in $\left(^{*}\right)$ is

$$
\begin{equation*}
\frac{1}{\log _{k+1} m} \sum_{n=k+1}^{m} \frac{1}{n \ldots \log _{k-1} n}\left|\frac{1}{\log _{k} n}-\sum_{l=n}^{m} \frac{1}{l \ldots \log _{k-1} l\left(\log _{k} l\right)^{2}}\right| \tag{}
\end{equation*}
$$

For convenience, let us write

$$
f(x)=\frac{1}{x \cdot \log x \ldots \log _{k-1} x\left(\log _{k} x\right)^{2}}
$$

Then

$$
\begin{aligned}
\left({ }^{* *}\right) & \leqslant \frac{1}{\log _{k+1} m} \sum_{n=k+1}^{m} \frac{1}{n \ldots \log _{k-1} n} \\
& \left\{\left|\frac{1}{\log _{k} n}-\int_{n}^{m} f(x) d x\right|+\left|\sum_{l=n}^{m} f(l)-\int_{n}^{m} f(x) d x\right|\right\} \\
& \leqslant \frac{1}{\log _{k+1} m}\left\{\frac{1}{\log _{k} m} \sum_{n=k+1}^{m} \frac{1}{n \ldots \log _{k-1} n}+\sum_{n=k+1}^{\infty} \frac{1}{n^{2} \ldots\left(\log _{k} n\right)^{2}}\right\} \\
& \sim \frac{1}{\log _{k+1} m} \rightarrow 0 \text { as } m \rightarrow \infty .
\end{aligned}
$$

6.5. The question of whether there is a matrix which contains $B-L^{(k)}$ summability for all k is answered by the following general

Theorem. Let $\left\{A^{(n)}\right\}$ be a sequence of positive regular triangular matrices. Let \mathscr{A}_{n} be the semigroup generated by $A^{(n)}$ and assume that $F\left(\mathscr{A}_{n+1}\right) \supseteq F\left(\mathscr{A}_{n}\right)$ for $n=1,2, \ldots$ Then there is a regular matrix B such that $c_{B} \supseteq F\left(\mathscr{A}_{n}\right)$ for each n.

Proof. Let $C^{(s)}=I-A^{(s)}$. By Theorem 5.6 there are positive regular matrices $B^{(k)}$ such that $B^{(k)} C^{(s)}(\mathscr{M}) \supseteq c_{0}$ for $s=1, \ldots, k$. Let us write $b(m, n ; k)$ for $B_{m, n}{ }^{(k)}$.

Choose m_{1} such that
(a) $\quad b\left(m_{1}, 1 ; 1\right) \leqslant 2^{-1}$,
(b) $\quad \sum_{n=0}^{\infty} b\left(m_{1}, n ; 1\right) \geqslant 2^{-1}$, and
(c) $\quad \sum_{n=0}^{\infty}\left|\left(B^{(1)} C^{(1)}\right)_{m_{1}, n}\right| \leqslant 2^{-1}$.

Now suppose that m_{1}, \ldots, m_{k-1} have been chosen so that for $j=1, \ldots$, $k-1$
(a^{\prime}) $\quad b\left(m_{j}, i ; j\right) \leqslant 2^{-j}$ for $1 \leqslant i \leqslant j$,
(b^{\prime}) $\quad \sum_{n=0}^{\infty} b\left(m_{j}, n ; j\right) \geqslant \frac{1}{j+1}$, and
(c') $\quad \sum_{n=0}^{\infty}\left|\left(B^{(j)} C^{(i)}\right)_{m_{j}, n}\right| \leqslant 2^{-j}$ for $1 \leqslant i \leqslant j$.

It is easy to see that m_{k} can then be chosen so that $\left(a^{\prime}\right),\left(b^{\prime}\right)$ and $\left(c^{\prime}\right)$ are satisfied for $j=1, \ldots, k$.

Set $b(i, n)=b\left(m_{i}, n ; i\right)$. Then clearly B is regular and $B C^{(s)}(\mathscr{M}) \subseteq c_{0}$ for all s.
7. Multipliers. 7.1. Let \mathscr{A} be an admissible semigroup. We shall suppose throughout this section that there is at least one matrix which contains \mathscr{A}-almost convergence.

Definition. $x \in \mathscr{M}$ is called a multiplier if F if $x y \in F$ whenever $y \in F$. (Multiplication is coordinatewise.) We denote the set of multipliers of F by \mathscr{M}_{F}.

Note that $\mathscr{M}_{F} \subseteq F$ because $u \in F$.
It is the purpose of this section to characterize the space \mathscr{M}_{F}. When F consists of the sequences which are almost convergent in the ordinary sense, this has been done by Chou [3] and Chou and the author [4]. The results we obtain are direct generalizations of these theorems.
7.2. Theorem. If $x \in \mathscr{M}_{F}$ and $y \in F$, then

$$
F-\lim x y=(F-\lim x)(F-\lim y) .
$$

Proof. Let A by any member of \mathscr{A}. It suffices to show that for all $z \in \mathscr{M}$, $F-\lim x(z-A z)=0$

Let B be any regular matrix such that $c_{B} \subseteq F$. Since $x(z-A z) \in F$, $B(x(z-A z)) \in c$ for all $z \in \mathscr{M}$. We must show that in fact $B(x(z-A z)) \in c_{0}$ for all $z \in \mathscr{M}$. An application of the second part of Theorem 5.2 will then give the desired result.

Let $M[x]$ be the matrix with entries $x_{m} \delta_{m, n}$ where $\delta_{m, n}$ is the Kronecker delta. Then $B(x \cdot(z-A z))=B \cdot M[x] \cdot(I-A)(z)$. Thus $B \cdot M[x] \cdot(I-A)$ is a Schur matrix. Hence by 5.3 .1 and 5.4 .2 we will be done if we can show that $B \cdot M[x] \cdot(I-A)\left(c_{0}\right) \subseteq c_{0}$. This, however is obvious since $B, M[x]$ and $I-A$ each map c_{0} into itself.
7.3. If $\phi \in L$, let supp ϕ denote the support of ϕ.

Definition. $K^{F}=\bar{U}\{\operatorname{supp} \phi \mid \phi \in L(\mathscr{A})\} . K^{F}$ is called the support set of the method F.

If $B \subseteq \mathbf{N}$ we denote by B^{*} the closure of B in $\beta \mathbf{N}$ minus B itself. χ_{B} is the characteristic sequence (function) of B.
7.4. Lemma. $K^{F}=\cap\left\{B^{*} \mid B \subseteq \mathbf{N}\right.$ and $\left.F-\lim \chi_{B}=1\right\}$

Proof. Suppose that $B \subseteq \mathbf{N}$ and $F-\lim \chi_{B}=1$. Then B^{*} is a closed set in $\beta \mathbf{N} \backslash \mathbf{N}$ and $\phi\left(B^{*}\right)=\phi\left(\chi_{B}\right)=1$ for each $\phi \in L(\mathscr{A})$. Hence $\operatorname{supp} \phi \subseteq B^{*}$ and $K^{F} \subseteq B^{*}$.

Now suppose that $t \in \beta \mathbf{N} \backslash \mathbf{N}$ and $t \notin K^{F}$. Since K^{F} is compact and the sets
$\left\{B^{*} \mid B \subseteq \mathbf{N}\right\}$ form a basis for the topology of $\beta \mathbf{N} \backslash \mathbf{N}$, there is a set $B \subseteq \mathbf{N}$ such that B^{*} contains K^{F} but not t. If $\phi \in L(\mathscr{A})$ then $\phi\left(\chi_{B}\right)=\phi\left(B^{*}\right)=1$ so $F-\lim \chi_{B}=1$. It follows that

$$
t \notin \cap\left\{B^{*} \mid B \subseteq \mathbf{N}, F-\lim \chi_{B}=1\right\}
$$

7.5. We are now in a position to prove the following

Theorem. The following conditions on a sequence $x \in \mathscr{M}$ are equivalent:
(7.5.1) $\quad x \in \mathscr{M}_{F}$ and $F-\lim x=a$,
(7.5.2) $\quad F-\lim (x-a u)^{2}=0$,
(7.5.3) $\quad \tilde{x} \equiv a$ on K^{F},
(7.5.4) For each $\epsilon>0$ the characteristic function of the set $\left\{n:\left|x_{n}-a\right| \leqq \epsilon\right\}$ is \mathscr{A}-almost convergent to 1 .

Proof. That 7.5.1 implies 7.5.2 follows immediately from Theorem 7.2.
That 7.5.2 implies 7.5.3 is obvious since $(x-a u)^{2}$ is a nonnegative continuous function and each $\phi \in L(\mathscr{A})$ is a regular Borel measure.

Now suppose that $\tilde{x} \equiv a$ on K^{F}.
Let $y \in F$, say $F-\lim y=b$. Then if $\phi \in L(\mathscr{A})$,

$$
\phi(x y)=\int_{\operatorname{supp} \phi} \tilde{x} \tilde{y} d \phi=a \int_{\operatorname{supp} \phi} y d \phi=a \cdot \phi(y)=a b .
$$

Thus $x y \in F$ and $x \in \mathscr{M}_{F}$. Taking $y=u$ in the above computation we see that $F-\lim x=a$.

The equivalence of 7.5.3 and 7.5.4 is proved exactly as in [3].
7.6. As in [3], we have

Corollary. Let χ_{B} be the characteristic function of $B \subseteq \mathbf{N} . \chi_{B}$ is a multiplier if and only if it is almost convergent to 0 or 1 .

8. Matrix transformations of spaces of almost convergent sequences.

8.1. We shall need the following lemma of Attala [1, Lemma 3.2].

Lemma. Let $\left\{\widetilde{A}_{n}\right\}$ be a sequence of operators on $C(\beta \mathbf{N} \backslash \mathbf{N})$ induced by matrices. Then $\left\|\widetilde{A}_{n}\right\|_{0} \rightarrow 0$ if and only if $\left\|\widetilde{A}_{n} \tilde{x}\right\|_{0} \rightarrow 0$ for each $x \in \mathscr{M}$.
8.2. Let B be an infinite matrix. Let

$$
\|B\|=\sup _{m} \sum_{n=0}^{\infty}\left|b_{m, n}\right| .
$$

We recall the well-known facts that $\|B\|<+\infty$ if and only if $B(\mathscr{M}) \subseteq \mathscr{M}$ if and only if $B\left(c_{0}\right) \subseteq \mathscr{M}$. Moreover if $\|B\|<+\infty$ then $\|B\|$ is the norm of B considered as an operator on \mathscr{M}.
8.3. We assume throughout the remainder of the paper that \mathscr{A} is an ergodic semigroup and that $\left\{A_{n}\right\}$ is a system of averages for \mathscr{A} which is a sequence.

Lemma. Let B be an infinite matrix. Then $F(\mathscr{A})-\lim B x=0$ for all $x \in \mathscr{M}$ if and only if $\|B\|<+\infty$ and $\left\|\widetilde{A}_{n} \widetilde{B}\right\|_{0} \rightarrow 0$.

Proof. Lemma 8.3 is an immediate consequence of 4.3.2, 8.1 and 8.2.
8.4. Now let \mathscr{C} be an ergodic semigroup. We have the following generalization of a theorem of Schaefer [19].

Theorem. Let B be an infinite matrix. $B(F(\mathscr{C})) \subseteq F(\mathscr{A})$ and $F(\mathscr{A})-\lim$ $B x=F(\mathscr{C})-\lim x$ for all $x \in F(\mathscr{C})$ if and only if
(8.4.1) $\|B\|<+\infty$,

$$
\begin{align*}
& F(\mathscr{A})-\lim _{m} \sum_{n=0}^{\infty} b_{m, n}=1, \text { and } \tag{8.4.2}\\
& F(\mathscr{A})-\lim _{m} b_{m, n}=0 \text { for each } n \tag{8.4.3}
\end{align*}
$$

$$
\begin{equation*}
\left\|\widetilde{A}_{n} \widetilde{B}(\tilde{I}-\widetilde{C})\right\|_{0} \rightarrow 0 \text { for each } C \in \mathscr{C} . \tag{8.4.4}
\end{equation*}
$$

Proof. Suppose that $B(F(\mathscr{C})) \subseteq F(\mathscr{A})$ and $F(\mathscr{A})-\lim B x=F(\mathscr{C})-$ $\lim x$ for each $x \in F(\mathscr{C})$. Then $\|B\|<+\infty$ by 8.2 since $c_{0} \subseteq F(\mathscr{C})$ and $F(\mathscr{A}) \subseteq \mathscr{M}$. 8.4.2 follows because

$$
u \in F(\mathscr{C}), F(\mathscr{C})-\lim u=1 \text { and }(B u)_{m}=\sum_{n=0}^{\infty} b_{m, n}
$$

8.4.3 follows by similar reasoning applied to the sequence $e^{n}=(0, \ldots 0,1,0, \ldots)$ where 1 appears in the nth position. 8.4.4 is an immediate consequence of 8.3 and the fact that $F(\mathscr{C})-\lim (x-C x)=0$ for all x (4.3.5).

Conversely suppose that 8.4.1 through 8.4.4 are satisfied. By 8.4.3, $F(\mathscr{A})-\lim B e^{n}=0$ for all n. Hence $F-\lim B x=0$ whenever $x \in c_{0}$ since B is linear and $\|B\|<+\infty$. By 8.4.4 and Lemma $8.3 F(\mathscr{A})-\lim B(x-C x)=$ 0 for all x. We now use the linearity and continuity of B to conclude from 4.3.5 that $F(\mathscr{A})-\lim B x=0$ whenever $F(\mathscr{A})-\lim x=0$. This, combined with 8.4.3 proves the theorem.

Remark. Condition 8.4.4 has a concrete reformulation, for if D is any infinite matrix satisfying $D\left(c_{0}\right) \subseteq c_{0}$ then it is easily seen that

$$
\|\widetilde{D}\|_{0}=\lim _{m} \sup \sum_{n=0}^{\infty}\left|d_{m, n}\right|
$$

8.5. Corollary. $B(c) \subseteq F(\mathscr{A})$ and $F(\mathscr{A})-\lim B x=\lim x$ for all $x \in c$ if and only if
(8.5.1) $\|B\|<+\infty$,
(8.5.2) $\quad F(\mathscr{A})-\lim b_{m, n}=0$ for all n, and

$$
\begin{equation*}
F(\mathscr{A})-\lim _{m} \sum_{n=0}^{\infty} b_{m, n}=1 \tag{8.5.3}
\end{equation*}
$$

Proof. We simply take $\mathscr{A}=\{I\}$ in Theorem 8.4.
Remark. This generalizes a theorem of J. P. King [14].
8.6. Corollary. $F(\mathscr{C}) \subseteq F(\mathscr{A})$ if and only if $\left\|\widetilde{A}_{n}(\widetilde{I}-\widetilde{C})\right\|_{0} \rightarrow 0$ for each $C \in \mathscr{C}$.

Proof. Take $B=I$ in Theorem 8.4.
Remark. The corollary is Theorem 2.2 of [$\mathbf{1}]$ when both \mathscr{C} and \mathscr{A} are cyclic.
8.7. Remark. We do not include the corollary obtained by the choice $\mathscr{A}=\{I\}$ since a sharper result (viz. Theorem 6.2) has already been given.

References

1. R. Atalla, On the inclusion of a bounded convergence field in the space of almost convergent sequences, Glasgow Math. J. 31 (1972), 82-90.
2. D. Borwein, A logarithmic method of summability, J. London Math. Soc. 33 (1958), 212-220.
3. C. Chou, The multipliers for the space of almost convergent sequences, Illinois J. Math. 16 (1972), 687-694.
4. C. Chou and J. P. Duran, Multipliers for the space of almost-convergent functions on a semigroup, Proc. Amer. Math. Soc. 39 (1973), 125-128.
5. M. M. Day, Means for the bounded functions and ergodicity of bounded representations of semigroups, Trans. Amer. Math. Soc. 69 (1950), 276-291.
6. D. Dean and R. A. Raimi, Permutations with comparable sets of invariant means, Duke Math. J. 27 (1960), 467-480.
7. W. F. Eberlein, Abstract ergodic theorems and weak almost periodic functions, Trans. Amer. Math. Soc. 67 (1949), 217-240.
8. Banach-Hausdorf limits, Proc. Amer. Math. Soc. 1 (1950), 662-665.
9. - On Hölder summability of infinite order, Notices Amer. Math. Soc. 19 (1972), A-164; Abstract \#691-46-21.
10. W. H. J. Fuchs, On the "collective Hausdorff method", Proc. Amer. Math. Soc. 1 (1950), 26-30.
11. V. Garten and K. Knopp, Ungleichungen zwischen Mittlewerten von Zahlenfolgen und Funktionen, Math. Z. 42 (1937), 365-388.
12. G. H. Hardy, Divergent series (Oxford University Press, Oxford, 1949).
13. M. Jerison, On the set of generalized limits of bounded sequences, Can. J. Math. 9 (1957), 79-89.
14. J. P. King, Almost summable sequences, Proc. Amer. Math. Soc. 17 (1966), 1219-1225.
15. G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167-190.
16. G. M. Petersen, Almost convergence and uniformly distributed sequences, Quart. J. Math. Oxford Ser. 2, 7 (1956), 188-191.
17. R. A. Raimi, On Banach's generalized limits, Duke Math. J. 26 (1959), 17-28.
18. Invariant means and invariant matrix methods of summability, Duke Math. J. 33 (1966), 1-12.
19. P. Schaefer, Matrix transformations of almost convergent sequences, Math. Z. 112 (1969), 321-325.

University of Puerto Rico, Mayaguez, Puerto Rico

