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Abstract. Let B denote the unit ball in C", and dV (z) normalized Lebesgue
measure on B. For a > —1, define dV*(z) = (1—|2]?)*dV (2). Let H(B) denote
the space of holomorhic functions on B, and for 0 < p < oo, let AP(dV,) denote
LP(dVy) N 'H(B). In this note we characterize A”(dV,) as those functions in
‘H(B) whose images under the action of a certain set of differential operators
lie in LP(dVy). This is valid for 1 < p < oco. We also show that the Cesaro
operator is bounded on AP(dV,) for 0 < p < co. Analogous results are given
for the polydisc.

§0. Introduction

Let B = {z = (21,...,2n) € C" : |z| < 1} be the unit ball in C",
let H(B) be the class of all holomorphic functions defined on B, and let
dVe(z) = (1 —|22)*dV () where dV (z) is Lebesgue measure on B normal-
ized to make the volume of the unit ball equal 1, i.e,

T 1
/ AV (z) = ”—El")/ / P2 lirde =1,
B ™ 0 JoB

(see [K, page 58]). We are interested in the holomorhpic functions which
lie in LP(dV,) for various 0 < p < oo and o« > —1. The case p = 2 and
a = 0 involves the classical Bergman projection operator — one of the most
important operators in the theory of functions of several complex variables.
It has been used to characterize biholomorphic mappings of finite type
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pseudoconvex domains (see Fefferman [F], Bell and Ligocka [BL], Catlin
Cal).

It is worth noting that dV,(z) is a natural measure on B since the
projection operator from C™ onto C™, 1 < m < n, restricted to the sphere
in C" is naturally expressed as integration with respect to dV,(z) over the
unit ball B, in C™ with @ = n —m — 1. More specifically, Forelli [Fo| has
shown that

/ (foP)do
0B
n—m—1
- "
N m!(n—m—l)!/Bm <1_;‘2k‘2> f(z1, ooy 2m)dVi(2).

where do is the area measure on OB and dV,, is the Lebesgue measure on
cm.

We define AP(dV,) to be the intersection of the spaces LP(dV,) and
H(B), and call this the weighted Bergman space. It turns out that AP(dV},)
is a closed subspace of LP(dV,,) and so it is natural to consider the projection

B, : LP(dV,) — AP(dV,).

This projection, known as the weighted Bergman projection, is given an
integral over B and is known as the weighted Bergman integral on B. The
object of this paper is to give another characterization of AP(dV,,), namely,
that AP(dV,,) consists of those holomorphic functions whose images under
a certain set of differential operators lie in LP(dV,,). This is the content of
Theorem 1.7. We also observe in Theorem 1.8 that a similar characterization
exists when the ball is replaced by the polydisc. A second objective of the
paper is to study the Cesaro operator on AP(dV,), for both the ball and
the polydisc. Here we prove that in both of these cases the Cesaro operator
is a bounded operator. This is the content of Theorems 2.4 and 2.5.

The paper is organized as follows. In section 1 we record the relevant
definitions and lemmas, omitting proofs when they are available elsewhere
in the literature. The main Theorems 1.7 and 1.8, characterizing AP (dV,,)
are proven. In section 2 we define the Cesaro operator for the polydisc and
the “slice” Cesaro operator for the ball. In Theorem 2.4 we prove that the
Cesaro operator is a bounded operator on AP(dV,) for the polydisc. We
state the corresponding result for the slice Cesaro operator on the ball. The
proof is omitted since it is similar to the case of the polydisc.
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The authors would like to thank the referee for many valuable sugges-
tions.

61. Weighted Bergman space

The space LP(dV,) consists of all Lebesgue measurable functions f
defined on B satisfying

M&MQ=AV@WPVW%W@<W

where dV (z) is the volume measure on B normalized so that V(B) = 1. It
is easy to see that for 1 < p < oo, LP(dV,,) is a Banach space with norm
Il - l»(av,) and for 0 < p < 1, LP(dV,) is an F-space under the metric

d(f,g) = ”f - gHip(dVa)'
DEFINITION. For 0 < p < o0, and a > —1
AP(dV,,) = LP(dV,) N H(B).

The following lemma is proved, for example, in Djrbashian and
Shamoian [DS], page 14, Corollary 1 to Theorem 1.1 and pages 128-136,
86.1.

LEMMA 1.1. Forl <p < oo, AP(dV,,) is a closed subspace of LP(dV,,).
For p = 2 we define the weighted Bergman projection
B, : L*(dV,) — A*(dV,), a>-—1
as follows:
(1) Ba())
(a+1)"'(a+n)/ f(w)

B (1 — . w)n+1+o¢

- (1~ [wl?)*dV (w)
:/ﬂmmwwm—mwwwm.
B

The following result allows the extention to other values of p.
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PROPOSITION 1.2, Let -1 < a< oo, -1 < <00 andl <p < oo.
Then the projection operator Bg can be extended as a bounded operator from
LP(dVy) onto AP(dVy) if and only if (1 + B)p > 1+ a. Moreover, in this
case we have the reproducing formula Bg(f) = f for all f € AP(dV,).

For the proof, see [DS, pages 33-36], § 2.1 and pages 128-136. We also
refer the readers to [BGJ, [BCG], [CL]| and references in there for further
discussions.

Remark. Consider the case § = « in the hypothesis of Proposition
1.2, it is obvious that the operator B, is not bounded on L!(dV,) (see
also [CNS], [CL]). However, for & > —1, we may consider the following
projection operator:

(a+2)---n(!a+n+1) y

flw .
‘ /B (1-= ~(’U_)))”+2+a (1 = |w*)**aV (w).

Then it can be shown that B, : L'(dV,) — A'(dV,) boundedly. Moreover,
Bo(f) = f for all f € A'(dV,) (see e.g., [Z, Chapter 4]). Proofs for the
results in this section for the operator B, are identical to the proofs of the
corresponding results for the operator B,. Therefore, we will not repeat
them.

(12)  Ba(f)(z) =

Let Z, ={0,1,2,---}. A multi-index k = (k1,...,k,) is an element in
(Z4)™. If k is a multi-index, let |k| = k1 + - - - + k,, and define the operator
Qx as follows:

@it -k f(w
Qe(f)(2) = (1= |o[»)™ /B iz w):+ffaﬁ|k| (1= |w[*)*dV (w).

LEMMA 1.3. Let 1 < p < oo and a > —1. Then the operator Qx can
be extended as a bounded operator from LP(dVy) into LP(dV,).

Proof. Let g be the conjugate exponent of p, i.e., % + % = 1. Since

w € B, [@"" @k | <1, we know that
Qi ()2
_atl atl p
< {(1 -yt [ MOIC Il T |w|2>adv(w>} .
B

|1 — . w|n+1+a+|k|
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Then by Holder’s inequality, we have

w]2)~ % ‘

QAP < (1~ |22 { - '“"Q)de(w)}

y { f ()P (L = |w]?) % (1_,w,2)adv(w)}

B ‘1 — . w‘n+l+a+p|k|

<O (1= |2y { |/ ()[P(1 — !w!Q)waQ_?dV(w)} .
B

|1 — . w|n+1+o¢+p|k|

Since p|k| +a — %5 > —1, by [R, Proposition 1.4.10], we obtain

/\Qk P(1— |2V (2)

a 1— |z p‘k|+a*%
<c [ =Py s { Bfl_z'"ﬂfwwpk'dv(z)}dv<w>
<C [ )P0 =[P F R 4V (w) < C 1 e

This concludes the proof of Lemma 1.3. 0

LEMMA 1.4. Let 1 < p < oo, a« > —1 and k € (Z4)". Then (1 —
22N —ZML(2) € L2(dVa) for all f € AP(dV).
2, 0zy,
Proof. Since f € AP(dV,), we know that from (1.2),

RMCEDIEICL Y S 3

- g (1 —z-w)ntite

(1= |w*)*dV (w).

It follows that
(2)

olklf
(1.3) (1 “\212)‘k42i;f;—jj7§;2§;
(a+1)-- (a+n+ k)

- - (1= 1) k] x

ki okn
R
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From Lemma 1.3, there is a constant C' depending on k, n, a and p such

that
olkl 7
(1- |Z|2)|k|W < C| fllar(avi)-
2 0m || Ly
Now the result follows immediately. 0

Similarly, we have the following result for the case p = 1 (cf. [Z, Lemma
4.2.7)).

LEMMA 1.5. Let a > —1 and k € (Z,)™. Then

|z|2)‘k‘ a\k\f

—_— e L'(dV,
oo ) € L)

(1-

for all f € AY(dV,,).
COROLLARY 1.6. Let f € AP(dV,,). Then for all k € (Z4)"
olkl 7
8zlf1 <o Ozt

_(a+ - (at+n+k]) / W f(w) (1= w]?)*dV (w).
B

n!

Furthermore,
olklf
8z]f L. 82’,’3”

O) < C-Ifll.ar(@va)-

Proof. From the equation (1.3), we have the first assertion of the Corol-
lary immediately (cf. [DS, Theorem 6.1]). Now by Holder’s inequality, we
obtain

o £(0)
Dk 9k

e+ (ot k) /B @t f(w) (1= Jw)*dV (w)

n!

(a+1) - («
n!

L) [ 1 - uPrave)
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< (a+ 1)'..510!4-1-714' k|) . ”f”AP(dVa) . [/B(l _ ’w’2)adV(w) q

< C(a, k[, p) - [ fll.ar(ava)s
1,1 _
where st = 1. []
Now we are in a position to prove the main theorem of this section.

THEOREM 1.7. Let1 < p < oo, a > —1, N be a fized positive integer
and k = (k1,...,ky,) € (Z1)". Let f be a holomorphic function defined on
the unit ball B in C™. Then f € AP(dVy) if and only if

N
(1—\312)Nﬁ(2)6”(d‘@7 for all |k| = N.
M 0zk

Moreover,
(1.4) £l e (ava)

N-1

oIkl oN

| Y o)+ X a- R

‘k‘:o Zl ZTZ ‘k‘:N Zl ZTL Lp(dva)

Proof. One direction has been proved in Lemmas 1.4 and 1.5. Now let
us turn to the other direction. Assume that

S (- ey |2

Pt ouf o

(2)| € LP(dV,,).

Without loss of generality, we may assume ﬂ(O) =0 for |k| < 2N.

E
0z, 1 8251”

Fix k € (Z4+)™ with |k| = N. Now let us consider the function

_ [2]2)N N
g(z):(l |2[%) o f ().

Then it holds that g(z) € LP(dV,). Therefore,

(a+1)---(w+n) "
n!
(1= [w)N( — [w]?)? N f
J,

@R (1 — 2 - w)nEe gt Qi

G(z) =

(w)dV (w)

https://doi.org/10.1017/50027763000007406 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000007406

32 G. BENKE AND D.-C. CHANG

is a function in AP(dV,). It follows that,

oNG a+l)---(a+n+ N
A CES I )
0z -+ 0zp"

n!

(- [w)NA —JwP)*  oVf
X /B (1— 2. @)ntitotN 8wlf1 ok (w)dV (w).

Now by Proposition 1.2, we know that
oNG oNf
1 (=) = 5
0z - 0z 0z - 0zp™

for all z€ B. For 0 < |j| < N — 1,

(2)

I3 3
MG et latntli)

32{1 -0z n

_w2N _w2a N
X/B(l |w]*) 7 (1 — [w]*) O (waviw) =o.

u—jllﬂ —J . U_}?]—in_]" 8w’f1 o Owkn

Thus we have f(z) = G(z) = Ba(g)(2) for all z € B. Since B,, is bounded
from LP(dV,) onto AP(dV,) for 1 < p < oo, this gives us f € AP(dV,,) for
1 < p < 0. (For the case p = 1, we use the operator Ba)

Fix p, 1 < p < 0o. Define

8N
By =< f € H(B) with kifk € AP(dViyqpn) for all k| =N ».
0zy" -+ Oz
It is easy to see that By is a Banach space under the norm
N-1
olklf oNf
I llsy =D py e G > ERT—
|k|:0 Zl - 0zp ‘k‘:N Zl s 0Zp Lp(dVa+pN)

If a sequence {fx} converges to fp in By, then we know that fr — fo
uniformly on compact subsets of B. Now let us prove the estimate (1.4).
By (1.5) and Corollary 1.6, we know that || f|[sy < C||f|l 4r(av,)- Next, let
I: By — AP(dVy) be the identity operator. If |[I(fx) — F| prav,) — 0 and
Il fx — follay — 0 as k — oo, then fi — F uniformly on compact subsets of
B. Henc, I(fy) = F. By the closed graph theorem, we know that there exists
a constant C such that || f|| 4pav,) < C||fllsy- The proof of the theorem is
therefore complete. 0
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We finish this section by considering the case of the polydisc. Let
D" ={z=(21,...,20) €C": |zj| < 1,5 =1,...,n}
be the polydisc in C" and let H(ID™) be the class of all holomorphic functions
[ defined on D". Let & = (a1,...,a,) with a; > =1 for j =1,...,n. The

space LP(dVg) consists of all Lebesgue measurable functions defined on D™
satisfying

W Wriniy = 1P TI0 = 51V () <

Here dV'(z;) is the normalized volume measure on the unit disc D, i.e.,

27
/dV ;) / / rdrdf; = 1.

Now the weighted Bergman space AP(dVz) is the intersection of LP(dVy)
and H(D").
From computations in this section, it is easy to see that the kernel
Bgz(z,w) for the weighted Bergman projection By : L?(dVy) — A%(dVy) is
- oz] +1)
H 1 — zjw;) O‘J+2

It can be shown that the operator Bs can be extended as a bounded oper-
ator from LP(dVz) onto AP(dVy) giving the following theorem:

THEOREM 1.8. Let N be a fized positive integer and let k= (kq, ..., ky)
€ (Zy)™. Let f be a holomorphic function defined on the polydisc D™ in C™.
Then for a = (aq,...,an), f € AP(dVy) if and only if

n k|
10— 1528 |~ () € Dr(avy)

iy 8211“ e 825”

for1<p<oo,a; >~-1,j=1,...,n. Moreover,

1.5 5) = o k1 . kn
(13) Wl = | 2 \om o

(0)‘

|k|=0
n 8Nf
+Z H1_|ZJ| azlﬁazn
k=N || |i=1 1 "N o av

https://doi.org/10.1017/50027763000007406 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000007406

34 G. BENKE AND D.-C. CHANG

§2. The Cesaro operator

In this section we study the Cesaro operator for the polydisc and ball.
We start with the polydisc. Let f be a holomorphic function defined on the
polydisc D". It follows that

[ee] o0
k k1 k k
= g axzT = g Ak kg kn 21 2ot 2"
Ik|=0 k1 -k =0

where k = (k1,...,kn) € (Z1)". Let m = (my,...,my) € (Z4+)" be another
n-tuple. We say that m < k if and only if m; < k; for 1 < j < n. The
Cesaro operator C is defined by

CHE) =

|k|=0

(ki +1) - (ko + 1) Zam

It is easy to see that

tlzl,... tnzn)
dty---dt
/ / 1 — t1z1 (1 — tnzn) ! "

_ f(t-2)
- /Q [l (- tjzj)dt’

where @ = [0,1]" and dt = dt; - - - dt,
In preparation for the proof of Theorem 2.4, we record some preliminary

lemmas. The proof of the following lemma is an easy consequence of the
plurisubharmonicity of the function |f|P.

LEMMA 2.1. Let 1 < p < oo and d = (ou,...,0n) with o > —1 for
j=1,...,n. Then for each £ € {1,--- ,n}, there exists a universal constant
Cy such that

| fllaravy) < Cellzef | avavy)

for every f € AP(dVy).

The next lemma is just an n-fold version of a result of Duren [D, page
65].
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LEMMA 2.2. Ifs;>1and 0<r; <1 for j=1,...,n, then there is a
constant v depending only on s;, j =1,...,n, such that

/ ‘1_TJ 05|
[,

where [—m, 7" = [~ 7] X -+ x [, 7] and df = []}_, df;.

The following lemma was first proved by Hardy-Littlewood [HL, pp.
412 and 414] in the case n = 1. It is not difficult to generalize their result
to higher dimensional cases by taking the limit of the sequence of partial
sums of the power series expansion of the holomorphic function f.

LEMMA 23. Let 0 < p<1l,1<g<ooand0 <r; <1 forj=

1,...,n. Then there exists two universal constants C1 and Cy such that
101 i0n Pd6
sup ‘f(tl?”le yoe oy tntne )|
[—m,7]™ 0<t;<1,1<j<n

< / F(re® ... et Pde,
[—m,m]n

and

Q=

/ {/ ’f(tlrlewl“" tnrn ezﬁn |pqd9} H 1 —t é
Q [—m,m]™ et

< 02/ ]f(rlewl, . ,rnew")|pd9,
[—m,7]n

for all holomorphic functions f defined on D".

Now we are in a position to prove the first of our two theorems on the
Cesaro operator.

THEOREM 2.4. Let & = (ai,...,ap) with aj > =1 for j =1,...,n
Then the Cesaro operator C is bounded on AP(dVz) for 0 < p < oo.

Proof. We have to split the proof of this theorem into two cases.
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Case 1. 1 < p < co. Suppose that f € AP(dVy) and let F' = C(f). By
direct computation, we obtain

O"F(z)  flz,...,20)

2.1 - -
@1 = Z@zl---é?zn (I—2z1)-(1—2p)
n—1
b Y1) x
q=1

Z / f(Zl,...,thZjl,.. t]qZ]q,...,Zn)dtjl"'dt]’q

V<m0 (T—21) - (L=t525) - (1= tj,25,) - (1 — zn)

f(tlzl, Ce ,tnzn)
+ —1”/ dty - - - dt,,.
=1 o (L —t121) -+ (1 — ty2p) !

It is easy to see that the first term on the right hand side of (2.1) satisfies
the following estimate.

n

[ R H1—|z| Juav(2)

j=1

= [RVCE P TL0+ P—ePyav e

32’”’/ Hl—\z\ sV (2).

For the last term on the rlght hand side of (2.1), we have

o f(t-2)
1;[ (1= 1z[) / A=ta) (=t

|ZJ| )

|1_t zj]

Lp(dVy)

f(t-2)] Hl—lzjl )5 dV (z) o dt

P

/ / (121 - tnzn)| H1—yzjy av(z) S de

Al

// (1, lill—]z]ade() dt
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= 2"[| fll ar (avsy)-

Let J = (j1,...,Jq) with 1 < j; < --- < j; < n. For terms in between on
the right hand side of (2.1), we have

n
H 1_|Z]|

X/ f(zl,...,tjlzjl... tqujq,...,Zn) dt
o0 (L —21) - (L —t5,25,) - (1 = tj,25,), - (1 — 2)

LP(dV&)
p

(1—|zj|2) (1—|Zj|2) |
S/[O,l]q /n H |1—Zj| ]1}] |1_tj2j| |f(t Z)| X

2

S =

x [T =1z avi(z) o dt
j=1

SQH/[ ] {/ ’f(zla..-7tjlzj17“-7tjqzjq""’z”)|p X

0,1]¢ m
1
P

x [T =12*)dv(z) ¢ dt
j=1

<2 [ e P IL0 = ey vavie) o d
[0,1]4 " j=1

= 2" f Il ap (avig)-

Here we use the Minkowski integral inequality and the monotonicity of the
function Ul(ty,...,t,) = OQW e fOQW |f(tirie®, ..t rne?n)[Pdly - - - db,,.
Combining the above computations, we obtain

n O"F (2 n
[I0- ) [ ago el <2 flLaviava)

=1 LP(dVy)
But the left hand side of the above inequality is equivalent to
J"F(z)
82’1 L 8Zn

Zl...zn

€ A(dVz4p)
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with @ +p = (a1 +p,...,a, +p). By Lemma 2.1, there exists a universal
constant C' such that

i 8"F(z)
(1— Y i\
H 121%) 21 Oz
7=l Lr(dVg)
_ O"F(z) <z s O"F(z)
921+ Oz AP(dVayp) 021+ Oz AP(dVayp)
B - O"F(z)
- Hl |ZJ| ZnazlaZn
i=1 Lr(dVg)
It follows that
“ OF(2)
H (1—|z]?) For 02 < cllfll.aravy)-
j=1 Lp(dV&)
Since F(0) = f(0), by Theorem 1.8, we have
I1Fl| ap (avig) = IIC(F)|.av (aviy)
- 8 F( )
<e (1- _orE)
- H ’z‘j’ “e aZTL
7=l Lr(dVg)

< I fllaravy)-
Here ¢ and ¢ are universal constants depending on p and « only.

Case 2. 0 < p < 1. Without loss of generality, we may just assume
n = 2. Let f € AP(dVg) and F = C(f). Suppose that 1 < ¢ < 25 and ¢/
is the conjugate exponent of ¢, i.e., % + % = 1. Then by Lemma 2.2 and
Holder’s inequality, we have

(2.2) /[ i
< [ [ .

p

t 101 t 162
f(tir1e™ targe™?) d0,d6,

(1 - tlrle"el)(l - t2T2€i92)

1

q/

g
d91 d92 X

1
(1 — tl’l“leiel)(l — tQTQCieQ)
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1
q
f(tyrie toryet®)

3 [ /
[_7r77r}2

2 _
<o Jla-t) < [/
j=1 [—m,m]?

Now let us consider a partition on the unit interval [0,1] with A\; =1 —27J
and A\ = 1 —27% for j,k € Z,. Then we obtain

pq
db, d@]

q
f(tl?”lelel N tQ’f'Q@ZGQ)

e d91d92]

(23) /[ ]2 |F(’I“16i61 s T2€i02)|pd91d92

Sy

[_7r77r}2 [071]2
o e PN

<

N Z /—7r,7r}2 />\Ic—1 /)\j—1

jk=1

1
= Z 2(j+k)p x

f(tar1e tarae)
(1 — tﬂ“lewl)(l — t27“26i92

p
] ‘ dtldtg} db,do,

f(t17“1€i91 s t2?”26i92)
(1 — tﬂ“lewl)(l — t27“2€i02

p
] ‘ dtidts } do1do

f(tﬂ“lewl N t2r2€i92)
(1 — tlrlewl)(l — t27“2€i02)

p
X / sup d91 d92 .
[—m,m]2 | 0<t1<A;,0<ta <A

Next let us analyse the last line of (2.3). By the Hardy-Littlewood inequality,
we know that

1601 102 p
(24) /[ . { sup f(tl'rle ,taroe ) } d91d92

0<ts <A, 0<ta <Ay | (1 — t171e1) (1 — tarpei®2)

< / sup f(tir1e, tyraei®) ! +
T Jimea2 | o<tian 0<tacny | (1= t1rie®)(1 — targei2)

f(/\j?”lewl N )\kr2€i92)

p
: . dfdo
+ ' (1 — )\j?“lezel)(l — )\kT2€Z02) } 1572
FOyrie®, agraei®) P
< (C 1 - . df1d0s.
- ( Lt )/[—W,WP (1 — )\j?“lezel)(l — )\kT2€Z02) 1572
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For A\j_1 <t; <1and A\y—1 <2 <1, we use a similar trick to obtain

(2.5) /[m]?

< / sup
[—m,m]2 | 0<p1<t1,0<pa<ts

f(tl?”lewl s t27“2€i92)
(1 — tﬂ“lewl)(l — t27“26i92)

p

Mo 101 A 105
FNjoarie™t, Ag_1ree’®?) 49,0,

(1 — )\j,lrlewl)(l — )\k_lr2€i92)

f(p1r1e1, poraei®?)

(1 — prr1ef1) (1 — poroeif2)

p
} db,dos

p
do,do-.

S(Cl-i—l)/

[_71—771—]2

Combining (2.4) and (2.5), we get the following

(e 9]

1
(2.6) Ejﬁﬂ%x

jk=1

ftir1e®t toraet®)
— 1T1€i 1 — 2T2€i 2
1—t 01)(1 — ¢ o

p
. / { s } A6,
[—m,7m]2 | 0<t1<A;,0<ta< Ay

(e 9]

1
S(C1+1)Zm/

k=1 [—m,m]?

p

bV 161 A 162
f( ]7’16 bl kTQC ) d91d92

(1 — )\j’l”lewl)(l — )\kTQGiGQ)

In fact, (2.6) can be estimates as follows:

o0

(26) <2%(Chr+1) D (1= X)P M (1= )Pt x
gk=1

» / Fr1et, Apraet®?)
[—7,7]2 (1 — )\jTleiel)(l — )\k’l”geiGQ)
X (Ajr1 = Aj) (N1 — k)

<2YC1+1) ) (L= NP = )P x
gk=1

) { /
[_7r77r}2

p
d91d92 } X

FAjr1e?, Aproet®2)
(1 — )\j?“leiel)(l — )\k?”geiGQ)

X(Aj = Aj—1) (A — A1)

p
d91d92 } X
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< 24Cy + 1) }:b/ .A rll—W

k—1 p—1
>< /
,ﬂ.,ﬂQ

This is actually bounded by the following:

f(tir1e toryei®)
(1 — tlrle"el)(l — t2r2€i92)

p
db,dos } dtydts.

/

4Oy +1) (1=t (1 —t)) 7 x
1 /[o o b H ¢) ¢)
1
. X q
X [/ |f(t17“1€z01,t2T26Z02)\pqd91d92] dt,dts
[—m,m]2
2 1 . .
s%/ HG4QEU WWM%WM%%mm]ﬁWQ
(0,1]% p—4 —m,m)?

< 04/ ‘f(?“lezel r ei92)|pd91d92.
[=m,m]?

1
q

Here we use (2.2) and Lemma 2.3. It follows that
IC(H)apavy) < C - 1 fllap(avy)-
The proof of this theorem is therefore complete. 0
We next consider a Cesaro operator on AP(dV,,), which we define below.
Let f be a holomorphic function defined on the unit ball B. Assume that
f(z) = Zﬁflzo axz¥. For £ € 7., let Fy(2) = D[kl arzX. Tt follows that Fy

is homogeneous of degree ¢, and the power series can be rewritten as the
homogeneous expansion as follows:

=> Fi(2)
=0

Now fix a point ¢ € OB, then

f(z)=f(¢-¢) = ZFz
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for £ € D. It has been shown that the infinite series Y, Fy(¢ )& converges
uniformly to f(z) on every compact subset in D (see Rudin [R, pages 19—
22]). It is obvious that || = |¢ - €| = |z| = r. We define the “slice Cesaro
operator” as follows:

oo k
1
CNE) = RO =3 |y SR | €
k=0 £=0
It is easy to see that
1
Je(t€)
e = [ A8
&= 45
An argument similar to the one above can be used to prove the following

theorem:

THEOREM 2.5. Cesaro operator Cs is bounded on AP(dV,) for 0 <p <
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