CORRIGENDUM

to the paper

ON SOME CLASSES OF WEIGHTED COMPOSITION OPERATORS

by JAMES T. CAMPBELL and JAMES E. JAMISON

(Received 7 March, 1990)

- **0. Abstract.** We provide corrected versions of Theorems 1 and 2 and Corollaries 3(a) and 4 of the paper mentioned in the title.
- I. Basic results. In our paper [2], Theorems 1 and 2 and Corollaries 3(a) and 4 contain errors. Assuming the notation of that paper the following are correct versions of Theorems 1 and 2, respectively.

THEOREM I. W_T is normal if and only if

- (i) $wE(w)h \circ T = hE(w^2) \circ T^{-1}$ a.e.
- and
 - (ii) $T^{-1}\Sigma \cap \text{supp } w = \Sigma \cap \text{supp } w$.

THEOREM II. W_T is quasinormal if and only if $h \circ TE(w^2) = hE(w^2) \circ T^{-1}$ a.e. on the support of w.

REMARKS. 1. For the proofs of these theorems, as well as other examples, see [3].

- 2. The original attempt to prove Theorem 2 in [2] yields Theorem II provided one observes a factor of w in each term of VM and MV, where $M = |W_T * W_T|^{1/2}$ and V is the partial isometry which gives the unique, canonical polar form $VM = W_T$.
- 3. The fallacy in the proof of Theorem 1 in [2] was the claim that for a normal W_T , the set A = support of w (written supp w) satisfied $T^{-1}A = A$. This was never proved and may in fact be false; see Example 1 of [3], or Example 1 below.
- 4. All the other results in [2] except Corollaries 3(a) and 4, which we deal with below, are correct.

Here is a corrected statement and proof of Corollary 3(a) from [2]. For ease of proof we assume $w \ge 0$ a.e.. The general complex case is clear and easily obtained.

COROLLARY 3(a). Suppose T is a non-invertible, conservative and ergodic measure-preserving transformation. Then W_T is not normal for any (non-zero) choice of w.

Proof. Given such a T, suppose W_T is normal. It follows (see [3]) that A, the support of w, satisfies $A \subseteq T^{-1}A$. Since T is conservative, it must be the case that $A = T^{-1}A$. Since T is ergodic we have either $\mu(A) = 0$ or $\mu(X \setminus A) = 0$. In the first case w = 0. In the second case, by (ii) of the above Theorem II, T must be invertible.

REMARK. In the case of finite measure, every measure-preserving transformation is conservative, and this Corollary was know to Bastian (although his proof rests on different principles; see [1]). In any case, it presents an interesting dichotomy for

Glasgow Math. J. 32 (1990) 261-263.

measure-preserving transformations. If a measure-preserving transformation T is invertible, the composition operator it induces is unitary; however if T is not invertible the induced composition operator is not even normal. Corollary 3(a) says that for such a T, being conservative and ergodic implies that the composition operator cannot even be weighted to become normal. We do not know what is possible for non-conservative T.

We turn now to Corollary 4 of [2], which attempts to characterize the Hermitian weighted composition operators. We have the following example.

EXAMPLE 1. Let $X = \{0, 1, 2\}$, $\Sigma = 2^X$, $\mu(x) = 1$ for each $x \in X$. Define $T : X \to X$ by T(0) = 1, T(1) = 2, and T(2) = 1. Set $w = \chi_A$, where $A = \{1, 2\}$. Then direct calculations show that for all $f \in L^2(X)$, $W_T f(0) = 0$, $W_T f(1) = f(2)$, and $W_T f(2) = f(1)$. Also $W_T^* f(0) = h(0) E(wf) \circ T^{-1}(0) = 0$, and similarly $W_T^* f(1) = f(2)$, $W_T^* f(2) = f(1)$, so that W_T is hermitian. However, T is not of period 2 (in fact T is not invertible) and $h\bar{w} \circ T \neq w$ (in fact W is not even $T^{-1}\Sigma$ measurable), contradicting Corollary 4 of [2].

The aspect of the proof of Corollary 4 in [2] which fails is again the fact that the support of the weight function may not be invariant under T. We resolve this in the following manner.

Given W_T , set A = support of w and define T_A as the restriction of T to A. Thus if $B \subseteq A$, $T_A^{-1}B = T^{-1}B \cap A$.

COROLLARY 4. W_T is Hermitian if and only if

(i) T_A is periodic of period 2 and

(ii)
$$w = hE(\bar{w}) \circ T^{-1}$$
.

Proof. Suppose W_T is Hermitian; then W_T is normal. Thus (see [3]) we know that T maps A into A (so that $A \subseteq T^{-1}A$), $L^2(A)$ is reducing for W_T , ker $W_T = L^2(X \setminus A)$, and $A = \text{supp } hE(|w|^2) \circ T^{-1}$.

Setting $W_T = W_T^*$ yields

(1) $wf \circ T = hE(\bar{w}f) \circ T^{-1}$ for all $f \in L^2(X, \Sigma, \mu)$.

Choose an increasing sequence of measurable sets $\{C_n\}$, each of finite measure, whose union is all of X. Setting $f = \chi_{C_n}$ in (1) and letting $n \to \infty$ we obtain (ii). Since $W_T^2 = W_T^* W_T$ we obtain

(2) $ww \circ Tf \circ T^2 = hE(|w|^2) \circ T^{-1}f$, for all $f \in L^2(A)$.

Now choose an increasing sequence of measurable subsets $\{C_n\}$ of A, each of finite measure, whose union is all of A. Setting $f = \chi_{C_n}$ in (2) and letting $n \to \infty$ we obtain

(3) $ww \circ T = hE(|w|^2) \circ T^{-1}$.

Dividing both sides of (2) by $ww \circ T$ (since both sides are supported in A we leave everything 0 off of A) yields

(4) $\chi_A f \circ T^2 = f$ for all $f \in L^2(A)$.

In particular, for each measurable subset C of A of finite measure,

(4)'
$$\chi_A \chi_C \circ T^2 = \chi_C$$
,
i.e., $T_A^2 = T_A$.

Conversely, suppose (i) and (ii) hold. Then (i) implies that T maps A into A so that $A \subseteq T^{-1}A$. Combining this with (ii) we have

(5)
$$ww \circ T = hE(\bar{w}) \circ T^{-1}w \circ T = hE(\bar{w}w \circ T^2) \circ T^{-1} = hE(|w^2|) \circ T^{-1}$$
,
since $\bar{w}w \circ T^2 = \bar{w}\chi_A w \circ T^2 = \bar{w}w \circ T_A^2 = \bar{w}w = |w|^2$. In particular, $A = \text{supp } hE(|w|^2) \circ T^{-1}$.

But it is always true that $\ker W_T = L^2(X \setminus hE(|w|^2) \circ T^{-1})$, so $W_T f = 0$ for all $f \in L^2(X \setminus A)$. On the other hand, $W_T^* f = hE(\bar{w}f) \circ T^{-1} = 0$ if $f \in L^2(X \setminus A)$. Finally for each $f \in L^2(A)$ we have $W_T f = wf \circ T = hE(\bar{w}) \circ T^{-1} f \circ T = hE(\bar{w}f \circ T^2) \circ T^{-1} = hE(\bar{w}f \circ T_A^2) \circ T^{-1} = hE(\bar{w}f) \circ T^{-1} = hE($

REFERENCES

- 1. J. J. Bastian, A decomposition of weighted translation operators, *Trans. Amer. Math. Soc.* 224 (1976), 217-230.
- 2. J. T. Campbell and J. E. Jamison, On some classes of weighted composition operators, Glasgow Math. J. 32 (1990), 87-94.
- 3. J. T. Campbell, M. Embryo-Wardrop, R. Fleming and N. Sivaramakrishnan, Normal and quasinormal weighted composition operators, pre-print.

DEPARTMENT OF MATHEMATICAL SCIENCES MEMPHIS STATE UNIVERSITY MEMPHIS, TENNESSEE 38152 U.S.A.