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On Hilbert Covariants
Abdelmalek Abdesselam and Jaydeep Chipalkatti

Abstract. Let F denote a binary form of order d over the complex numbers. If r is a divisor of d,
then the Hilbert covariant Hr,d(F) vanishes exactly when F is the perfect power of an order r form. In
geometric terms, the coefficients of H give defining equations for the image variety X of an embedding
Pr ↪→ Pd. In this paper we describe a new construction of the Hilbert covariant and simultaneously
situate it into a wider class of covariants called the Göttingen covariants, all of which vanish on X. We
prove that the ideal generated by the coefficients of H defines X as a scheme. Finally, we exhibit a
generalisation of the Göttingen covariants to n-ary forms using the classical Clebsch transfer principle.

1 Introduction

1.1 Let

F =

d∑
i=0

(
d

i

)
aix

d−i
1 xi

2, (ai ∈ C)

denote a binary form of order1 d in the variables x = {x1, x2}. Its Hessian is defined
to be

He(F) =
∂2F

∂x2
1

∂2F

∂x2
2

−
(

∂2F

∂x1∂x2

)2

.

It is well known that

He(F) = 0 ⇐⇒ F = (px1 + qx2)d for some p, q ∈ C;

that is to say, the Hessian of F vanishes identically exactly when F is the perfect d-th
power of a linear form. (The implication ⇐ is obvious, and ⇒ easily follows by a
simple integration—see [26, Proposition 2.23].)

The Hessian is a covariant of binary d-ics, in the sense that its construction com-
mutes with a linear change of variables in the x. More precisely, let g =

( α γ
β δ

)
denote

a complex matrix such that det g = 1. Given a binary form A(x1, x2), write

Ag = A(αx1 + βx2, γx1 + δx2).

Then we have an identity
He(Fg) = [He(F)]g .

By definition, He(F) is of order 2d− 4 (in the x), and its coefficients are quadratic in
the ai ; hence it is said to be a covariant of degree 2 and order 2d− 4.
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1Usually d would be called the degree of F, but ‘order’ is the common usage in classical invariant theory.
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1.2 Now suppose that r is a divisor of d (say d = rµ), and we are looking for a sim-
ilar covariant which vanishes exactly when F is the perfect µ-th power of an order
r form. About a decade ago, the second author had constructed such a covariant
using Wronskians. It will be described below in Section 3.2, but tentatively let us
denote it by Gr,d(F). Subsequently, he learnt from the report of a colloquium lecture
by Gian-Carlo Rota [28] that Hilbert [19] had already solved this problem. Hilbert’s
construction (see Section 4.1 below) is based upon an entirely different idea; it will
be denoted by Hr,d(F).

In fact, either of the constructions makes sense even if r does not divide d. If we
let e = gcd(r, d) and d = eµ, then we have the property

Gr,d(F) = 0 ⇐⇒ F = Gµ for some order e form G ⇐⇒ Hr,d(F) = 0.

Both covariants turn out to be of degree r + 1 and order N = (r + 1)(d− 2). This, of
course, creates a strong presumption that they might indeed be the same. This is our
first result.

Theorem 1.1 There exists a nonzero rational scalar κr,d such that Gr,d = κr,dHr,d.

The proof will be given in Section 4. When r = 1, either covariant reduces to the
Hessian.

1.3 For p > 0, let Sp denote the (p + 1)-dimensional space of order p forms in x. We
have an embedding

PSe −→ PSd, [G] −→ [Gµ]

whose image X = Xe,d is the variety of binary d-ics which are perfect µ-th powers
of order e forms. (In particular, X1,d is the rational normal d-ic curve.) Let R =
C[a0, . . . , ad] denote the co-ordinate ring of PSd ' Pd. Write

Hr,d(F) =

N∑
i=0

(
N

i

)
hix

N−i
1 xi

2,

and let J = (h0, h1, . . . , hN ) ⊆ R denote the ideal generated by the coefficients of Hr,d

(or what is the same, that of Gr,d). By construction, the zero locus of J is precisely X.
We show that, when r divides d, the ideal J defines X as a scheme.

Theorem 1.2 Assume that r divides d. Then the saturation of J coincides with the
defining ideal IX ⊆ R.

The proof will be given in Section 5.4. For the case r = 1, this theorem appears
in [4].

1.4 In Section 3, we use the plethysm decomposition of SL2-representations to exhibit
Gr,d as a special case of a family of covariants which vanish on X. We baptise
them Göttingen covariants in order to commemorate the Göttingen school, of which
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Hilbert was a distinguished member for nearly five decades. In Section 3.4, we give
an algorithm for the symbolic computation of these covariants. The examples in Sec-
tions 5.1–5.3 suggest the conjecture that the coefficients of the Göttingen covariants
generate all of IX , when r divides d.

The J-ideals seem to obey complicated containment relations for varying values
of r, and there is much here that we do not understand. We give a preliminary result
in this direction in Proposition 5.3. The example in Section 5.7 shows that when r
does not divide d, the Hilbert covariants can create interesting nonreduced scheme
structures on X.

1.5 The problem discussed in Section 1.2 makes sense in any number of variables. There
is a classical construction due to Clebsch called the ‘transfer principle’, which allows
us to lift the binary solution to n-ary forms. We explain this in Section 6, and con-

struct a concomitant G̃r,d of n-ary d-ics which has exactly the same vanishing prop-
erty that Hr,d does for binary forms (see Theorem 6.1). For instance, let F denote a
quartic form in three variables x1, x2, x3, which we write symbolically as

F = a4
x = b4

x = c4
x.

Then F is the square of a quadratic form, if and only if the concomitant

G̃2,4 = (abu)(acu)2axb3
xc2

x,

vanishes on F.

1.6 Although the Hilbert covariants were defined over a century ago, they do not seem to
have been studied much in the subsequent years.2 This may be partly due to Hilbert
himself, whose papers around 1890 in the Mathematische Annalen changed the tex-
ture of modern algebra, and to some extent caused the earlier themes in invariant
theory to be seen as passé (cf. [15, Section II]). We are convinced, however, that these
covariants (and their generalisation, namely the Göttingen covariants) encapsulate a
large amount of hitherto unexplored algebraic geometry.

2 Preliminaries

In this section we establish notation and explain the necessary preliminaries in the
invariant theory of binary forms. Since the latter are less widely known now than they
were a century ago, we have included rather more background material. Some of the
classical sources for this subject are [17,18,20,30], whereas more modern treatments
may be found in [11, 22, 26, 27, 31]. In particular, for explanations pertaining to the
symbolic calculus, the reader is referred to [1, Section 2].

2There is a later short note by Brioschi [7], but it is mostly a report on Hilbert’s original paper and
contains little that is new.
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2.1 SL2-representations

The base field will be C. Let V denote a two-dimensional complex vector space with
basis x = {x1, x2}, and a natural action of the group SL(V ) ' SL2. For p > 0, let
Sp = Symp V denote the (p + 1)-dimensional space of binary p-ics in x. Recall that
{Sp : p > 0} is a complete set of finite-dimensional irreducible SL2-representations,
and each finite-dimensional representation is a direct sum of irreducibles. The reader
is referred to [16, Section 6] and [21, Section I.9] for the elementary theory of SL2-
representations. For brevity, we will write Sp(Sq) for Symp(Sq), etc.

2.2 Transvectants

Given integers p, q > 0, we have a decomposition of representations

Sp ⊗ Sq '
min(p,q)⊕

k=0
Sp+q−2k.

Let A,B denote binary forms in x of respective orders p, q. The k-th transvectant of
A with B, written (A,B)k, is defined to be the image of A⊗ B via the projection map

πk : Sp ⊗ Sq −→ Sp+q−2k.

It is given by the formula

(A,B)k =
(p − k)! (q− k)!

p! q!

k∑
i=0

(−1)i

(
k

i

)
∂kA

∂xk−i
1 ∂xi

2

∂kB

∂xi
1∂xk−i

2

.

Usually k is called the index of transvection. By convention, (A,B)k = 0, if k >
min(p, q). If we symbolically write A = ap

x ,B = bq
x as in [18, Ch. I], then (A,B)k =

(ab)kap−k
x bq−k

x . A useful method for calculating transvectants of symbolic expressions
is given in [17, Section 3.2.5].

There is a canonical isomorphism of representations

(1) Sp

∼
−→ S∗p

(
= HomSL(V )(Sp, S0)

)
that sends A ∈ Sp to the functional B −→ (A,B)p. It is convenient to identify each
Sp with its dual via this isomorphism, unless it is necessary to maintain a distinction
between the two.

2.3 The Omega Operator

If x = {x1, x2} and y = {y1, y2} are two sets of binary variables, then the corre-
sponding Omega operator is defined to be

Ωxy =
∂2

∂x1∂y2
− ∂2

∂x2∂y1
.
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Given forms A,B as above,

(A,B)k =
(p − k)!(q− k)!

p!q!
{Ωk

xy[A(x)B(y)]}y:=x.

That is to say, change the x to y in B, operate k-times by Ω, and then revert back to
the x.

2.4 Covariants

We will revive an old notation due to Cayley, and write (α0, . . . , αn G u, v)n for the
expression

n∑
i=0

(
n

i

)
αiu

n−ivi .

In particular

(2) F = (a0, . . . , ad G x1, x2)d

denotes the generic d-ic, which we identify with the natural trace form in S∗d⊗Sd. Us-
ing the duality in (1), this amounts to the identification of ai ∈ S∗d with 1

d! x
d−i
2 (−x1)i ,

but it is convenient to think of the a = {a0, . . . , ad} as independent variables. Let R
denote the symmetric algebra⊕

m>0
Sm(S∗d ) =

⊕
m>0

Rm = C[a0, . . . , ad],

so that Proj R = PSd ' Pd.
Consider an SL(V )-equivariant embedding

S0 ↪→ Rm ⊗ Sq.

Let Φ denote the image of 1 via this map, then we may write

Φ = (ϕ0, . . . , ϕq G x1, x2)q,

where each ϕi is a homogeneous degree m form in the a. One says that Φ is a covari-
ant of degree m and order q (of the generic d-ic F). In other words, the space

Span{ϕ0, . . . , ϕq} ⊆ Rm

is an irreducible subrepresentation isomorphic to Sq. The weight of Φ is defined to
be 1

2 (dm− q) (which is always a nonnegative integer).
In particular, F itself is a covariant of degree 1 and order d. A covariant of order 0 is

called an invariant. Any transvectant of two covariants is also one, hence expressions
such as

(F, F)4,
(

F, (F, F)2

)
3
,
(

(F, F)2, (F, F)4

)
5
, . . .

are all covariants. The Hessian coincides with (F, F)2 up to a scalar. A fundamental
result due to Gordan says that each covariant is a C-linear combination of such com-
pound transvectants (see [18, Section 86]). The weight of a compound transvectant
is the sum of transvection indices occurring in it; for instance,

(
(F, F)2, (F, F)4

)
5

is
of weight 2 + 4 + 5 = 11.
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2.5 Recall that a homogeneous form in R is called isobaric of weight w, if for each mono-
mial

∏
ank

k appearing in it, we have
∑

k
knk = w. If Φ is a covariant of degree-order

(m, q), then its coefficient ϕk is isobaric of weight 1
2 (dm − q) + k. For instance, let

d = 6, and Φ =
(

F, (F, F)2

)
1
, which is a covariant of degree 3, order 3d − 6, and

hence weight 3. Its expression begins as

Φ = (a2
0a3 + 2a3

1 − 3a0a1a2)x12
1 + (12a2

1a2 − 15a0a2
2 + 3a2

0a4)x11
1 x2

+ (15a1a2
2 + 3a2

0a5 + 18a0a1a4 + 24a2
1a3 − 60a0a2a3)x10

1 x2
2

+ (25a3
2 + 60a2

1a4 − 80a0a2
3 + a2

0a6 − 30a4a0a2 + 24a1a0a5)x9
1x3

2 + · · · ,

and one sees that the successive coefficients are isobaric of weights 3, 4, 5, etc.

2.6 The Cayley–Sylvester Formula

Let C(d,m, q) denote the vector space of covariants of degree-order (m, q) for binary
d-ics; its dimension ζ(d,m, q) is the same as the multiplicity of Sq in the irreducible
decomposition of Rm ' Sm(Sd). This number is given by the Cayley–Sylvester for-
mula (see [31, Corollary 4.2.8]). For integers n, k and l, let π(n, k, l) denote the num-
ber of partitions of n into k parts such that no part exceeds l. Then

ζ(d,m, q) = dim C(d,m, q) = π
( dm− q

2
, d,m

)
− π

( dm− q− 2

2
, d,m

)
.

For instance, ζ(6, 3, 6) = π(6, 6, 3) − π(5, 6, 3) = 7 − 5 = 2, and it is easy to check
(e.g., by specialising F) that

F(F, F)6,
(

F, (F, F)4

)
2
,

is a basis of C(6, 3, 6).

2.7 This is perhaps the correct place to forestall one possible misconception about Theo-
rem 1.1. Recall that Gr,d and Hr,d both have degree r +1 and order N = (r +1)(d−2).
If it were the case that

(3) ζ(d, r + 1,N) = 1,

then one could immediately conclude that the two must be equal up to a scalar. But
such may not be the case. For instance, if r = 5, d = 15, then ζ(15, 6, 78) = 4.
Hence, Theorem 1.1 does not follow from general multiplicity considerations, but
instead requires an explicit hard calculation. However, (3) is true for r = 1, 2. (This
can be seen from the plethysm formulae in [24, Section I.8].)
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2.8 An alternate equivalent definition of a covariant is as follows. Let g =
( α γ
β δ

)
, where

α, . . . , δ are regarded as independent indeterminates. Write

x1 = αx ′1 + βx ′2, x2 = γx ′1 + δx ′2,

and substitute into (2). Determine expressions a ′0, . . . , a
′
d such that we have an equal-

ity
(a ′0, . . . , a

′
d G x ′1, x

′
2)d = (a0, . . . , ad G x1, x2)d;

then each a ′i is a polynomial expression in the a and α, . . . , δ. Now suppose Φ ∈
C[a0, . . . , ad; x1, x2] is a bihomogeneous form of degrees m, q respectively in a, x.
Then Φ is a covariant if and only if the following identity holds:

(4) Φ(a ′0, . . . , a
′
d; x ′1, x

′
2) = (αδ − βγ)

dm−q
2 Φ(a0, . . . , ad; x1, x2).

2.9 Covariants and Differential Operators

Consider the following differential operators:

E+ =

d−1∑
i=0

(d− i)ai+1
∂

∂ai
, E− =

d∑
i=1

iai−1
∂

∂ai
, E0 =

d∑
i=0

(2i − d)ai
∂

∂ai
,

and

Γ+ = E+ − x1
∂

∂x2
, Γ− = E− − x2

∂

∂x1
, Γ0 = E0 +

(
x1

∂

∂x1
− x2

∂

∂x2

)
.

Proposition 2.1 A bihomogeneous form Φ is a covariant if and only if

(5) Γ+Φ = Γ−Φ = Γ0Φ = 0.

A proof is given in [30, Section 149] (also see [31, Section 4.5]), but the central
idea is the following: Φ is a covariant exactly when it remains unchanged by an SL2-
action, i.e., when it is annihilated by the Lie algebra sl2. Let

J+ =

(
0 1
0 0

)
, J− =

(
0 0
1 0

)
, J0 =

(
1 0
0 −1

)
denote the standard generators of sl2. Choose a path t −→ gt starting from the
identity element in SL2, and apply condition (4) to gt . For the three cases J? =

[ dgt

dt ]t=0 where ? ∈ {+,−, 0}, we respectively get the identities in (5).

The first coefficient ϕ0 is called the source (or seminvariant) of Φ. From (5), we
get equations

E−(ϕ0) = 0, and ϕk =
(q− k)!

q!
Ek

+(ϕ0) for 0 6 k 6 q.
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Thus, one can recover the entire covariant from the source alone. Moreover, a homo-
geneous isobaric form ψ in the a can be a source (of some covariant), if and only if
it satisfies the condition E−(ψ) = 0. The explicit formula for ϕk is sometimes called
Robert’s theorem (see [17, Section 8.1.5]).

The commutation relations between the E? are parallel to the ones between the
standard generators of sl2, i.e.,

[E+, E−] = E0, [E0, E+] = 2E+, [E0, E−] = −2E−.

In particular, due to the identity [Γ+,Γ−] = Γ0, the condition Γ0Φ = 0 in (5) is
automatically satisfied if the other two are.

The following lemma will be needed in Section 4.1.

Lemma 2.2 For n > 0, we have an identity

E−En+1
+ = En+1

+ E− − (n + 1)En
+E0 − n(n + 1)En

+.

Proof This follows by a straightforward induction on n.

2.10 Wronskians

Let m, n > 0 be integers such that m 6 n + 1. Consider the following composite
morphism of representations

w : ∧m Sn

∼
−→ Sm(Sn−m+1) −→ Sm(n−m+1),

where the first map is an isomorphism (described in [3, Section 2.5]) and the second
is the natural surjection. Given a sequence of binary n-ics A1, . . . ,Am, define their
Wronskian W (A1, . . . ,Am) to be the image w(A1 ∧ · · · ∧ Am). It is given by the
determinant

(i, j) −→ ∂m−1Ai

∂xm− j
1 ∂x j−1

2

, (1 6 i, j 6 m).

The {Ai} are linearly dependent over C, if and only if W (A1, . . . ,Am) = 0. (The
‘only if ’ part is obvious. For the converse, see [25, Section 1.1].)

3 The Göttingen Covariants

3.1 Henceforth assume that r, d are positive integers, and let e = gcd(r, d). Write d = eµ
and r = eµ ′. Consider the embedding

PSe

ı
−→ PSd, [G] −→ [Gµ];

and let Xe,d denote the image variety. We have a factorisation

PSµ(Se)

π

��
PSe

vµ
;;

ı
// PSd
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where vµ is the µ-fold Veronese embedding, and π is the projection coming from the
surjective map Sµ(Se) −→ Seµ = Sd. Thus ı corresponds to the incomplete linear
series Sd ⊆ H0

(
OPSe (µ)

)
.

3.2 In this section we will define the covariants Gr,d. For F ∈ Sd, we have a morphism

αF : Sr −→ Sr+d−2, A −→ (A, F)1 =
1

rd

∣∣∣Ax1 Ax2

Fx1 Fx2

∣∣∣ ,
where Axi stands for ∂A

∂xi
, etc.

Proposition 3.1 With notation as above,

kerαF 6= 0 ⇐⇒ [F] ∈ Xe,d.

Proof Assume F = Gµ for some e-ic G, then αF(Gµ ′) = (Gµ ′ ,Gµ)1 = 0.
Alternately, assume that (A, F)1 = 0 for some nonzero A. We will construct a

form G such that (up to scalars) A = Gµ ′ , F = Gµ. Let ` ∈ S1 be any linear form
which divides either A or F; after a change of variables we may assume ` = x1. Sup-
pose that a, f are the highest powers of x1 which divide A, F respectively, and write

A = xa
1Ã, F = x f

1 F̃. Starting from the relation Ax1 Fx2 = Ax2 Fx1 , after expanding and
rearranging the terms, we get

xa+ f
1 (Ãx1 F̃x2 − Ãx2 F̃x1 ) = xa+ f−1

1 (−aÃF̃x2 + f Ãx2 F̃),

hence x1 must divide (−aÃF̃x2 + f Ãx2 F̃). Thus, either Ãx2 = F̃x2 = 0 (and so a =

r, f = d), or the terms with highest powers of x2 in aÃF̃x2 and f Ãx2 F̃ cancel against
each other. In the latter case,

a(d− f ) = f (r − a) =⇒ ad = f r =⇒ aµ = fµ ′.

In either case, µ ′|a and µ| f . Define G such that x1 appears in it exactly to the power
f
µ , and similarly for all such `.

Now consider the composite morphism

S0 ' ∧r+1Sr

∧r+1αF

−−−−→ ∧r+1Sr+d−2 ' Sr+1(Sd−2) −→ S(r+1)(d−2).

The image of 1 ∈ S0 is the Wronskian W
(
αF(xr

1), αF(xr−1
1 x2), . . . , αF(xr

2)
)

, which we
define to be Gr,d(F). To recapitulate, Gr,d(F) is the determinant of the (r + 1)× (r + 1)
matrix

(6) (i, j) −→ ∂rCi

∂xr− j
1 ∂x j

2

, (0 6 i, j 6 r),
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where Ci = (xr−i
1 xi

2, F)1. Then

Gr,d(F) = 0 ⇐⇒ kerαF 6= 0 ⇐⇒ [F] ∈ Xe,d.

Each matrix entry is linear in the coefficients of F, and of order d− 2 in x, hence Gr,d

has degree r + 1 and order N = (r + 1)(d− 2).
In the next section, we will generalise this construction to obtain a family of co-

variants vanishing on Xe,d. The reader who is more interested in Hilbert’s solution
may proceed directly to Section 4.1.

3.3 Let
B = (b0, b1, . . . , bd−2 G x1, x2)d−2,

denote a generic form of order d − 2, with a new set of indeterminates b. As in
Section 2.4, the b can be seen as forming a basis of S∗d−2 ' Sd−2. Let Ψ(b, x) denote
a covariant of degree r + 1 and order q of B. Then Ψ corresponds to an embedding
Sq −→ Sr+1(Sd−2), which can be described as follows: if we realise Sr+1(Sd−2) as the
space of degree r + 1 forms in the b, then A(x) ∈ Sq gets sent to (A,Ψ)q. After
dualising, we get a morphism

fΨ : Sr+1(Sd−2) −→ Sq.

Now consider the composite morphism

S0 ' ∧r+1Sr

∧r+1αF

−−−−→ ∧r+1Sr+d−2 ' Sr+1(Sd−2)
fΨ
−→ Sq,

and let GΨ(F) denote the image of 1 ∈ S0, which will be called the Göttingen covari-
ant of F associated to Ψ. It is of the same degree and order as Ψ, and hence its weight
is r + 1 more than that of Ψ. In particular, Gr,d(F) is the same as GBr+1 (F). As before,

[F] ∈ Xe,d =⇒ GΨ(F) = 0.

3.4 The Calculation of GΨ

One can calculate GΨ(F) explicitly by following the sequence of maps above, which
amounts to the following recipe:

• Introduce 2(r + 1) sets of binary variables

y(i) = {yi1, yi2}, z(i) = {zi1, zi2} for 0 6 i 6 r;

and let Ωy(i)z(i) be the corresponding Omega operators.
• Let W denote the determinant

(i, j) −→ ∂r(xr−i
1 xi

2, F)1

∂xr− j
1 ∂x j

2

∣∣∣
x−→y(i)

, (0 6 i, j 6 r).
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Hilbert Covariants 13

This is similar to (6), except that the y(i) variables are used throughout the i-th
row. Let W] denote the symmetrisation of W with respect to the sets y(i), i.e.,

W] =
∑
σ

W(yσ(0), . . . , yσ(r)),

the sum quantified over all permutations σ of {0, . . . , r}. Then W] is of degree
r + 1 in a, and of order d− 2 in each y(i).

• Write
Ψ = (ψ0, . . . , ψq G x1, x2)q,

where each ψi is a degree r + 1 form in b = {b0, . . . , bd−2}. Introduce r + 1 sets of
variables b(0), . . . , b(r), where

b(i) = {bi0, . . . , bid−2},

and let Ψ̃ be the total polarisation of Ψ with respect to the new variables (see [12,
Section 1.1]). Then Ψ̃ is linear in each set b(i).

• Let Ψ̂ denote the form obtained from Ψ̃ by replacing bik with 1
(d−2)! z

d−2−k
i2 (−zi1)k

for 0 6 i 6 r and 0 6 k 6 d − 2. (This is similar to the identification of ai as in
Section 2.4.) Thus Ψ̂ is of order q in x, and of order d− 2 in each z(i).

• Finally,
GΨ(F) = [Ωd−2

y(0)z(0)
◦ · · · ◦ Ωd−2

y(r)z(r)
]Ψ̂W].

This removes all the y(i) and z(i) variables, which leaves a form of degree r + 1 in
the a and order q in x.

3.5 It may happen that GΨ is identically zero, even if Ψ is nontrivial. (Hence the impli-
cation in (3.3) is not reversible in general.) For instance, recall that a generic binary
d-ic has a cubic invariant exactly when d is a multiple of 4. Now let r = 2, and assume
d ≡ 2 (mod 4). Then Ψ =

(
B, (B,B) d−2

2

)
d−2

is a nontrivial cubic invariant of B,

but GΨ must vanish identically.
If d is a divisor of r, then Xe,d = PSd, and in that case all GΨ are identically zero.

N.B. Henceforth, if A,B are two quantities, we will write A
.
= B to mean that A = cB

for some unspecified nonzero rational scalar c. This will be convenient in symbolic
calculations, where more and more unwieldy scalars tend to accumulate at each stage.

3.6 As an example, we will follow this recipe when r = 1 and Ψ is any quadratic covari-
ant. Write symbolically

F = αd
x = βd

x , B = pd−2
x = qd−2

x .

Every quadratic covariant of B must be of the form

Ψ = (B,B)2n = (pq)2n pd−2−2n
x qd−2−2n

x ,
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14 A. Abdesselam and J. Chipalkatti

for some n in the range 0 6 n 6 d−2
2 . Using α, β for the two rows of W, we get

W
.
=

∣∣∣∣∣α1α2α
d−2
y(0)

α2
2α

d−2
y(0)

β2
1β

d−2
y(1)

β1β2β
d−2
y(1)

∣∣∣∣∣ = α2β1(αβ)αd−2
y(0)

βd−2
y(1)

,

and hence

W] .= (αβ)2αd−2
y(0)

βd−2
y(1)

.

Now the symbolic expression for Ψ̃ is the same as the one for Ψ, provided we make
the convention that p, q respectively refer to the b(0), b(1) variables. Then

Ψ̂
.
= (z(0)z(1))

2n(xz(0))
d−2−2n(xz(1))

d−2−2n;

and finally,

GΨ
.
= (αβ)2n+2αd−2−2n

x βd−2−2n
x .

We have proved the following.

Proposition 3.2 If Ψ = (B,B)2n, then GΨ
.
= (F, F)2n+2.

In particular, G1,d
.
= GB2 = G(B,B)0

.
= (F, F)2 is the Hessian of F. Similar calcula-

tions show that

G2,d
.
=
(

F, (F, F)2

)
1
,

G3,d
.
= 3(2d− 3)(F, F)2

2 − 2(d− 2)F2(F, F)4,

G4,d
.
= 2(3d− 4)(F, F)2

(
F, (F, F)2

)
1
− (d− 3)F2

(
F, (F, F)4

)
1
.

(7)

(Such formulae are derived for the Hr,d in [7] and [19], but this makes no difference
in view of Theorem 1.1.) However, as r grows, it quickly begins to get more and more
tedious to execute this recipe.

4 Hilbert’s Construction

In this section we will describe Hilbert’s construction of his covariants Hr,d, and later
prove that the outcome coincides with Gr,d up to a scalar.

The underlying idea is as follows. Suppose, for instance, that F is an order 10 form
such that F = G5 for some quadratic G. Then substituting x1 = 1, x2 = z, we have

d3

dz3
5
√

F(1, z) = 0.

One should like to convert the left-hand side into a covariant condition on F; but
this requires some technical modifications. We begin by constructing the source of
Hilbert’s covariant.

https://doi.org/10.4153/CJM-2012-046-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2012-046-1


Hilbert Covariants 15

4.1 Define
h0 = a

r+1− r
d

0 Er+1
+ (a

r
d
0 ).

This is easily seen to be an isobaric homogeneous form of degree and weight r + 1 in
the a. For instance,

h0 =

{
(d− 1)(a0a2 − a2

1) if r = 1,

(2d2 − 6d + 4)a2
0a3 − (6d2 − 18d + 12)a0a1a2 + (4d2 − 12d + 8)a3

1 if r = 2.

Lemma 4.1 The form h0 is a source.

Proof We need to show that E−h0 = a
r+1− r

d
0 E−E r+1

+ (a
r
d

0 ) vanishes. Apply Lemma 2.2
and note that

E0(a
r
d
0 ) = −ra

r
d
0 , E−(a

r
d
0 ) = 0,

which implies the result.

Since h0 has weight r + 1, the covariant corresponding to h0 must have order N =
(r + 1)(d− 2). The Hilbert covariant is defined to be

(8) Hr,d(F) = (h0, . . . , hN G x1, x2)N ,

where

(9) hk =
(N − k)!

N!
Ek

+(h0) for 0 6 k 6 N.

4.2 In order to prove Theorem 1.1, it will suffice to show that Hr,d and Gr,d have the same
source up to a scalar. We will avoid writing such scalars explicitly in the course of the
calculation, but see formula (16) below.

Let a = (a0, . . . , ad) denote a (d + 1)-tuple of complex variables. For t ∈ C, define

γt : Cd+1 −→ Cd+1, (a0, a1, . . . , ad) −→
(

a0(t), a1(t), . . . , ad(t)
)
,

by the formula

(a0, . . . , ad G 1, z + t)d =
(

a0(t), . . . , ad(t) G 1, z
) d
.

It is easy to see that

ai(t) = ai + (d− i)ai+1t + O(t2) for 0 6 i 6 d− 1.

Hence, given an analytic function φ : Cd+1 −→ C, we have an equality

E+φ =
[ d

dt

(
φ(γt )

)]
t=0
.
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16 A. Abdesselam and J. Chipalkatti

Iterating this formula,

(10) En
+φ =

[ ∂nφ(γt1+···+tn )

∂t1 · · · ∂tn

]
t1=···=tn=0

=
[ dnφ(γt )

dtn

]
t=0
.

Now write f (z) = (a0, . . . , ad G 1, z)d, and apply this to the function

φ(a) = a
r
d
0 = f (0)

r
d ,

which gives the expression

(11) h0 = f (0)r+1− r
d

[ dr+1

dt r+1
f (t)

r
d

]
t=0

for the source of Hr,d.

4.3 We make a small digression to prove that Hr,d has the required vanishing property.

Proposition 4.2 Let F be a d-ic. Then

Hr,d(F) = 0 ⇐⇒ [F] ∈ Xe,d.

Proof This will, of course, follow from Theorem 1.1, but even so, we include an
independent proof. After a change of variables, we may assume a0 6= 0. Write

(12) f (t)
r
d = a

r
d
0

(
1 +
∑
m>1

θm

m!
tm
)
.

Using the reformulation of E+ above, we have

a
r
d
0 θm+1 = E+(a

r
d
0 θm).

Now a simple induction shows that there are identities

ar+1
0 θr+1 = h0, ar+2

0 θr+2
.
= a0h1 +�1h0,

and in general

ar+1+k
0 θr+1+k

.
= ak

0hk +
k∑

i=1

�ihk−i ,

for some homogeneous polynomials �i(a) of degree k and weight i. (Here we have
set hi = 0 for i > N.) If h0, h1, . . . , etc., all vanish, then so do θk for k > r + 1, and
the power series in (12) becomes a polynomial of degree 6 r. Thus f (t) reduces to a
perfect µ-th power. Conversely, if f (t) = g(t)µ, then f

r
d = gµ

′
is of degree 6 r, and

hence h0 = h1 = · · · = 0.
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Hilbert Covariants 17

4.4 We should like to calculate the source of Gr,d as defined by the determinant in (6).
However, the dehomogenisation in the previous section is with respect to the other
variable, so a preparatory step is needed. The Wronskian construction is equivariant,
hence in the notation of Section 1.1, we have an identity

W (C0, . . . ,Cr)(x1, x2) = W (Cg
0, . . . ,C

g
r )(x2,−x1),

for g =
(

0 −1
1 0

)
. If z = −x2/x1, then (up to a scalar) the right-hand side becomes

(−x1)N ×

∣∣∣∣∣∣∣
v(r)

0 · · · v0
...

...
v(r)

r · · · vr

∣∣∣∣∣∣∣ ,
where

vi(z) = Cg
i (z, 1) = Ci(−1, z), and v(k)

i =
dk

dzk
vi .

Substituting x1 = 1, x2 = 0,

g0 = source of Gr,d
.
=

∣∣∣∣∣∣∣
v(r)

0 (0) · · · v0(0)
...

...
v(r)

r (0) · · · vr(0)

∣∣∣∣∣∣∣ .
By definition,

Ci
.
=
∂[xr−i

1 xi
2]

∂x1

∂F

∂x2
− ∂[xr−i

1 xi
2]

∂x2

∂F

∂x1
.

Using F(x1, x2) = xd
1 f ( x2

x1
), this can be rewritten as

Ci
.
=

(
idxd+r−i−1

1 xi−1
2 f

( x2

x1

)
− rxd+r−i−2

1 xi
2 f ′
( x2

x1

))
,

and therefore

vi(z)
.
=
(

id(−1)d+r−i−1zi−1 f (−z)− r(−1)d+r−i−2zi f ′(−z)
)
.

Let

bi(z) = idzi−1 f (z)− rzi f ′(z),

so that vi(−z) = (−1)d+rbi(z). After reordering the columns,

g0
.
=

∣∣∣∣∣∣∣
b0(0) · · · b(r)

0 (0)
...

...
br(0) · · · b(r)

r (0)

∣∣∣∣∣∣∣ .
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Now the key step is to write

bi
.
= f (z)1+ r

d
d

dz

(
zi f (z)−

r
d
)

︸ ︷︷ ︸
ci

,

which is similar to the idea of an integrating factor in the theory of ordinary differ-
ential equations. Then

g0
.
= (a

1+ r
d

0 )r+1 ×

∣∣∣∣∣∣∣
c0(0) · · · c(r)

0 (0)
...

...
cr(0) · · · c(r)

r (0)

∣∣∣∣∣∣∣ .
Now let µi = zi and ω = f (z)−

r
d , so that ci = (µiω) ′. By the Leibniz rule,

c( j)
i = (µiω)( j+1) =

r+1∑
k=0

(
j + 1

k

)
µ(k)

i ω( j+1−k) for 0 6 j 6 r,

with the convention that
( j+1

k

)
= 0 if k > j + 1. Since µ(r+1)

i = 0, we can stop the
summation at k = r, and factor the determinant in (4.4) as

(13)

∣∣∣∣∣∣∣
µ0(0) · · · µ(r)

0 (0)
...

...
µr(0) · · · µ(r)

r (0)

∣∣∣∣∣∣∣×∆,

where

∆ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(1
0

)
ω ′

(2
0

)
ω ′ ′ · · · · · ·

(r+1
0

)
ω(r+1)(1

1

)
ω

(2
1

)
ω ′ · · · · · ·

(r+1
1

)
ω(r)

0
(2

2

)
ω · · · · · ·

(r+1
2

)
ω(r−1)

...
. . .

. . .
...

0 · · · 0
(r

r

)
ω

(r+1
r

)
ω ′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
evaluated at z = 0. The first determinant in (13) is a pure rational constant, so it

only remains to calculate ∆.

4.5 Let ν = ω−1 = f (z)
r
d . For f (0) 6= 0, these are holomorphic functions of z near the

origin. From

ων = (ω0 + ω1z + ω2z2 + · · · )(ν0 + ν1z + ν2z2 + · · · ) = 1,

we get the linear system

ω0ν0 = 1,
k∑

i=0

ωiνk−i = 0 for 1 6 k 6 r + 1.

https://doi.org/10.4153/CJM-2012-046-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2012-046-1


Hilbert Covariants 19

Solving for νr+1 by Cramer’s rule,
(14)

νr+1 =
1

ωr+2
0

×

∣∣∣∣∣∣∣∣∣∣∣

ω0 0 · · · · · · 1
ω1 ω0 0 · · · 0
...

. . .
. . .

...
ωr ω0 0
ωr+1 · · · · · · ω1 0

∣∣∣∣∣∣∣∣∣∣∣
=

(−1)r+1

ωr+2
0

×

∣∣∣∣∣∣∣∣∣∣∣∣

ω1 ω2 · · · · · · ωr+1

ω0 ω1 · · · · · · ωr

0 ω0
. . .

...
...

. . .
. . .

. . .
...

0 · · · 0 ω0 ω1

∣∣∣∣∣∣∣∣∣∣∣∣
,

where the second determinant is obtained by expanding the first by its last column
and transposing.

4.6 On the other hand,

∆ =

∣∣∣∣( j + 1

k

)
ω( j+1−k)

∣∣∣∣
06k, j6r

=
∣∣∣ ( j + 1)!

k!
1{k6 j+1}ω j+1−k

∣∣∣
06k, j6r

,

where the characteristic function 1{k6 j+1} assumes the value 1 if k 6 j + 1, and 0
otherwise. This is the same as the rightmost determinant in (14), hence

(15) g0
.
= (a

1+ r
d

0 )r+1∆
.
= (a

1+ r
d

0 )r+1ωr+2
0 νr+1.

Now recall that
ω0 = ω(0) = a

− r
d

0 ,

and

νr+1 =
1

(r + 1)!
ν(r+1)(0) =

1

(r + 1)!

[ dr+1

dt r+1
f (t)

r
d

]
t=0
.

The exponent of a0 reduces to(
1 +

r

d

)
(r + 1)− r

d
(r + 2) = r + 1− r

d
.

Hence, by comparing (11) with (15), we get

g0
.
= h0,

which completes the proof of Theorem 1.1.

If we keep track of the unwritten scalars in the intermediate stages, the connecting
relation is seen to be

(16) g0 =

{∏r
i=0 i! (d + i − 2)!

[r × (d− 2)!]r+1

}
h0.

This, of course, implies a parallel relation between Gr,d and Hr,d.
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4.7 One can give a formula for the Hilbert covariant directly, without constructing its
source first. Introduce binary variables y = {y1, y2}.

Proposition 4.3 We have an identity

Hr,d(F)
.
=

F(x1, x2)r+1− r
d

(x1 y2 − x2 y1)r+1

[(
y1

∂

∂x1
+ y2

∂

∂x2

) r+1
F(x1, x2)

r
d

]
.

This is merely the homogenised version of the formula (9) combined with (10),
so we will omit the proof.

5 The Three Ideals

Let X = Xe,d be as in Section 3.1, with IX ⊆ R its homogeneous defining ideal. Let J
(respectively g) denote the ideal in R generated by the coefficients of Gr,d (respectively
all possible GΨ). In other words, g is the ideal generated by the maximal minors of
a matrix representing the morphism αF : Sr −→ Sr+d−2 from Section 3.2. There are
inclusions

J ⊆ g ⊆ IX.

The zero locus of each of these ideals is X, but depending on the values of r and d,
either of these inclusions may be proper. Since IX has nonzero elements in degree e+1
(arising from the coefficients of Ge,d), we must have a proper containment g ( IX ,
whenever r does not divide d.

5.1 Suppose r = 1, so that X is the rational normal d-ic curve. We have a decomposition

R2 ' S2(Sd) '
b d

2 c⊕
n=0

S2d−4n,

where the summand S2d−4n is spanned by the coefficients of (F, F)2n. It is classically
known that IX is minimally generated in degree 2, and (IX)2 '

⊕
n>1 S2d−4n ⊆ R2

(see [9]). By Proposition 3.2, we have g = IX . Moreover, J and g coincide for d 6 3
and differ afterwards.

5.2 Assume r = 3, d = 6. One can explicitly calculate the ideal of X = X3,6 using the
following elimination-theoretic technique. Let Q = (q0, q1, q2, q3 G x1, x2)3, where
the qi are independent indeterminates. Write

(a0, . . . , a6 G x1, x2)6 = Q2

and equate the corresponding coefficients on both sides. This gives expressions
ai = fi(q0, . . . , q3), defining a ring homomorphism

f : R −→ C[q0, . . . , q3], ai −→ fi(q0, . . . , q3).
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Then IX is the kernel of f. We carried out this computation in the computer algebra
system Macaulay-2 (henceforth M2); it shows that IX is minimally generated by a
45-dimensional subspace of R4.

In order to determine the piece (g)4, we need to list the degree 4 covariants of a
generic binary quartic B. By the Cayley–Sylvester formula,

S4(S4) = S16 ⊕ S12 ⊕ S10 ⊕ (S8 ⊗ C2)⊕ (S4 ⊗ C2)⊕ S0.

It is classically known (see [18, Section 89]) that each covariant of B is a polynomial
in these fundamental covariants:

C1,4 = B, C2,4 = (B,B)2, C2,0 = (B,B)4,

C3,6 =
(

B, (B,B)2

)
1
, C3,0 =

(
B, (B,B)2

)
4
,

where Cm,q is of degree-order (m, q). Hence, the space of degree 4 covariants of B is
spanned by

Ψ4,16 = C4
1,4, Ψ4,12 = C2

1,4C2,4, Ψ4,10 = C1,4C3,6, Ψ(1)
4,8 = C2

2,4,

Ψ(2)
4,8 = C2

1,4C2,0, Ψ(1)
4,4 = C1,4C3,0, Ψ(2)

4,4 = C2,4C2,0, Ψ4,0 = C2
2,0.

We have calculated GΨ in each case using the recipe of Section 3.4. It turns out
that the ones coming from Ψ4,16,Ψ4,12,Ψ4,0 are nonzero, whereas GΨ4,10 vanishes
identically. Moreover, we have identities

6GΨ(1)
4,8

= GΨ(2)
4,8
, 29GΨ(1)

4,4
= 36GΨ(2)

4,4
;

that is to say, both Ψ(i)
(4,8) lead to the same Göttingen covariant (up to a scalar), and

similarly for Ψ(i)
(4,4). Hence

(g)4 ' S16 ⊕ S12 ⊕ S8 ⊕ S4 ⊕ S0,

which is exactly 45-dimensional; this forces g = IX .

5.3 Assume r = 2, and d even. Now [2, Theorem 7.2] says that IX is minimally generated
by cubic forms, and its generators are explicitly described there. If d = 4, then
(IX)3 ' S6, with the only piece coming from G2,4. If d = 6, then

(IX)3 ' S12 ⊕ S8 ⊕ S6.

The three summands are respectively generated by the coefficients of:

Φ3,12 = (F2, F)3, Φ3,8 = (F2, F)5, Φ3,6 = 33(F2, F)6 − 250
(

F, (F, F)2

)
4
.

Now, following the recipe of Section 3.4, one finds that

GB3
.
= Φ3,12, GB(B,B)2

.
= Φ3,8, G(B,(B,B)2)1

.
= Φ3,6;

and hence g = IX once again.
We have calculated several such examples, which suggest the following pair of

conjectures.
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Conjecture 5.1 Assume that r divides d. Then

(c1) the ideal IX is always minimally generated in degree r + 1, and
(c2) g = IX .

At least for r = 1, 2, something much stronger than (c1) is true; namely IX has
Castelnuovo regularity r + 1, and its graded minimal resolution is linear (see [2, The-
orem 1.4]). We do not know of a counterexample to this when r > 2.

Referring to the diagram at the beginning of Section 3, note that the ideal of the
Veronese embedding is generated by quadrics; but the projection π (which implicitly
involves elimination theory) will tend to increase the degrees of the defining equa-
tions of its image.

5.4 The Saturation of J

In this section we will prove Theorem 1.2. We want to show that the ideal J defines
X scheme-theoretically when r divides d, that is to say,

Proj R/IX −→ Proj R/ J

is an isomorphism of schemes. The following example should convey the essential
idea behind the proof.

Assume r = 2, d = 6. Write ti = ai/a0 for 1 6 i 6 6. Let A = C[t1, . . . , t6], and
consider the corresponding degree zero localisation a = ( Ja0 )0 ⊆ A. The zero locus
of a is X \ {a0 = 0} ' A2. Since the question is local on X, it would suffice to show
that A/a is isomorphic to a polynomial algebra C[v1, v2].

Now H2,d
.
=
(

F, (F, F)2

)
1
, and we have explicitly written down its first few terms

in Section 2.5. Note that the monomial a2
0a3 occurs in its source, and similarly

a2
0a4, a2

0a5, a2
0a6 occur in the successive coefficients. Hence, modulo a, we have iden-

tities of the form

tk = a polynomial expression in t1, t2, . . . , tk−1, for 3 6 k 6 6.

Thus we have a surjective ring morphism

C[v1, v2] −→ A/a, vi −→ ti .

Since Krull-dimA/a = 2, this must be an isomorphism.
For the general case, write Hr,d as in (8), and recall that hk−(r+1) is isobaric of

weight k.

Lemma 5.2 The coefficient of ar
0ak in hk−(r+1) is nonzero for r + 1 6 k 6 d.

Proof The monomial ar
0ar+1 can appear in h0 only by one route, namely by applying

the sequence [
(d− r)ar+1

∂

∂ar

]
◦ · · · ◦

[
(d− 1)a2

∂

∂a1

]
◦
[

da1
∂

∂a0

]
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to a
r
d
0 , and then multiplying by a

r+1− r
d

0 . Hence its coefficient is nonzero. Now ar
0ak

can appear in hk−(r+1)
.
= E+hk−1−(r+1) only by applying (d− k + 1)ak

∂
∂ak−1

to ar
0ak−1,

so we are done by induction.

We can always change co-ordinates such that a0 6= 0 at any given point of X. Write
ti = ai/a0 and a < A = C[t1, . . . , td] as above. By the lemma, each of tr+1, . . . , td is
a polynomial in t1, . . . , tr modulo a. This gives a bijection

C[v1, . . . , vr] −→ A/a, vi −→ ti ,

which shows that the scheme Proj R/ J is locally isomorphic to the affine space Ar,
and hence Jsat = IX . This completes the proof of Theorem 1.2.

5.5 It follows that J and IX coincide in sufficiently large degrees. Let S(r, d) denote the
saturation index of J, namely it is the smallest integer m0 such that

Jm = (IX)m for all m > m0.

It would be of interest to have a bound on this quantity in either direction. It is
proved in [9] that

1

d− 2

√
(d− 1)(d2 − 2)

2
6 S(1, d) 6 d + 2;

but those techniques do not seem to generalise readily to the case r > 1. We have
obtained the following few values by explicit calculations in M2:

S(2, 4) = 3, S(2, 6) = 7, S(2, 8) = 9, S(2, 10) = 9, S(2, 12) = 10,

S(3, 6) = 9, S(3, 9) = 11, S(4, 8) = 13.

A similar (but larger) table for r = 1 is given in [9], where the value of S is related to
transvectant identities involving the Hessian.

5.6 Suppose ei = gcd(ri , d) for i = 1, 2. Then Xe1,d ⊆ Xe2,d exactly when e1|e2. However,
the containment relations between the ideals Jri ,d are not altogether obvious. For
Jr1,d ⊇ Jr2,d to be true, it is necessary that r1 6 r2 and e1|e2, but these conditions are
not sufficient. For instance, we have obtained the following miscellaneous data by
calculating these ideals in M2:

J2,5 6⊇ J3,5, J3,5 6⊇ J4,5, J2,5 ⊇ J4,5,

J4,5 6⊇ J6,5, J2,4 ⊇ J6,4, J6,4 ⊇ J10,4,

which at least shows that the general pattern is not so easily guessed. Nevertheless,
we have the following modest result.
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Proposition 5.3 There are inclusions J1,d ⊇ Jr,d for arbitrary d, and r = 2, 3, 4.

Proof It is clear from the formula for a transvectant (see Section 2.2), that if the
coefficients of A belong to an ideal, then all the coefficients of (A,B)k also belong
to this ideal. Hence, given any covariants Φ1, . . . ,Φn of F, all the coefficients of any
transvectant of the form(

. . .
(

(G1,d,Φ1)k1 ,Φ2

)
k2
, . . . ,Φn

)
kn

are in J1,d. Thus the result would follow if we could obtain Gr,d as a linear combina-
tion of such expressions.

Observe the formulae in (7). It is clear that G2,d is itself such an expression. Let
r = 4, then this is also true of the first term in G4,d. Now the so-called Gordan
syzygies give relations between cubic covariants of F. In particular, the syzygy which

is written as
(

F F F
d d d
0 1 4

)
in the notation of [18, Ch. IV], gives an identity

(
F, (F, F)4

)
1

=
2(2d− 5)

d− 4

(
F, (F, F)2

)
3
,

for any d > 5. Hence the same follows for the second term. (If d 6 4, then the
second term is identically zero.) This proves the result for r = 4.

The argument for r = 3 is similar. The first term in G3,d is already of the required
form. Moreover, we have an identity

F2(F, F)4 =
d(2d− 5)

(d− 3)(2d− 1)
(F, F)2

2 +
2(2d− 5)

d− 3

(
F2, (F, F)2

)
2
,

for d > 4. (This can be shown by a routine but tedious symbolic calculation as in
[18, Chapter IV-V].) Hence the same is true of the second term, which completes the
proof.

Since the argument depends on specific features of these formulae, it seems un-
likely that this technique will generalise substantially. Even so, we suspect that the
proposition may well be true of all r.

5.7 The Twisted Cubic Curve

Assume d = 3, and r arbitrary (but not divisible by 3). Then X ⊆ P3 is the twisted
cubic curve. Since B is a linear form, the only possibility for Ψ is Br+1, hence J = g. It
follows that the Hilbert–Burch complex (see [13, Section 20]) of αF gives a resolution

0← R/ J ← R← R(−r − 1)⊗ Sr+1 ← R(−r − 2)⊗ Sr ← 0.

Its first syzygy shows that we have an identity (Gr,3, F)2 = 0. (The correspon-
dence between syzygies and transvectant identities is discussed in [8, Section 4].)
The scheme Proj R/ J has degree

(r+2
2

)
, that is to say, it is a nonreduced (r+1)(r+2)

6 -fold
structure on X for r > 1.

We have
√

Jr,3 = IX for any r. Some experimental calculations in M2 suggest the
following narrow but interesting conjecture.
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Conjecture 5.4 There is an inclusion (IX)r ⊆ Jr,3, and moreover r is the smallest such
power.

This problem is related to identities between the covariants of a generic cubic
form. For instance, we have an identity

G2
1,3 = −1

2
(F,G2,3)1,

which can be verified by a direct symbolic computation. This immediately shows that
(IX)2 ⊆ J2,3. (Compare the argument of Proposition 5.3 above.)

In general, if r and d are coprime, then g is a perfect ideal of height d − 1, which
is resolved by the Eagon–Northcott complex (see [13, Appendix 2]) of αF. By the
Porteous formula (see [5, Chapter II, Section 4]), the scheme Proj R/g supported on
the rational normal d-ic curve has degree

(r+d−1
d−1

)
.

6 The Clebsch Transfer Principle

In this section we generalise the Göttingen covariants to n-ary forms.

6.1 Let W be an n-dimensional complex vector space with basis x = {x1, . . . , xn}, and
a natural action of the group SL(W ). Given an n-tuple of nonnegative integers I =
(i1, . . . , in) adding up to d, let(

d

I

)
=

d!∏
k

ik!
, xI =

∏
xik

k .

We write a generic form of order d in the x as

Γ =
∑

I

(
d

I

)
aIx

I ,

where the aI are independent indeterminates. As in the binary case, the {aI} can be
seen as forming a basis of SdW ∗. Define the symmetric algebra

A =
⊕

m>0
Sm(SdW ∗) = C[{aI}]

so that ProjA = PSd ' P(d+n−1
d )−1 is the space of n-ary d-ics.

6.2 Each irreducible representation of SL(W ) is a Schur module of the form Sλ = SλW ,
where λ is a partition with at most n − 1 parts (see [16, Section 15]). Moreover, we
have an isomorphism

S(λ1,λ2,...,λn−1,0)W ' S(λ1,λ1−λn−1,...,λ1−λ2,0)W
∗.

An inclusion SλW ∗ ⊆ Am corresponds to a morphism

S0 ↪→ Am ⊗ SλW,

and then the image of 1 ∈ S0 will be called a concomitant of Γ of degree m, and
type λ.
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6.3 In the case of ternary forms, for λ = (λ1, λ2), we have an embedding (see [16, Sec-
tion 15])

Sλ ⊆ Sλ2 (∧2W )⊗ Sλ1−λ2 .

Using the basis u1 = x1 ∧ x2, u2 = x2 ∧ x3, u3 = x3 ∧ x1 for ∧2W ' W ∗, we can
write the concomitant as a form of degree m in the aI , degree λ1−λ2 in x, and degree
λ2 in u. For instance, assume m = 2, d = 3. We have a plethysm decomposition
S2(S∗3 ) ' S∗6 ⊕ S∗4,2, and hence (up to a scalar) a unique morphism

S0 ↪→ A2 ⊗ S4,2.

If we symbolically write Γ = a3
x = b3

x, then this concomitant is (abu)2axbx. We refer
the reader to [18, Chapter XII] or [23] for the symbolic calculus of n-ary forms and
their concomitants.

6.4 The “Clebsch transfer principle” is a type of construction used to lift a binary covari-
ant to a concomitant of n-ary forms in a geometrically natural way. As such, it comes
in many flavours depending on the specifics of the geometric situation in play. (See
[6, Section 4], [12, Section 3.4.2] or [18, Section 215] for various descriptions of this
principle.) Clebsch’s own statement of this technique may be found in [10, p. 28],
but Cayley and Salmon seem to have been aware of it earlier (see [29, p. 28]).

The following example should convey an idea of how the transfer principle is used.
Let n = 3 and d = 4, so that PS4 ' P14 is the space of quartic plane curves. Let
Z ⊂ P14 be the 5-dimensional subvariety of double conics, i.e.,

Z = {[Γ] ∈ PS4 : Γ = Q2 for some ternary quadratic Q}.

A line L in the plane PW ∗ ' P2 will intersect a general quartic curve Γ(x1, x2, x3) = 0
in four points, which become two double points when Γ ∈ Z. With the identification
L ' P1, let Γ|L denote the “restriction” of Γ to L, regarded as a binary quartic form.
Hence the “function”

L −→ G2,4(Γ|L)

should vanish identically when Γ ∈ Z.
In order to make this precise, write p = [p1, p2, p3], q = [q1, q2, q3], where pi , qi

are indeterminates. We think of a generic L as spanned by the points p, q ∈ P2, and
thus L has line co-ordinates

u1 =

∣∣∣∣p1 q1

p2 q2

∣∣∣∣ , u2 =

∣∣∣∣p2 q2

p3 q3

∣∣∣∣ , u3 =

∣∣∣∣p3 q3

p1 q1

∣∣∣∣ .
Introduce binary variables λ = {λ1, λ2}, and substitute xi = λ1 pi + λ2qi in Γ to get
a form Θ (which represents the restriction). Now evaluate G2,4 on Θ by regarding

the latter as a binary form in the λ; then the final result is the required lift G̃2,4. The
actual symbolic calculation proceeds as follows. Let

Γ = a4
x = b4

x = c4
x,
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where ax = a1x1 + a2x2 + a3x3, etc. After substitution, ax becomes λ1ap +λ2aq, which
we rewrite as

αλ = α1λ1 + α2λ2 where α1 = ap, α2 = aq,

and similarly bx = βλ, cx = γλ. Thus Θ = α4
λ = β4

λ = γ4
λ. Recall from Section 3.6

that

(17) G2,d(Θ)
.
=
(

Θ, (Θ,Θ)2

)
1

.
= (αβ)2(αγ)αλβ

2
λγ

3
λ.

Now

(αβ) =

∣∣∣∣α1 α2

β1 β2

∣∣∣∣ = apbq − bpaq =

∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

u1 u2 u3

∣∣∣∣∣∣ = (abu),

and similarly for the bracket factor (αγ). Hence we arrive at the expression

(18) G̃2,4(Γ) = (abu)2(acu)axb2
xc3

x,

which is a concomitant of degree 3 and type (9, 3). We have the property

[Γ] ∈ Z ⇐⇒ G̃2,4(Γ) vanishes identically as a polynomial in x and u.

The implication⇒ follows by construction. The converse says that if Γ = 0 were not
a double conic, then a line could be found which does not intersect it in two double
points. This is clear on geometric grounds.

6.5 The case of a general Göttingen covariant is similar. Assume that GΨ is of degree
r + 1, order q, and weight w = (r+1)d−q

2 . Let p = [p1, . . . , pn] and q = [q1, . . . , qn],
substitute

(19) xi = λ1 pi + λ2qi , (1 6 i 6 n),

into Γ, and evaluate GΨ on the new binary form in the λ variables. The resulting

concomitant G̃Ψ is of degree r + 1 and type (q + w,w). If Γ = Gµ, then G̃Ψ(Γ)
vanishes identically for the same reason as above.

If GΨ is written as a symbolic expression in r + 1 binary letters a, b, . . . and their

brackets (ab), etc., then G̃Ψ is obtained by simply treating them as n-ary letters and
replacing the corresponding brackets by (abu), etc. This follows immediately by trac-
ing the passage from (17) to (18). In particular, the concomitant in Section 6.3 is the
Clebsch transfer of the Hessian of a binary cubic. The formal symbolic expression

for G̃Ψ does not depend on n, although its interpretation certainly does.

Theorem 6.1 Let Γ be an n-ary d-ic. Then G̃r,d(Γ) is identically zero, if and only if
Γ = Gµ for some n-ic G of order e.
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Proof The “if” part follows from the discussion above. Let Γ =
∏

Hνi
i be the prime

decomposition, where Hi is an irreducible form of degree ci . A general line L will
intersect each hypersurface Hi = 0 in ci distinct points. If Γ cannot be written as Gµ,
then at least one νi is not divisible by µ. Altogether L intersects Γ = 0 in c1 + c2 + · · ·
points, at least one of which occurs with multiplicity not divisible by µ. Thus G̃r,d(Γ)
will not vanish if the u variables in it are specialised to the Plücker co-ordinates of a
general L.

6.6 This is a continuation of Section 6.4. We have calculated the homogeneous defining
ideal of Z using a procedure similar to the one in Section 5.2, and it turns out that IZ

is minimally generated by a 218-dimensional space of forms in degree 3. We have a
plethysm decomposition

A3 = S3(S∗4 ) ' S∗12 ⊕ S∗10,2 ⊕ S∗9,3 ⊕ S∗8,4 ⊕ S∗6 ⊕ S∗6,3 ⊕ S∗6,6 ⊕ S∗4,2 ⊕ S∗0 ,

where the summands are of respective dimensions

91, 162, 154, 125, 28, 64, 28, 27, 1.

Now (IZ)3 is a subdirect sum of the above, and we already know that S∗9,3 is one of
its pieces. This forces (IZ)3 ' S∗9,3 ⊕ S∗6,3 on dimensional grounds. Hence there is a
concomitant of type (6, 3) vanishing on Z. We have checked by a direct calculation
that it can be written as

(abc)(abu)2(acu)bxc2
x.

In fact, all that needs to be checked is that this symbolic expression is not identically
zero, which can be done by specialising Γ. This suffices, since we have, up to a scalar,
only one concomitant of this type in degree 3.

Recall from Section 5.3 that for r = 2, d = 4, that there are no Göttingen covari-
ants other than G2,4. Hence we have found a concomitant vanishing on Z which is
not the Clebsch transfer of any binary covariant.

Let J ⊆ A denote the ideal generated by the coefficients of G̃2,4. We have checked
using M2 that the saturation of J is IZ , and moreover the two ideals coincide in
degrees > 7. But in general, we do not know whether there is an analogue of Theo-
rem 1.2 in the n-ary case.

6.7 We end with an example which is at least a pleasing curiosity. Assume that Γ = 0 is a
nonsingular plane quartic curve. A line L ⊂ P2 with co-ordinates [u1, u2, u3] passes
through the points p = [u3, 0,−u1], q = [u2,−u1, 0], and moreover these points

are distinct (and well-defined) when u1 6= 0. Now make substitutions into G̃2,4(Γ)
as in (19) to get a binary sextic E1(λ); it represents the binary form G2,4 as living
on L ' P1. (This is no longer correct if u1 = 0, hence in order to avoid spurious
solutions, we also need to consider the forms E2(λ),E3(λ) similarly obtained from

p = [0, u3,−u2], q = [u2,−u1, 0], p = [0, u3,−u2], q = [u3, 0,−u1].)
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Now, all theEi(λ) are identically zero exactly when {Γ = 0}∩L represents two double
points, i.e., when L is a bitangent to the curve defined by Γ. Let B = C[u1, u2, u3]
denote the co-ordinate ring of the dual plane, and bΓ ⊆ B the ideal generated by
the coefficients of all the monomials in λ for Ei(λ), i = 1, 2, 3. Then the zero locus
of bΓ is the set of 28 points (see [12, Chapter 6]) corresponding to the bitangents
of the curve. We have verified in M2 that bΓ is not saturated, but its saturation has
resolution

0← B/(bΓ)sat ← B← B(−7)8 ← B(−8)7 ← 0,

which is characteristic of 28 general points in the plane (see [14, Chapter 3]). In
much the same way, the concomitant in Section 6.3 can be used to give equations for
the nine inflexional tangents of a nonsingular plane cubic curve.
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