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Direct measurement of individual animal dry matter intake (DMI) remains a fundamental challenge to assessing dairy feed
efficiency (FE). Digesta marker, is currently the most used indirect technique for estimating DMI in production animals. In this
meta-analysis we evaluated the performance of marker-based estimates against direct or observed measurements and developed
equations for the prediction of FE (g energy-corrected milk (ECM)/kg DMI). Data were taken from 29 change-over studies consisting
of 416 cow-within period observations. Most studies used more than one digesta marker. So, for each observed measurement of
DM, faecal dry matter output (FDMO) and apparent total tract dry matter digestibility (DMD), there was one or more
corresponding marker estimate. There were 924, 409 and 846 observations for estimated FDMO (eFDMO), estimated apparent
total tract DMD (eDMD) and estimated DMI (eDMI), respectively. The experimental diets were based mainly on grass silage, with
soya bean or rapeseed meal as protein supplements and cereal grains or by-products as energy supplements. Across all diets,
average forage to concentrate ratio on a dry matter (DM) basis was 59 : 41. Variance component and repeatability estimates of
observed and marker estimations were determined using random factors in mixed procedures of SAS. Between-cow CV in observed
FDMO, DMD and DMI was, 10.3, 1.69 and 8.04, respectively. Overall, the repeatability estimates of observed variables were
greater than their corresponding marker-based estimates of repeatability. Regression of observed measurements on marker-based
estimates gave good relationships (R? = 0.87, 0.68, 0.74 and 0.74, relative prediction error = 10.9%, 6.5%, 15.4% and 18.7%for
FDMO, DMD, DMI and FE predictions, respectively). Despite this, the mean and slope biases were statistically significant

(P < 0.001) for all regressions. More than half of the errors in all regressions were due to mean and slope biases (52.4% 87.4%,
82.9% and 85.8% for FDMO, DMD, DMI and FE, respectively), whereas the contributions of random errors were small. Based on
residual variance, the best model for predicting FE developed from the dataset was FE (g ECM/kg DMI) = 1179(+54.1) +38.2
(+2.05) x ECM(kg/day) — 0.64(+0.051) x BW (kg) — 75.6(+4.39) x eFDMO (kg/day). Although eDMD was positively related to FE, it
only showed a tendency to reduce the residual variance. Despite inaccuracy in marker procedures, eFDMO from external markers
provided a reliable determination for FE measurement. However, DMD estimated by internal markers did not improve prediction of

FE, probably reflecting small variability.
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Implications

The main obstacle to assessing dairy feed efficiency (FE) is an
accurate individual animal feed intake measurement which
direct recording is laborious and expensive. Therefore,
indirect methods using digesta markers to estimate intake
have been developed. In this study, we used a meta-
analytical approach to develop models that could be used to
predict feed intake and FE by means of markers. Overall,
markers were not accurate in predicting dry matter intake
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(DMI). However, faecal dry matter output (FDMO) estimated
by external markers can improve prediction of FE thereby
eliminating the added burden of measuring intake directly.

Introduction

Feed efficiency is not a new concept. Although it gained
popularity in the 1970s (Hooven et al., 1972), it is only in
recent years research into this area has appeared consistently
in the scientific literature. This is mainly due to the increased
pressure facing the dairy industry to maintain profitability in
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an era of increasing feed costs and to reduce greenhouse gas
production and nutrient losses to the environment. Feed
efficiency has become a more common standard for mon-
itoring the economic viability of milk production and it is
already a primary marker for genetic improvement in dairy
cattle breeding programs (Vallimont et al., 2011; Pryce et al.,
2015; Tempelman et al., 2015). There are numerous defini-
tions of FE, among which the most relevant definition for
dairy production systems is still unclear (see review by Con-
nor, 2015).

Irrespective of definition, the greatest obstacle to asses-
sing FE is the measurement of individual animal feed intakes.
Feed intake is simply and directly measured as the difference
between the feed offered and that which remains uneaten or
by the use of automated feed monitoring systems. While
direct measurements may be quite accurate (Coleman,
2005), their use in dairy cattle generally has been limited to
smaller research herds due to the high cost of measurements
(Connor, 2015).

Moore (1996) suggested the marker technique as suitable
for indirect estimates of individual animal intake by dividing
FDMO by the indigestibility of the feed. Faecal output is
estimated from an external marker while an internal marker
(naturally occurring in feedstuffs) is used to estimate dry
matter digestibility (DMD).

Several markers have been evaluated through the years in
the search for a suitable marker (Huhtanen et al, 1994;
Ferret et al, 1999) but a marker that satisfies all the
requirements of the ideal marker (see review by Sales and
Janssens, 2003), is yet to be established. Furthermore, sim-
ple, low cost but accurate and precise analytical techniques
are required. The marker technique has been criticised for
much preparation work (especially external markers) and
practical inadequacies involved. As such, it has received little
or no application in large herds. However, under practical
conditions, they can produce important data for the
advancement of research.

Therefore, the objective of the present study was to eval-
uate the performance of marker estimates against observed
data using a large dataset from physiological digestion stu-
dies with a meta-analytical approach. Furthermore, equa-
tions were developed to assess the usefulness of marker
estimates in predicting FE. A prediction equation for FE
would curtail the added burden of measuring feed intake of
individual cows.

Material and methods

Experimental data

The dataset comprised 416 individual cow-within period
observations (after removing missing data) originating from
29 digestibility trials conducted in Denmark (5), Finland (18)
and Norway (6) (Supplementary Table S1 and Supplementary
Material S1). All trials were conducted as either Latin
square or cyclic change-over designs using rumen-
cannulated cows. The mean forage to concentrate ratio of
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the diets was 59 : 41 on a dry matter (DM) basis. In one
trial, a total mixed ration (TMR) was offered ad libitum
whereas in the rest forages were fed ad libitum and con-
centrates were offered on a flat rate basis with the exception
of one treatment within one of the experiments where cows
were offered only forage. Grass silage was the main forage
component for all diets but in two trials, grass silage was
partially replaced with red clover or whole-crop silages.
Maize and fresh grass silages were used in two trials and hay
was used in four trials. Concentrate supplements contained
oats, barley, ground maize, fibrous by-products from the
food industry, protein supplements, typically soya bean meal,
rapeseed meal or rapeseed expeller and dried or ensiled field
pea. All studies used a minimum of one external marker with
or without an internal marker. Observed measurements
included individual DMI, FDMO, apparent total tract DMD,
energy-corrected milk (ECM), body weight (BW), and dietary
and faecal marker concentrations. Daily DMIs were mea-
sured as the difference between feed offered the previous
day and refusals in the morning before the first new meal.
Measurements of FDMO and DMD for individual cows were
made based on total faecal collection in all studies except in
studies (62 cow-within period observations) from Denmark
where faecal grab samples were used for measurements.

Marker estimations

Faecal DM outputs were estimated from the concentration of
external marker in faeces and the daily dose using the fol-
lowing formula:

B marker dose (g/d)
eFDMO(kg / d) = faecal marker concentration (g/kg DM)

Some studies used more than one external marker. Thus,
for one observed measurement, there was equal or multiple
numbers of estimates. All external markers in all experiments
were used for estimating FDMO. As such, the curated num-
ber of observations for estimated FDMO (eFDMO) was
greater than that observed (924 v. 354). The external mar-
kers used for the determination were, large particle-phase
marker (Cr-mordanted fibre), small particle-phase marker
(Yb) and liquid-phase markers comprising Cr- and Co-
ethylenediaminetetraacetic acid (EDTA) and polyethylene
glycol (PEG). Apparent total tract DMD was also estimated
(eDMD) from dietary and faecal concentrations of internal
markers, using the following formula:

eDMD(g / kg DM) = 1000—1000

dietary marker concentration(g / kg DM)
faecal marker concentration(g / kg DM)

Some studies used more than one internal marker while
others (three from Norway and two from Denmark) used
none. All internal markers in all experiments were used for
estimating eDMD. As such, the curated number of observa-
tions for estimated DMD was greater than that observed
(409 v. 354). The internal markers used for the determination
were indigestible NDF (iNDF) (determined on ash-free basis)
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and acid insoluble ash (AIA). Individual DMIs were also
estimated by means of the simultaneous use of an internal
marker to estimate eDMD and an external marker to esti-
mate eFDMO using the following equation:

eDMI = 1000xefDIO jyst a5 above, the curated number of
observations for estimated DMI (eDMI) was greater than that
observed (846 v. 416). Feed efficiency of individual animals
were also estimated from both external and internal markers

as eFE =g ECM/kg eDMI.

Statistical analysis

Variance components of observed and marker-based vari-
ables were estimated using the PROC MIXED procedure of
SAS (version 9.4; SAS Institute Inc., Cary, NC, USA) with
experiment (Exp), diet within experiment (Diet(Exp)), period
within experiment (Period(Exp)) and cow within experiment
(Cow(Exp)) as random factors. Covariance structure was
specified using the TYPE=VC option in the RANDOM
statement. From these estimates, repeatability values (Rep)
for DMI, FDMO, DMD, eFDMO, eDMD and eDMI were cal-

2
culated as Rep = ﬂz"ciogv

Cow * OResidual

Cow(Exp) and residual variances, respectively. For the
observed data, repeatability values estimated the correlation
between values from consecutive samples on the same cow,
on the same diet and within the same period of the same
experiment. Mixed regression models (Supplementary Fig-
ures S1 to S6) of observed against estimated values were
developed for each marker separately (experiment was used
as a random effect). They showed varying prediction errors,
indicating differences among markers. Therefore, for marker
estimated variables, the component marker within experi-
ment (Marker(Exp)) was added. Repeatability values for
marker-based variables estimated the correlation between
values from consecutive samples of the same marker used on
the same cow, on the same diet and within the same period
of the same experiment. The standard deviation and CV for
each factor were calculated as a percentage of the square
root of the variance estimate and standard deviation divided
by the corresponding mean value of each factor, respectively.

Relationships between observed variables (DMI, DMD,
FDMO and FE) and their corresponding marker based esti-
mates (eDMI, eDMD, eFDMO and eFE) were explored, then
models for predicting FE (defined as g ECM/kg DMI) were
developed by regression analysis within the MIXED proce-
dure of SAS (Littell et al., 2006) as follows:

Y,'j =By+ B1X1,'j + bo + b1X1,'j + BzXz,:,‘ + B3X3,‘j +€jj,

. where GZCOW and 0'2Residual are

where Yj; is the expected value for the dependent variable Y
observed at level of j of the independent variable X in the
study i; By the overall intercept (fixed effect); by the random
effect of study i on the intercept (i=1, ... , 29); bi the
random effect of study /on the regression coefficient of Yon
Xy in study i (i=1, ..., 29); By, ... , Bs are regression
coefficients of Yon X;, ... , X3 of Yacross all studies (fixed
effects); Xi; ... , X3j. The value j of the continuous variable
X1, ..., Xzinthe study i and e; the residual error.
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The observed v. estimated regression models included
one independent variable X; and one random statement: a
random intercept and slope of X; with SUBJECT = Marker
(Exp) using the TYPE =UN (unstructured covariance).
To evaluate model accuracy, root mean square prediction
error (RMSPE) was calculated as follows: RMSPE =

[=(Observed — Estimated)? / n],where n is the number of
pairs of observed and estimated values being compared. The
error was expressed as a proportion of the observed mean to
give an estimate of the relative prediction error (RPE). The
mean square prediction error (MSPE) was decomposed into
random error, error due to the deviation of regression slope
from unity and error due to overall bias as described by Bibby
and Toutenburg (1977). Residual analyses were conducted
by regressing residuals (observed—estimated) on estimated
values. Observed values were adjusted for random study
effect. To make the slope and intercept estimates in the
regression orthogonal and hence independent, estimated
values were centred. This was done by subtracting the mean
of all estimated values from each estimate as described by St-
Pierre (2003). Mean biases were evaluated by the deviation
of regression intercepts from zero while the deviation of the
slopes of the regression equations from unity was used to
determine the presence of linear biases.

In the FE models, number of independent variables varied
between two and three. A basal model was first developed
using ECM and BW as independent variables, then each of
the marker-based estimates (eDMI, eDMD and eFDMO) was
added separately to the basal model to assess their influence
on FE predictions. The models included 3 random state-
ments: a random intercept and slope of X; with SUBJECT =
Diet(Exp), a random intercept with SUBJECT = Period(Exp)
and a random intercept with SUBJECT = Marker(Exp), using
the TYPE=VC (variance components) covariance structure
for all random statements. These random statements
allowed the effects of study, diet, period and marker to be
removed from the estimates. The method = ML (maximum
likelihood) statement was used in the PROC MIXED model
syntax. Only one random independent variable was used to
avoid over-parameterised models and improve convergence
(St-Pierre, 2001). The models were evaluated on the basis of
residual variance (6 gesidual)-

Results

Data description

Mean and ranges of marker recoveries and animal produc-
tion data are shown in Table 1. Energy-corrected milk
production displayed large variation across studies (CV =
20.7%) ranging from 15.1 to 40.6 kg/day. Body weight
averaged 609kg and covered the ranges (459 to 790kg).
Average eDMD (698 g/lkg DM) was lower than observed
DMD (740 g/kg DM). The means of observed DMI and FE
were 18.5kg/day and 1410 g ECM /kg of DMI, respectively.
Estimated DMI averaged 17.5kg/day and showed greater
variation (CV=24.9%) than observed DMI (CV =14.6%).
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The overall mean of FDMO was 4.9 kg for total collection and
5.1kg for marker-based estimate, respectively. Average
recovery rates of markers were 0.86, 0.95, 0.80, 1.01, 0.99
and 0.94 g/g for iNDF, AlA, Cr-mordanted fibre, Ytterbium,
Co-EDTA and Cr-EDTA, respectively. There was no recovery
rate for PEG because it was used in studies where faecal grab
samples were used for FDMO measurements.

Variance components

The variance components for Exp, Diet(Exp), Period(Exp),
Cow(Exp) and Residual to separate experimental, dietary,
period and individual animal effects for observed and esti-
mated variables are presented in Tables 2 and 3, respectively.
In general, variation associated with the effect of Exp was
the largest source of variation for all observed variables
(Table 2). Except for DMD where Diet(Exp) variation was
similar to Cow(Exp), the variation due to Cow(Exp) was
higher than that due to Diet(Exp) for DMI and FDMO
(CV=28.04% v. 5.12% and 10.3% v. 6.74%, respectively).
Between-cow variability was higher for FDMO than for DMI
and DMD while DMD exhibited the lowest between-cow
variation (CV=1.69%). Repeatability values of observed
variables were considerably high (Rep > 0.54).

For estimated variables, Marker(Exp) was included to
separate the effect of marker (Table 3). The variation due to
experiment was not significant (P=0.40) for eDMD but
tended to have an influence on eDMI (P=0.10). As in the
case of the observed variables, between-cow variation for
eDMD was of lower magnitude than for eDMI and eFDMO
(1.39% v. 9.07% and 9.14%, respectively). Overall, variation
associated with the effect of marker was the largest source
for the variables. However, it is worth noting that Marker
(Exp) variation was similar to Exp only for eFDMO. Estimated
FDMO showed the highest repeatability (Rep=0.51) value
among marker-based estimates while eDMD recorded the
lowest value (Rep = 0.12). Observed variables relatively gave
higher repeatability than their corresponding marker-based
estimates.

Predictions of faecal dry matter output, apparent total tract
dry matter digestibility and dry matter intake using markers
The relationship between FDMO and eFDMO for individual
external markers are shown in Supplementary Figure S1
(Cr-mordanted fibre), Supplementary Figure S2 (Yb), Sup-
plementary Figure S3 (Co-EDTA) and Supplementary
Figure S4 (Cr-EDTA). Cr-mordanted fibre gave the poorest

Table 1 Description of observed and estimated (intake, excretion, apparent total-tract digestibility) measures, milk production and marker recoveries
for the dataset derived from 29 digestibility studies in lactating dairy cows

Items n Mean SD Minimum Maximum
Intake (kg/day)
Silage DM 368 11.2 2.46 2.46 18.8
Concentrate DM 368 7.8 2.12 0.00 17.3
Total DMI
Observed DMI 416 18.5 2.71 1.3 25.8
Estimated eDMI' 841 17.5 4.35 8.47 40.7
ECM (kg/day) 416 26.1 5.4 15.1 40.6
FE? (g ECM/kg DMI) 416 1410 198 892 2023
BW (kg) 416 609 65.3 459 790
Faecal DM output (kg/day)
FDMO? 354 4.9 1.00 2.18 8.37
eFDMO* 929 5.1 1.31 2.18 1.3
Apparent DM digestibility (g/kg DM)
DMD® 354 740 33.0 643 837
eDMD® 401 698 48.4 410 855
Marker recoveries (g/g)
Internal markers
iNDF 319 0.863 0.122 0.504 1.61
AlIA 27 0.945 0.053 0.886 1.10
External markers
Cr-mordanted fibre 103 0.798 0.109 0.512 0.987
Yb 346 1.01 0.154 0.644 1.49
Co-EDTA 163 0.989 0.175 0.617 1.53
Cr-EDTA 193 0.944 0.088 0.647 1.30

DMI = dry matter intake; ECM = energy-corrected milk.

'DMI estimated from both external markers (Cr-mordanted fibre, Yb, polyethylene glycol (PEG), Cr-ethylenediaminetetraacetic acid (EDTA) and Co-EDTA) and internal

markers (indigestible NDF (iNDF) and acid insoluble ash (AlA))
*Feed efficiency (FE) calculated as gram of ECM/kg of dry matter (DM) intake.
3Faecal DM output (FDMO) measured by total collection

“Faecal DM output estimated (eFDMO) from external markers (Cr-mordanted fibre, Yb, Co-EDTA, Cr-EDTA and PEG).

>Observed apparent total tract DM digestibility (DMD).

CApparent total tract DM digestibility estimated (eDMD) from internal markers (iNDF and AIA).
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Table 2 Variance component and repeatability estimates of observed dry matter intake (DMI), apparent total tract dry matter digestibility (DMD) and
faecal dry matter output (FDMO) developed using the dataset derived from 29 cross-over studies conducted in lactating dairy cows

ltems Estimate SE Pr>7 sD? % Rep*
DMI ((kg/day), n= 416) 0.65
Exp 3.25 1.145 0.002 1.803 9.93
Diet(Exp) 0.87 0.194 <0.0001 0.930 5.12
Period(Exp) 0.22 0.090 0.007 0.472 2.60
Cow(Exp) 2.13 0.377 <0.0001 1.459 8.04
Residual 117 0.130 <0.0001 1.079 5.94
FDMO ((kg/day), n= 354) 0.62
Exp 0.42 0.157 0.004 0.647 13.2
Diet(Exp) 0.1 0.027 <0.0001 0.330 6.74
Period(Exp) 0.06 0.017 0.001 0.235 4.80
Cow(Exp) 0.25 0.048 <0.0001 0.502 10.3
Residual 0.15 0.018 <0.0001 0.390 7.96
DMD ((g/lkg DM), n= 354) 0.54
Exp 520.5 183.89 0.002 22.82 3.08
Diet(Exp) 135.7 30.82 <0.0001 11.65 1.57
Period(Exp) 103.9 24.46 <0.0001 10.19 1.38
Cow(Exp) 157.6 32.83 <0.0001 12.55 1.69
Residual 135.0 16.48 <0.0001 11.62 1.57

Exp = experiment; Diet(Exp) = diet within experiment; Period(Exp) = period within experiment; Cow(Exp) = cow within experiment; DM = dry matter.

'Probability of Z-value.
“Calculated as the square root of the variance-component estimate.

3Calculated as the percentage of SD divided by the respective mean value of the variable.
“Repeatability = %eow  \where 62cow and 6%gesidual are Cow(Exp) and residual variances, respectively.
idual

- 2 2
Tcow T PResi

prediction (RMSPE = 1.63 kg/day), about three times the error
associated with predictions from the fluid-phase (Co-EDTA-
0.49kg/day and Cr-EDTA-0.53 kg/day) and small particle-
phase markers (Yb—0.56 kg/day). Moreover, the relationship
between DMD and eDMD for individual internal markers are
shown in Supplementary Figure S5 (iNDF) and Supplementary
Figure S6 (AIA). Indigestible NDF gave a worse prediction
(RMSPE = 51.9 g/kg DM) which is four times the error asso-
ciated with AlA (11.7 g/kg DM). Predictions from all individual
markers were associated with errors. It is not the objective of
the present meta-analysis to compare markers for perfor-
mance. Therefore the discussion on individual markers will not
be detailed.

All markers were combined to develop regression equa-
tions. The relationship between FDMO and eFDMO (for all
external markers combined) is shown in Figure 1a. The fol-
lowing linear relationship was developed with the mixed
regression model: FDMO (kg/day) = 0.74(x=0.010) x eFDMO
+ 1.12(+0.056). The R? was 0.87 and RMSPE = 0.55 kg/day
(10.9% of the observed mean). External markers over-
predicted FDMO by 0.22 kg/day (4.4%). The decomposition
of MSPE to mean, slope and random error was 16.3%,
36.3% and 47.6%, respectively. In residual analysis, the
mean (intercept= —0.22+0.013, P<0.001) and linear
(slope= —0.26 £0.010, P< 0.001) biases were clearly sig-
nificant as shown in Figure 1b. Figure 2a shows the
relationship between DMD and eDMD (for both AIA and
iNDF combined). The RMSPE was 47.2 g/kg, 6.4% of the
observed mean. Internal markers underestimated DMD by
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36.8g/kg DMI (5% of observed mean). Results showed
significant mean and linear biases (P < 0.001, Figure 2b) and
the contribution of mean, slope and random error of total
MSPE was 61.1%, 26.3% and 12.6%, respectively. The
relationship between DMI and eDMI is shown in Figure 3a.
The R? was 0.74 and RMSPE =2.9kg/day (15.4% of the
observed mean). The simultaneous use of both external and
internal markers underestimated DM intake by 8.8%
(Figure 3b). This mean bias was clearly significant (inter-
cept=1.69+0.042, P<0.001). There was also a presence
of slope bias (slope= —0.48+0.010, P<0.001). The
decomposition of MSPE to mean, slope and random error
was 33.1%, 49.8% and 17.1%, respectively.

Feed efficiency models

The relationship between FE and eFE is shown in Figure 4a.
The R? was 0.76 and RMSPE = 265 g ECM/kg DMI (18.7% of
the observed mean). Results showed significant mean and
linear biases (P <0.001, Figure 4b) and the contribution of
mean, slope and random error of total MSPE was 31.0%,
54.7% and 14.2%, respectively. In order to assess the utility
of digesta markers in measuring FE, FE (g of ECM per kg of
DMI) was modelled using different combinations of ECM and
BW with marker estimated variables by mixed model
regression (Table 4). Energy-corrected milk was positively
related to FE (P<0.01) while increases in BW were linearly
associated (P < 0.01) with decreases in FE. Both eFDMO and
eDMI were negatively associated with FE and their inclusion
in the model resulted in lower residual variance. The best
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Table 3 Variance component and repeatability estimates of marker estimated (eDMI, eFDMO and eDMD)’ variables developed using the dataset

derived from 29 cross-over studies conducted in lactating dairy cows

Items? Estimate SE Pr>73 sp? VP Rep®
eDMI ((kg/day), n= 846) 0.47
Exp 3.17 2.42 0.096 1.78 10.1
Diet(Exp) 1.30 0.295 <0.01 1.14 6.50
Period(Exp) 218 0.444 <0.01 1.48 8.40
Cow(Exp) 2.54 0.469 <0.01 1.60 9.07
Marker(Exp) 7.30 1.86 <0.01 2.70 15.4
Residual 2.90 0.172 <0.01 1.70 9.68
eFDMO ((kg/day), n= 924) 0.51
Exp 0.51 0.229 0.013 0.713 141
Diet(Exp) 0.1 0.023 <0.01 0.333 6.57
Period(Exp) 0.10 0.019 <0.01 0.308 6.08
Cow(Exp) 0.21 0.036 <0.01 0.463 9.14
Marker(Exp) 0.52 0.131 <0.01 0.723 14.3
Residual 0.21 0.012 0.013 0.458 9.04
eDMD ((g/kg DM), n= 409) 0.12
Exp 147 574 0.399 12.1 1.73
Diet(Exp) 196 69.9 0.003 14.0 2.00
Period(Exp) 183 64.4 0.003 13.5 1.93
Cow(Exp) 94.8 50.3 0.030 9.73 1.39
Marker(Exp) 1033 621 0.048 32.1 4,59
Residual 728 81.7 <0.01 27.0 3.85

'eFDMO = Faecal dry matter (DM) output estimated from external markers (Cr-mordanted fibre, Yb, Co-EDTA), Cr-EDTA and PEG); eDMD = apparent total tract DM
digestibility estimated from internal markers (iINDF and AlA). Refer to Table 1 for marker abbreviations; eDMI =DMI estimated from a combination of external and

internal markers above.

2Exp = experiment; Diet(Exp) = diet within experiment; Period(Exp) =period within experiment; Cow(Exp)=cow within experiment; Marker(Exp) = marker within

experiment.
3Probability of Z-value.
4Calculated as the square root of the variance-component estimate.

SCalculated as the percentage of SD divided by the respective mean value of the variable.

UZ

+0

E'Repeatability: ”zcci";vwhere 6% cow AN G2 Residual Are Cow(Exp) and residual variances, respectively.

ow Residual

model for predicting FE developed from the dataset was FE
(g/kg) = 1179(x54.05) + 38.2(+2.05) x ECM (kg/day) — 0.64
(£0.051) x BW  (kg) — 75.6(x4.39) x eFDMO  (kg/day).
Although eDMD was positively related to FE, its inclusion
in the model only showed a tendency (P=0.05) to reduce
the residual variance.

Discussion

It should be noted that these results were derived from
confined cows in Nordic European countries. Cows were
offered diets based on mainly grass silage with a wide variety
of concentrates. However, application of the present results
especially of internal markers to grazing cows or cows
offered diets based on non-grass silage should take account
of the possible effects of geographic location, management,
dietary factors and analytical laboratory procedures because
they can alter the dietary and faecal internal marker con-
centrations. For instance, consumption of soil by grazing
animals would undoubtedly nullify results from AlA.

Faecal dry matter output

Measurement of faecal output is among the most critical
determinations necessary for the evaluation of the nutritional
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status of ruminants. Measurement approaches vary from
direct methods (total collection) to indirect techniques using
external markers. However, problems associated with marker
methods result in variation in faecal marker recovery rates. In
this dataset, the recovery of Cr as large particle phase-marker
was rather low (0.80g/g) compared to the small particle-
phase (Yb —1.01 g/g) and liquid-phase markers (Co-EDTA —
0.99g/g and Cr-EDTA — 0.94 g/g). This average Cr recovery
is lower than 0.89 reported by Delagarde et al. (2010). In our
study, low recovery of Cr is surprising because Cr-mordanted
straw was administered twice daily (12 h apart) following
priming dose via the rumen cannula to facilitate rapid equi-
libration of the marker concentration in the digestive tract.
According to Coates and Penning (2000), twice daily dosing
of external markers is usually satisfactory and will reduce the
diurnal fluctuations in faecal marker concentrations. Dela-
garde et al. (2010) provided a number of reasons for the
incomplete recovery of external markers. In this meta-ana-
lysis, the most likely reason for incomplete Cr recovery is
related to laboratory analysis. Blank faeces were routinely
used as a matrix but there are other critical steps that may
have distorted the analysis (see Holt, 1993).

One problem of liquid-phase external markers is their short
retention time in the digestive tract as they cause larger
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Figure 1 Relationship between estimated and observed faecal dry
matter (DM) output (kg/day) in dairy cows with mixed model regression
analysis (a), and between centred estimated values and residuals
(observed—estimated) faecal DM output (kg/day), (b), n=2802. Estimated
values were obtained using the external markers, Cr-mordanted fibre, Yb,
Co-EDTA and Cr-EDTA (refer to Table 1 for marker abbreviations). R? and
root mean square prediction error (RMSPE) are adjusted for random
external marker within experiment effect. Estimated values were centred by
subtracting the mean of all estimated values from each estimated value.

diurnal variation in marker concentration unless markers
are dosed several times in a day (Marais, 2000). In
the present meta-analysis, this problem was reduced
because of continuous infusion of flow markers (Yb, Cr- and
Co-EDTA) following priming doses through the rumen
cannula. As such, their mean recovery rates were between
0.94 and 1 g/g.

The repeatability of FDMO was high for both total collec-
tion and marker-based estimate (0.62 and 0.57, respec-
tively). Similarly, the coefficient of determination (R?) for the
prediction of FDMO from eFDMO was high (0.87). However,
linear and mean biases were associated with the prediction
pointing to the fact that high repeatability and high R? do
not always translate to high accuracy. Since the same
method (atomic absorption spectroscopy) was used to ana-
lyse marker concentrations in feed and faeces across studies,
the errors cannot be due to differences in laboratory method.
They, however, can be caused by the problems of marker
recovery (especially Cr-mordanted fibre) and biases during
analytical laboratory procedures. In general, fairly reliable
(RPE=10.9%) estimates of FDMO can be made using
external markers.
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Figure 2 Relationship between estimated and observed apparent total
tract dry matter (DM) digestibility (g/kg DM) in dairy cows with mixed
model regression analysis (a), and between centred estimated values and
residuals (observed—estimated) apparent total tract DM digestibility (g/kg
DM), (b), n=346. Estimated values were obtained using internal markers
iNDF and AIA (refer to Table 1 for marker abbreviations). R? and root
mean square prediction error (RMSPE) are adjusted for random internal
marker within experiment effect. Estimated values were centred by
subtracting the mean of all estimated values from each estimated value.

Apparent total tract dry matter digestibility

Apparent total tract DMD is the single most important
measure to describe the nutritive value of diets. Because of
existing between-cow variations in DMD, easy methods of
determining DMD would be valuable to livestock researchers
and producers. The use of internal markers for assessing
digestibility is advantageous because the extra step of mix-
ing them into the ration is avoided and if the TMR is mixed
correctly, internal markers are well distributed. The between-
cow variation in DMD was 1.69% (SD = 12.6 g/kg) and this
agrees with the 12.3g/kg recorded in earlier studies by
Mehtié et al. (2016) for between-cow variation in organic
matter digestibility (OMD) determined using AIA as an
internal marker. In our dataset, the eDMD from AIA was
associated with a much smaller prediction error (RPE=
1.50%). The recovery rate of AIA was also acceptable
(0.95g/g). Indigestible NDF, on the other hand, showed
higher prediction error (RPE=7.0%) and a lower faecal
recovery (0.86 g/g). The better performance of AlA than iNDF
as a digestibility marker is expected because the cows within
experiments were fed mainly grass silage-based diets. Huh-
tanen et al. (1994) found AIA to be the most suitable
digestibility marker for grass silage or hay-based diets
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Figure 3 Relationship between estimated and observed dry matter (DM)
intake (kg/day) in dairy cows with mixed model regression analysis (a),
and between centred estimated values and residuals (observed—
estimated) DM intake (kg/day), (b), n=2841. Estimated values were
obtained using the combinations of internal markers (iNDF and AlA) and
external markers (Cr-mordanted fibre, Yb, Co-EDTA and Cr-EDTA). Refer
to Table 1 for marker abbreviations. R and root mean square prediction
error (RMSPE) are adjusted for random external and internal marker
combination within experiment effect. Estimated values were centred by
subtracting the mean of all estimated values from each estimated value.

followed by iNDF. Similarly, Nousiainen et al. (2009) found
good relationship between observed and estimated OMD
based on AlA. In spite of that, low concentrations of AIA may
preclude its usefulness as a digestibility marker in maize
silage and high grain diets (Lee and Hristov, 2013). Data from
Lee and Hristov (2013) showed iNDF to be a more reliable
digestibility marker than AIA in dairy cows fed maize silage-
based diets. As such, the type of diet should be taken into
consideration when estimating DMD using internal markers.

Estimated DMD from both markers were combined to
estimate the variance components and the repeatability was
rather low (0.12) relative to observed DMD (0.54). The
repeatability value is within the range reported by Mehtio
et al. (2016) when using iNDF to estimate DMD from NIRS.
The relationship between marker-based estimates and
observed data showed an under-prediction of DMD by
internal markers. A number of reasons could explain the
biases especially originating from iNDF. These include ana-
lytical method used for estimating iNDF (in vitro v. ruminal
in situ), different incubation time for ruminal in situ proce-
dures, feed composition, particle grind size, nylon bag pore
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Figure 4 Relationship between estimated and observed feed efficiency
(FE= kg ECM/kg DMI) in dairy cows with mixed model regression
analysis (a), and between centred estimated values and residuals
(observed—estimated) FE (b), n=816. ECM =energy-corrected milk;
DMI =dry matter intake. Estimated values of DMI were obtained using
the combinations of internal markers (iNDF and AIA) and external
markers (Cr-mordanted fibre, Yb, Co-EDTA and Cr-EDTA). Refer to
Table 1 for marker abbreviations. R? and root mean square prediction
error (RMSPE) are adjusted for random external and internal marker
combination within experiment effect. Estimated values were centred by
subtracting the mean of all estimated values from each estimated value.

size and biases during analytical laboratory procedures
(Krizsan and Huhtanen, 2013; Krizsan et al., 2015). In our
study, the bias cannot be attributed to incubation time, feed
composition or analytical method used since the procedure
(ruminal in situ incubation for 288 h) and feed composition
(forage to concentrate ratio of 60 : 40) remained strictly
similar across studies. A possible reason could be related to
the particle size (<2.0mm) and different pore sizes of the
nylon bags (15, 17 and 36 um in Finland, Norway and Den-
mark, respectively) used. There are consequences for particle
losses, especially with faecal samples. Faecal particles are
fragile after digestion, and milling can produce fine particles
that are more likely to escape from bags than feed particles.
Krizsan et al. (2015) recommended a grind size of 2.0 mm to
be used in ruminal in situ determination of iNDF in order to
avoid potential errors.

Dry matter intake

Direct methods for DMI measurements are costly and not
applicable on commercial farms. The simultaneous use of
external marker for FDMO and internal marker for DMD
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Table 4 Mixed regression equations developed for predicting feed efficiency (FE=A + BX; + CX;+ DX3) from ECM, BW and marker estimated
variables using dataset derived from 29 digestibility studies in lactating dairy cows

X X Xs n A** SE B** SE c* SE D** SE 6 Residual
ECM  BW 416 1053 673 279 161 —-060  0.095 11400
ECM  BW  efDMO 872 1179 54.1 382 205 —-060  0.051 -756 439 4834
ECM  BW  eDMD 387 749 126 273 1.60 —-0.48  0.098 032*  0.158 10973
ECM  BW  eDMI 816 1095 707 363 277 -059  0.054 -163 1.20 4847

ECM =energy-corrected milk; BW=Body weight; eFDMO =faecal dry matter (DM) output estimated from external markers (Cr-mordanted fibre, Yb, Co-
ethylenediaminetetraacetic acid (EDTA) and Cr-EDTA); eDMD = apparent total tract DM digestibility estimated from internal markers (iNDF and AlA); eDMI =DM intake
estimated from a combination of external (Cr-mordanted fibre, Yb, Co-EDTA, Cr-EDTA) and internal markers (iNDF and AIA). Refer to Table 1 for marker abbreviations;

92 esidual = residual variance.
*P=0.05; **all P-values <0.01.

estimates has been employed for indirect measurement of
DMI (Ferret et al., 1999; Ahvenjarvi et al. 2018). In our study,
several combinations of external and internal markers were
used for DMI estimates. Repeatability estimates of DMI in
different populations are lacking, but estimates in the pre-
sent study (0.65 for DMI and 0.47 for eDMI) are consistent
with the across lactation repeatability of 0.66 documented by
Berry et al. (2014) from individual daily feed intake of
Holstein-Friesian cows and heifers from nine countries. The
high repeatability of eDMI indicates its potential to be used
in estimating DMI for correct ranking of cows aimed at
selection purposes.

Despite the high repeatability of eDMI, its prediction of
observed DMI showed both mean and slope biases. In a recent
study, Ahvenjarvi et al. (2018) estimated eDMI from a combi-
nation of iNDF and PEG. In that study, using the same eDMD
for a group of cows fed the same diet resulted in more accurate
DMI prediction than using animal-specific eDMD. The authors
established that to improve DMI predictions, cow-specific
eDMD must be determined with high precision and accuracy
over those based on group-specific eDMD. Inherently, the
biases in predicting DMI in our study could be attributed to the
problems enumerated above for DMD as well as FDMO esti-
mates. Markers underestimated DMI at low measured feed
intake and overestimated DMI at high measured DMI. Gen-
erally, our model under-predicted DMI with an RPE = 15.4%.
According to Fuentes-Pila et al. (1996), an RPE lower than 10%
indicated a satisfactory prediction of DMI; RPE between 10%
and 20% indicated relatively good or acceptable predictions,
and RPE greater than 20% indicated unsatisfactory predictions.
Even though the prediction may be inaccurate, it is precise
(high R* and repeatability) and provides acceptable estimates
of DMI. However, recognition of the inadequacies involved and
caution is necessary for interpretation of data.

Feed efficiency models

Several measures exist for FE but no single measure can be
applicable to all farms. Dry matter intake is a key component of
all FE measures. However, the high cost of DMI measurements
in large herds has limited its recording to only research herds.
In the current study, the indirect method of estimating intake
from digesta markers was used. Subsequently, the estimated
DMI was used to estimate FE (eFE) in its simplest form, feed
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conversion efficiency (FCE) expressed as the ratio of ECM to
DMI (Linn, 2006). Marker-based estimate of FE (eFE) precisely
(high R?) predicted observed FE but was inaccurate due to the
presence of both mean and slope biases. Although FCE is easy
to measure and conceptually simple, it has been criticised for
not estimating the metabolic efficiency of animals and for
possible negative consequences it has on traits including
energy balance, health and fertility (Connor, 2015). One way to
improve FCE measurement is to use a basal linear model with
milk production and BW (mainly to account for the metabolic
efficiency) as independent variables because they can easily be
measured on-farm. They are also, known to greatly influence
FE as they are important drivers of feed intake (VandeHaar,
2016). Furthermore, expressing FE as ECM/ eDMI still requires
the use of both internal and external markers which necessi-
tates higher analytical cost and intensive labour. Since the goal
is to find simple, low cost but accurate and precise analytical
techniques, we added each of the marker-based estimates to
the basal model so as to assess the effectiveness of using single
markers (either internal markers for eDMD or external markers
for eFDMO) and double markers (combination of both internal
and external markers for eDMI) in FE measurements.

In our study, ECM was positively associated with FE. At
constant BW, 1 kg increase in ECM resulted in an increase of
27.9g/kg in FE. Spurlock et al. (2012) also reported a strong
positive correlation (r=0.87) between FCE and milk yield. This
implies that as milk yield increases among dairy herds, corre-
sponding gains in FCE would be achieved. Selecting for FCE a
trait based on the ratio of two component traits, however, can
produce unpredictable results if done in early lactation. In
early lactation, greater milk output increases the cow's energy
requirement which cannot be met solely by increased feed
intake causing mobilisation of energy from her body tissue to
support the increased energy demand for lactation (Connor,
2015). This occurrence contributes to strong negative genetic
correlations between FCE and body condition score (BCS) and
energy balance (Vallimont et al,, 2011; Spurlock et al,, 2012).
Hence, improvements in FCE will lead to a simultaneous
selection of cows that exhibit negative energy balance and
lower BCS during early lactation. Greater losses in BCS and
energy balance are linked with poor fertility performance and
health (Roche et al,, 2007). The study of Spurlock et al. (2012)
further showed no correlation between FCE and energy
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balance when the evaluation was made in mid-lactation (75 to
150 days in milk). This suggests a possibility to select for
improved FCE specifically during this period with a lower risk
of metabolic imbalance (Hooven et al., 1972). The cows used
for this study were in mid-lactation.

Feed conversion efficiency is also strongly and negatively
correlated (r= —0.66) with BW (Vallimont et al., 2011). In
our study, the relationship between FE and BW was negative.
One kilogram gain in BW resulted in 0.60 g/kg loss in FE. Linn
et al. (2009) reported that animals of high BW (815 kg) had
lower FE (1320 v. 1550 g/kg) on average compared with
animals of low BW (545 kg). These findings demonstrate that
heavy cows are less efficient than light cows. Freeman (1975)
stated that heavier weight is undesirable especially when it is
negatively correlated with efficiency both phenotypically and
genetically. This difference is likely the result of the greater
requirement for maintenance as BW is one of the factors
closely related to net energy for maintenance (Searle et al,,
1982). A bigger (or heavier weight) animal will partition
more energy for maintenance and less to production than a
smaller animal would at the same feeding level. Thus, one
way to improve FE is to decrease maintenance requirement
by selecting for cows that are smaller where significant gains
in FE can be captured by extra dilution of maintenance.
Furthermore, the use of BW alone in estimating maintenance
requirement could be misleading due to variation in BCS. The
degree of error that can occur in the calculation of main-
tenance requirements if the BCS of the cow is not taken into
account is emphasised in the study of Birnie et al. (2000). In
the present studies, the BCS of cows was not taken into
account in predicting FE because it was not measured.
Moreover, measurements were made in mid-lactation, a
period of minimal to no losses in BCS.

In our studies, a combination of both internal and external
markers was used to estimate DMI. Despite the inaccuracy of
both markers in estimating DMI, they were useful in predicting
FE. Accounting for eDMI in the FE model reduced the residual
variance by 57.5%. Marker estimated DMI was negatively
related to FE. When BW and ECM are kept constant, 1 kg of
DM consumed resulted in 16.3 g/kg reduction in FE. A field
study of six commercial herds by Casper et al. (2004) also
demonstrated an inverse relationship between FE and DMI.
This indicates that cows with lower DMI have the ability to use
less dietary energy to achieve higher levels of milk production
as a result of maximised digestibility (Varga et al., 2013).

The digestibility of the diet reduces as the ingestion of
total DM is elevated, essentially due to increased cell wall
passage rate and decreased ruminal retention time (Huhta-
nen et al., 2009). Gabel et al. (2003) observed that lactating
cows fed the same diet, but at 1.4, 2.7 and 4.6 times their
energy requirements for maintenance, showed a decrease in
DMD (74.8%, 72.3% and 67.2%, respectively) only with an
increase in dietary DMI. Similarly, other authors reported
linear depression in digestibility with increased intake
(Colucci et al., 1989; Huhtanen et al., 2009). Since DMI is the
denominator of FE, a negative relationship between DMl and
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DMD suggests that increased digestibility would improve FE.
For Casper et al. (2004) FE of cows from six dairy farms fed
TMR was positively and significantly related to the eDMD
from AIA. In the current study, eDMD was also positively
related to FE but only showed a tendency to increase FE. In a
larger dataset from production studies, the effect was sig-
nificant (P. Huhtanen, Swedish University of Agricultural
Sciences, Ume3, Sweden, personal communication). In stu-
dies, with cannulated cows such as this one, there can be
more random variability due to stress caused by excessive
interaction between people and animals. The inclusion of
eDMD in the FE model only reduced the residual variance by
3.7%. The lack of improvement in the model could be
attributed to the low between-cow variation (though sig-
nificant but small) in eDMD.

The implication from an environmental stance is that
improving DMD would reduce FDMO. In this dataset, the
relationship between eFDMO and FE was negative and the
inclusion of eFDMO in the FE model gave the lowest residual
variance. Increased FDMO leads to reduced FE, either as a
result of greater DMI and/or reduced digestibility. Limiting
DMI reduces the passage rate, which increases residence
time in the digestive tract, thereby increasing DMD and
lowering FDMO.

The between cow variation was highest for eFDMO
amongst all marker estimated variables pointing to the
suitability of external markers over internal markers in esti-
mating the between animal differences in FE. In addition,
using eDMD to predict DMl is sensitive to even small errors in
DMD. For example, £3% unit differences in DMD at 700 g/kg
DMD represent about 10% errors in DMI and FE. Considering
possible inaccuracies, labour intensiveness and analytical
costs of the marker techniques, a more practical option to
acquire reliable FE data for genetic evaluation in the future is
to estimate only FDMO by external markers for FE models.

Conclusion

The present analysis showed higher repeatability for
observed measurements than marker-based estimates. This
suggests that direct measurement of FDMO, apparent total
tract DMD and DMI is the method of choice particularly in
confinement systems unless otherwise impossible due to
facility limitations. Marker-based estimate of FDMO
explained most of the variability in FE pointing to the
potential of ranking cows for FE based on FDMO estimated
from external markers. Measuring DMD with internal mar-
kers did not improve prediction of FE reflecting small
between cow variation in DMD and random errors associated
with measurements.
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