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Introduction
Let M be an n-dimensional (7> 2) connected C”-manifold with a linear con-
nection. For simplicity, tensor fields on M will simply be called tensors on M.
A tensor Son M is said to be parallel if its covariant derivative is everywhere
zero in M, ie., if FS=0. S is said to be recurremt if its covariant derivative
is equal to the tensor product of a covector and S itself, e, if FS=WQ®S,
where W is called the recurrence covector. A recurrent tensor S on M is said

to be almost-parallel if there exists on M some linear connection with respect
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to which S is parallel. In these definitions, we assume that neither the tensor
S nor the covector W is everywhere zero in M, so that a tensor cannot be
both recurrent and parallel with respect to the same linear connection.

Following a study by H. S. Ruse of 3- and 4-dimensional Riemannian mani-
folds whose curvature tensors are recurrent, A. G. Walker ([11]) defined re-
current tensors in n#-dimensional Riemannian manifolds and studied their relations
with parallel fields of planes. These works of Ruse and Walker, though origi-
nally of a local nature, have led to developments in two directions: Linear con-
nections with recurrent curvature (Wong [14]) and existence of linear con-
nections with respect to which given fields of planes are parallel”. As recurrent
tensors and parallel fields of planes are closely related concepts, it is natural
to study the existence of linear connections with respect to which given tensors
are parallel or recurrent. This problem has been on the author’s mind since
the main results in Wong [13] were obtained which seemed to provide a natural
method to deal with the problem. But it was perhaps M. Kurita ([7]) who first
studied the existence of linear connections with respect to which a given tensor
is parallel.

In this paper, we first give an improvement of a result of Kurita’s and a
generalization to the case of recurrent tensors (Theorems 1.1-1.3). It follows
from our results that with each parallel or recurrent tensor of type (7, s) on
M there is associated a tensor of type (7, s) over the m-dimensional (real)
vector space R”. This gives rise to the question: Under what conditions will
a recurrent tensor be almost-parallel? It turns out that the answer is quite
different according as the recurrent tensor is of type (7, s), r=s, or of type
(7, ). In fact, we prove that every recurrent tensor of type (7, s), r=s, is
almost-parallel (Theorem 2.1) and that a recurrent temsor of type (1,1) is
almost-parallel iff it is nilpotent (Theorem 2.9). But the case of recurrent
tensors of type (7, ), =2, is much more difficult. It leads to an equation

which can be written symbolically as
k+C=0C,

where C is the tensor of type (», ) over R" associated with the recurrent
tensor, k+C denotes the action on C induced from a non-singular linear trans-

1 For literature on those topics, see bibliographies in Willmore [12], pp. 276-278.

https://doi.org/10.1017/S002776300001134X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300001134X

LINEAR CONNECTIONS 69

formation % in R”, and ¢>0 is a real number. A study of the consistency of
this equation yields some necessary and some sufficient conditions for a recurrent
tensor of type (7, ) to be almost-parallel and the theorem that for a recurrent
tensor of type (7, ) which is not almost-parallel, the recurrence covector is
locally a gradient (Theorem 2.4).

We shall give a fuller description of these results at the beginning of § 2,
but would like to mention here that our study of the equation k+C = ¢C in the
field of real numbers completely solves the problem of consistency of this
equation in an algebraically closed field, giving a remarkable and perhaps im-
portant result (Proposition 3.1).

The author is grateful to Professor S. Ishihara for the many stimulating
discussions on this subject, and to Professor H. C. Wang for supplying Lemma
1.3 and its proof. The author is also grateful to his young colleagues Mr. C.
S. Hsit who read through critically a first draft of the manuscript and Mr. K.

Y. Lam who helped in certain computations and checking in §§3 and 4.

1. Parallel or recurrent tensors on M

The purpose of this section is to prove Theorems 1.1-1.3 which give a
necessary and sufficient condition for the existence on M of a linear connection
with respect to which given tensors are parallel or recurrent. Some applications

are given.

1.1. Preliminaries (cf. Wong [13]).

We first give a few definitions and three lemmas which will be needed
later. The indices a, B, 7, ¢, ¢, j, k, - - all have the range 1, -+ ,n. The
ranges of other indices will be given as they appear. Summation over a re-
peated index is implied. Tensors, functions, and linear connections on C*-mani-
folds are assumed to be C® unless stated otherwise.

Let M be a connected z-dimensional C®-manifold satisfying the second
axiom of countability. A frame in M is composed of a point € M and an
ordered set of » linearly independent tangent vectors at #. To any frame
{X,(#)} in M at u, there corresponds a unique dual coframe {X (%)} in M at
u. In particular, when a fixed local coordirate system (U, #') is given in M
with coordinate neighborhood U and local coordinates #, there is attached to

each point % € U the natural frame {(3/9%'),} and its dual coframe {(du').}.
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Given a frame z={X.(u)} at = M, any tensor S(«) at = M can be ex-

pressed uniquely as
Sn) =SSP (DX X () QX () ® - - -,

where {X ()} is the dual coframe of {X.(#)}. We call the numbers S’ (z)
the components of S(u#) relative to the frame z={X,(#)}. In particular, if S
is a tensor defined on a coordinate neighborhood U, the components Siof S
relative to the natural frame {9/0u'}are the usual components of S in the local

coordinate system (U, #'). It is easy to see that if X.(u) = x.9/04', then
20 (2) = SE ataiak e e,
where (xf) is the inverse of the matrix (x.). Moreover, it follows at once

from definition that the components of S(#) relative to the frame z(#) = {X.(%)}
and those relative to the frame z'(u) = {X.(%)gh} are related by

SEM (2N m)) =SB (2w  Gr g - -,

where (2%) is the inverse of the matrix (gi). For brevity, we shall write the

above equation as
S(2'(u)) =g*+ S (z(w)).

Thus, S(z(#)) denotes the set of components Si*"(z(#)) and g ' denotes an
operator whose action on S (z(#)) is as defined.

Let B be the total space of the frame bundle » : B M over M. A point
zin B is a frame {X.(#)} in M at the point #=rz& M. For any tensor S on
M, the components S3*."(z) of S(nz) relative to the frame z define a set of
functions Si’.” on B, which in Wong [13], §2.1, were called the functions cor-
responding to the tensor S on M.

Now assume that a linear connection has been given on M. If B[zl is the
submanifold of B, consisting of all the points which can be joined to a given

point z in B by (sectionally C*) horizontal curves, then we have (Wong [13],
(3.15) and (38.9)):

Lemma 1.1. On M with a linear connection, a tensor S is parallel iff the
restrictions of its corresponding funtions on B to any Blz.] are all constant,

but not all zero.

LemMma 1.2. On M with a linear connection, a tensor S is recurrent iff the
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restrictions of its corresponding functions on B to any Blz,] have no common

zero and are proportional to a fixed set of constants.

It follows at once from these that a parallel or recurrent tensor on M is
nowhere zero.

The following lemma and its proof were kindly supplied by Professor H.
C. Wang.

Lemma 1.3, Let (u,9) = (', -+, u", 3", -, ¥™) be coordinates in the
Euclidean (n+ m)-space R™™ and Fi(u,y), 1< &<p, p C*-functions in (u,y).
Suppose that, for every fixed wu, the set of points (u,y) satisfying the equations
Fi(u, y) =0 is a C® closed submanifold (of R™™) of dimension q<m, and q is
independent of u. Then the set B' of points (u, y) satisfying the equations
Fe(u,y) =0 is a C* closed submanifold of R™™ of dimension n+q.

Proof. Let (uy, ,) be any point of B'. It follows from assumption that
the p X m matrix

oF:
[—@T](%,yo) (1<&<p, 1<y<m)

is of rank ¢t =m —gq. Therefore, after rearranging the F: and the »" if neces-
sary, we may assume that the determinant of order ¢ lying at the upper left
corner of the above matrix is not zero. Then by the implicit function theorem,

we can solve the equations

(1.1 F(u,9)=0,+-+, Fi(u, ) =0

for y', « -, yt; more precisely, there exist ¢ C*-functions
filw, 3), « -+, fe(u, 3)

in the variables (%, 3) = (&', - - -, ", ¥'*", - - =, ™) defined on a neighborhood
of (o, 3) such that, on a suitable neighborhood V, of (u,, ¥), the system of

equations (1.1) is equivalent to the system of equations
(1.2) Y= il 5), -, ¥ =felw, B).

Therefore, on Vi, the solutions of F:(%, y) =0 are the same as those of
Y =y1n, ), -, ¥ =1u, ),
Fil—l(uyfl(u’ 3’); ct ft(u’ 3;), 5’) =0»

(1.3)

Fp(uyfl(u);';’); ctty, ft(u’y); 3;) =0.
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But from the assumption that, for every fixed u, the solutions of Fi(wu, y) =0
form a C® closed submanifold of dimension g =m —¢, it follows that the last
P —1t equations in (1.3) must all be satisfied identically. Therefore, on the
neighborhood Vi, of (u,, 3,), the system of equations F:(z, y) =0 is equivalent
to (1.2); in other words, on the neighborhood V,, the set B' is represented by
the equations (1.2). Hence B’ is a C* closed submanifold of R"*™ of dimension

n+m—t=n-+gq, as was to be proved.

1.2. Condition for the existence of linear connections with respect to which

given tensors are parallel or recurrent
For convenience and clarity, we shall first prove the following two theorems

dealing with a single tensor.

TueoreMm 1.1. Let S be any given tensor on M. Then there exists on M a
linear connection with respect to which S is parallel iff we can assign to each
point us M a frame z(u) such that the set S (z2(u)) of components of S relative

to z(u) are not all zero and are independent of .

TurorEM 1.2. Let S be any given temsor on M. Then there exists on M
a linear connection with respect to which S is recurrent iff we can assign to
each point uc M a frame z(u) such that the set S(z(u)) of components of S

relative to z(u) are not all zero and are proportional to a fixed set C of consiants
(which are independent of u).

Remark. We note that in Theorems 1.1 and 1.2 and in Theorem 1.3 to
be given later, the assignment of z(u) to us M is not required to be locally
continuous, not to say locally C*. This is an important fact which greatly

facilitates the applications of our theorems.

Proof. Only the proof of Theorem 1.2 will be given, the proof of Theorem
1.1 being similar.

To prove the necessity of the condition, we use Lemma 1.2 and obtain
St () =¢(2)CY  on Blz],

where ¢(z) is a C” and nowhere-zero function on Blz.], and C$*.." are constants,

not all zero. For brevity, we shall write the above equation as
(1.4) S(z) =¢(2)C  on Blzl.

Now for any point #€ M, let u(c), 0<r<, be any (sectionally C”) curve in M
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joining the fixed point u, =720 €M to the point ». If z(r) is the lift of #(7) in
B passing through z,, then the end point of z(r) belongs to #~*(») N\ Blz]. Thus,
by (1.4); this point is a frame z(%) in M at % such that

(1.5) S(z(n) =¢(z2(x))C=p(u)C,

which proves the necessity of the condition in Theorem 1.2. We note here
that since the C®-function ¢(z) is nowhere zero in Blz.], its value is of the
same sign everywhere in B[z,]. Consequently, though the function o(u) is gener-
ally not continuous, its value is of the same sign for every point u< M.

To prove the sufficiency of the condition in Theorem 1.2, we assume that
a tensor S on M has the property that at each point € M, there exists a
frame z(%) relative to which the set S(z(#)) of components of S are not all
zero and are proportional to a fixed set C of constants. Then S has no zero
in M, and consequently, its components relative to any frame z are not all zero.

Denote by H the set of those elements of the real general linear group
GL(n, R) that are characterized by the following property :

Let GL(n, R) act on a fixed n-dimensional vector space R” by {e.}- {e.g}
={e.g% ), where {e,} is a basis of R" and g= (g&) € GL(n, R). Then & = (h%/)
€H if HCGL(#n, R) and if

(1.6) rC=¢h)C,
ie. CE RS by + -+ = p(R)CE 0T 8% 81+« -,

where 3% is the Kronecker delta, (%%) the inverse of the matrix (Ay), and
¢(h) an unspecified non-zero constant depending on k. It is easy to see that
the set A thus defined is a closed subgroup of GL(%n, R). But a closed sub-
group of a Lie group is a Lie subgroup (see, for example, Chevalley [1], p.
135). Therefore, H is a Lie group and a Lie subgroup of GL(n, R).

Next consider the set Bu of all those frames in M such that the set S(2)
of components of S relative to each of these frames are proportional to the

fixed set C of constants, i.e.,
(1.7) Bu={zlz€ B, S(z)=¢(z)C},

where ¢(z) is an unspecified function of z. By the assumption of the theorem,

for every point u € M, there exists some z(#) € By. We now prove that
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(1.8) Ba Nz (u) =z2(w)H = {z2(w)h| h € H).
In fact, let z'(#) be any point in BN~ "(x). Then we have
Sz (u)) =¢(2'(w))C,
and
2'(u) =2(u)g for some g GL(n, R).

From these and

S(z(u)g) =g+ S(z(w), S(z(u)) =¢(2(u))C,
it fnllows that
- ¢(z(u))gt e C=¢(2'(u))C.

Comparing this with the definition (1.6) of H, we see that g< H, and this
proves (1.8).

It is clear from (1.8) that under the action of GL(n, R) on B, H leaves
By invariant. Moreover, H acts on Bu without fixed point since this is true of
the action of GL(»n, R) on B. Hence we may conclude from (1.8) that for
each point ue M, BaNn (u) is a C° closed submanifold of B of the same
dimension as H.

We now proceed to prove that Bx is a C* closed submanifold of B. Since
not all the constants C¥.." are zero, there is at least one, say CR".", which is

not zero. Then it is easy to see from definition (1.7) that
Bu={z|lz= B, C¥"."S¥""(2) = C¥¥:"SpM: " (2) }.

Now in any coordinate neighborhood = '(U) in B where the local coordinates

of a point z are (#, x)= (4, x.), we have
" (2) = SEaialak
Therefore, Bz Nz~ '(U) is the set of all points (#, x) satisfying the equations
(g, %)= U ST IR - o = CE Sl - - =0

Since S’k’ are C® functions in # and (x}) is the inverse of the matrix (x%),
F$:"(u, x) are C* functions in (%, x). Moreover, for every fixed u, the set of
points («, x) satisfying the equations Fy". ' (u, x) =0 is BszNrn"'(u) which has
just been shown to be a C* closed submanifold of = '(U) of the same dimension

as H. Thus, the conditions in Lemma 1. 3 are satisfied and therefore, By Nz~ *(U)
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is a C* closed submanifold of = *(U/). From this it follows that Br is @ C*
closed submanifold of B, as was to be proved.

Summing up the above results, we may now conclude that in a natural
manner, Ba—> M is a principal fiber bundle with structure group H which is a
subbundle of the frame bundle B > M with structure group GL(n, R).

Connections are known to exist on any principal fiber bundle satisfying the
second axiom of countability (see, for example, Nomizu [9], Chapter II, § 9).
Therefore, connections exist on By— M. Furthermore, by means of the injection
Bg— B, any connection I'y on Bg— M can be extended in a natural manner to
a unique connection I on B- M, which is then a linear connction I" on M (cf.
Nomizu [9], Chapter II, §5). In fact, if the connection I'z on Br— M is defined
by a field @~ of horizontal n-planes on By, then the field @ of horizontal n-planes
on B defining the extended connection I" on B - M is obtained by extending Q=
by the action of GL(n, R) on B; more precisely, if z is any point in B, we
take any point 2z in Bg such that z=zg for some g= GL(n, R), and define Q,
as (Qu):,'g which is easily seen to be independent of the choice of z;.

We now show that, for any point 20 BaC B, we have Bnlz,]= Blz]. In
fact, let z, be any point in Balz]. If zx(r), 0<t <1, is any horizontal curve
in By joining 2, to z; then since zu(7) is also a horizontal curve in B, z; € Bl z,].
Conversely, let 2, be any point in B[z,] and z(z), 0 <t <1, any horizontal curve
in B joining 2 to z.. Then u(r) = 72(r) is a curve in M joining #y =7z to #
=rnz. If za(7) is the lift of #(r) in Bg starting from z, then it is also a lift
of u(7) in B. But there is one and only one lift of #(r) in B passing through
2. Therefore zx(7) = 2(7), and 2, € 2(1r) = zr(r) € Bal2,]. Hence, Bslz,] = Blz],
as was to be proved.

From the way By is constructed, the functions S¥.;" on Bx have no common
zero and are proportional to the fixed set of constants Ci'.. Therefore, a
fortiori, is this true of the restrictions of the functions S." to Brl[z,] = Blz].
Hence, by Lemma 1.2, S is recurrent with respect to the linear connection I
on M. This completes the proof of Theorem 1.2.

Theorems 1.1 and 1.2 can be extended to the following more general

theorem.

THEOREM 1.3. Let S;, -, Sp,q be any p-+q given tensors on M. Then

there exists on M a linear connection with respect to which each of the tensors
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Sy, + -+, Sp is parallel and each of the tensors Spii, * * *, Spiq IS recurrent iff
we can assign to each point us M a frame z(u) such that the components of
Sy, + +, Sp relative to z(u) are not all zero and are independent of u, and the
components of each of Spry, * * *, Sp+q relative to z(u) are not all zero and are
Droportional to a fixed set of constants (which are independent of u), the factors

of proportionality being generally different for different tensors Sps1, * * *, Sp+e

proof. With slight modifications, the proof of Theorem 1.2 given above
holds also for this theorem. We need only replace the single tensor S by the
tensors S;, * - -, Sp+q and modify accordingly the definition of the subgroup
H of GL(n, R) and that of the submanifold Bx of B. More precisely, we let
C:(1<£<p) and Cr(p+1<7<p+q) be the sets of constants corresponding
to the tensors S: and S., respectively. Then we define H to be the subgroup
of GL(n, R) consisting of those elements of GL(n, R) such that

B Ci=C: (1<E8<p), B Co=¢a(BWCr (Pp+1Z9<P+19),

where ¢.(1) are unspecified and nowhere-zero functions of k. Correspondingly,

we define By to be the subset of B consisting of those points z of B such that
Si2)=C:(1<8<p), So(2) =¢(2)Cn  (P+1<9<p+0q),

where ¢, are unspecified functions of z. The rest of the proof is exactly the

same as before.

Remark 1. Let S be any tensor of type (7, s) on M, and S(z) the set of
components of S relative to the frame z. Then the conditions in Theorems 1.1

and 1.2 can be expressed respectively as
S(z(u))=C, S(z(n))=p(u)C,

where ¢ denotes a set of constants, not all zero. Since S(zg)=g""+S(z) for any
element g of GL(n, R), changing the family of frames z(#) to z(#)g changes
the set C of constants to g7'+ C. Now if we regard C as the set of components
of a tensor C of type (7, s) over the n-dimensional vector space R” relative to
some basis {e,}, then g7+ C is the set of components of the same tensor C
relative to the basis {e.g}. Therefore, with each parallel or recurrent temsor S

of type (r,s) on M, there is associated a tensor C of type (r,s) over R".

Remark 2. Since local cross-sections of By M exist, as is the case of all
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principal fiber bundles, we have the following interesting corollary to Theorems
1.1-1.3:

Let S;, - - -, Sp+q be any p+q tensors on M. Assume that we can assign
(in any manner) to each point us M a frame z(u) such that the components
of Sy, * ++, Sp relative to z(u) are not all zero and are independent of u, and
the components of each of Sp+1, =+ * , Sp+q are not all zero and are proportional
to a fixed set of constants (which are independent of u), the factors of pro-
portionality being generally different for the different temsors Sp+i, * * *, Spiq-
Then for each point u = M there is a neighborhood U= u and a C° family of
Jrames 2'(u) in U such that the components of the tensors Sy, * * + , Sp+q relative
to 2'(u) have the same properties as the components of these tensors relative to
z(u).
1.3. Some applications

A number of known theorems on existence of linear connections with speci-
fied properties are direct consequences of Theorem 1.3 and certain algebraic

facts. For example, we can easily deduce that

If S is any tensor of type (0,2) on M which (i) is symmetric and of con-
stant rank or (ii) is skew-symmetric and of constant rank, then there exists on

M a linear connection with respect to which S is parallel.

We now give another example to illustrate the arguments used. A com-
plete system Dy, + - -, Dp of p distributions on M is such that at every point
# € M the tangent space to M at % is the direct sum of Di(%), ..., Dy(u).
With such a complete system of distributions there is associated a system of p
projection tensors P, « -+, P, (of type (1,1)) which satisfy the conditions
(1.9) S,P.=E, Po=P, PP,=0, (1<p v<p; uxv)
where E is the unit tensor of type (1,1). It is easy to show that if a linear
connection has been given on M, a necessary and sufficient condition for each
distribution D, to be parallel is that each tensor P, is parallel (see, for example,
Fukami [4], p. 431).

On the other hand, we know from algebra (see, for example, Jacobson [6]
p. 62) that, in the real field, if P, (1<px<p) are any p matrices of order =
satisfying (1.9), then there exists a non-singular matrix F such that, for z=1,
e p,
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Ny
e \e—

FP,F'=diagl[0,-++.0, 1, +++,1,0, -+, 0],

where n, is the rank of P, and the number of the first set of zeros in the
diagonal is 71+ * * * + Bp-1.

This fact implies, in our notation and terminology, that at each point » € M,
there exists a frame z(x) relative to which the components of the tensors
P.(z(u)) are all independent of ». Thus, by Theorem 1.3, there exists on M
a linear connection with respect to which each of the tensors P, is parallel.

This proves the well-known theorem that

Given any complete system of distributions on M, there exists a linear con-
nection with respect to which each of the distributions is parallel.

2. Condition for a recurrent tensor to be almost-parallel

The results in Theorems 1.1 and 1.2 give rise naturally to the question:
Given on M a tensor S which is recurrent with respect to some given linear
connection on M, when does there exist on M a linear connection with respect
to which S is paralllel? In other words, when is a given rccurrent tensor
almost-parallel? Here we recall from definitions (cf. Introduction) that a re-
current tensor is never a parallel tensor with respect to the same linear con-
nection.

The answer to this question is completely different according as the re-
current tensor is of type (7, s), r=s, or of type (r, 7). The case of recurrent
tensors of type (7, s), r=s, or of type (1,1) can be dealt with easily (Theorems
2.1 and 2.8). But the case of recurrent tensors of type (7, 7), =2, is much
more difficult. It leads us to the equation

k+C=0C, ie kit kaCollgrRY « « « Bl = oCLTT,
where C denotes the set of constants Ci:. 5" associated with the recurrent
tensor, >0 is a parameter, £ = (k;) is an element of GL(n, R), and (%f) =k™*
(Theorem 2.2).
For given C and ¢>0, we say that C is conmsistent with o if there exists
an element 2= GL(#n, R) such that 2+ C =¢C. It is easy to see that the con-
sistency of C with ¢ is actually a property of the tensor C of type (7, 7) over

R" associated with the recurrent tensor (i.e. the tensor C of type (7, r) over
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R" with components C relative to some basis of R*; see Remark 1 at the end
of §1.2). We prove that any given tensor C of type (7, 7) over R”is consistent
either with every s (0, «) or with only the elements of a totally disconnected
subgroup of the multiplicative group (0, o) (Proposition 2.1), and that a re-
current tensor S of type (7, ) on M is or is not almost-parallel according as
its associated tensor C over R" is or is not consistent with every s (0, )
(Theorem 2.3). Although a more explicit criterion for deciding when a recurrent
tensor of type (7, ) is almost-parallel has not yet been found, we are able to
obtain several very interesting results. First we prove that for a recurrent
tensor of type (7, ) which is not almost-parallel, the recurrence covector is
locally a gradient (Theorem 2.4). Next, we prove that if C is consistent with
some oo 1 such that the characteristic roots of one of the 2= GL(n, R) satis-
fying the equation %+ C = ¢,C are all real, then C is consistent with every
g€ (0, ©); moreover, we are able to construct all the tensors C having this
property (Proposition 2.2). This gives us a fairly general sufficient condition
for a recurrent tensor of type (7, ) to be almost-parallel (Theorems 2.5-2.6).
In §2.6 we introduce the concept of nilpotence and complete nilpotence for
tensors of type (7,7), and obtain three necessary conditions for a recurrent
tensor of type (7, 7) to be almost-parallel (Theorems 2.7 and 2.10). We also
prove that a recurrent tensor of type (1,1) is almost-parallel iff it is nilpotent
(Theorem 2.8). As examples, we show in §2.7 how recurrent tensors which
are or are not almost-parallel can be constructed on parallelisable C*-manifolds.

Results on tensors over R" will be stated as propositions and those on re-

current tensors on M will be stated as theorems.
2.1. The case »=xs
We prove

TuEOREM 2.1. Every recurrent temsor of type (7, s), r xs, is almost-parallel.

Proof. Assume that S is a recurrent tensor of type (7,s) on M. Then
(see Theorem 1.2 and (1.5)), we may assign to each point # in M a frame
2(%) such that

S(z(u)) = o(u)C,

where the function p(#) is of the same sign for every point ». By replacing
C by — C if necessary, we may assume that o(%)>0.
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Now assume that r=s. Since p(#)>0, we can find a non-zero number ¢(z)
such that ¢ *(%) = p(u). Let g(u) = (6(u)d%)=GL(n, R). Then we have
S(z(u)g(u)) =C.
This shows that S satisfies the condition in Theorem 1.1, and consequently,
there exists on M a linear connection with respect to which S is parallel.

2.2. The case of recurrent tensors of type (7, ).

The object of this paragraph and the next is to prove Theorem 2.3 which
gives a necessary and sufficient condition for a recurrent tensor of type (7, r)
to be almost-parallel.

Let S be a tensor of type (7, ) which, with respect to some linear con-
nection on M, is recurrent. Then by (1.4) and (1.5), there exists, at each
point # € M, a frame z(%) such that

2.1 S(z(n)) = p(u)C,

where C = (C§§7) is a set of constants not all zero, and (%) = ¢(z(u)) is of the
same sign for every #= M. We can prove that in this case the frame z(«) at
each point # = M can be so chosen that the number o(#%) is not independent of
u (see Lemma 2.1 at the end of this paragraph).

Now assume that there exists on M a linear connection with respect to
which S is parallel. Then at each point x € M, there exists a frame z'(#) such
that

(2.2) S(2'(u)) =D,
where D = (Dy1%7) is a set of constants, not all zero. But

2'(u) = 2(u)g(u) for some g(u) € GL(n, R),

and

Sz(n)) =g(w) 1+ S(z2(%)).
Therefore, it follows from (2.1) and (2.2) that
(2.3) o(u)g(u)™'+C = D.

Let us fix a point # in M. From equation (2.3) and the same equation
for #=u, we deduce that

(2.4) k(u)C =0(u)C,
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where

(2.5) Blu) =glw)g(u) ™", o(u) = p(u)/p(u) >0 and *1.

That (%) >0 and *1 follows from the fact that p(#) is of the same sign for
every point ¥ = M and is not independent of ». Thus the assumption that there
exists on M a linear connection with respect to which the recurrent tensor S
is parallel implies that, for each point # & M, there exists an element k(%) of

GL(n, R) such that (2.4) is satisfied.

Conversely, if this condition is satisfied, then it follows from (2.1) and
(2.4) that

S (2(w)k (%)) = p(w) k() ™« C = p(u) C.

This means that, at each point u & M, there exists a frame z'(#) = z(u)k(u)
relative to which the components of S are the constants o(z)C.
We have therefore proved

THEOREM 2.2. Let S be a recurrent tensor of type (r,r) on M so that, for
each point u < M, there is a frame z(u) relative to which S(z(u)) = o(u)C. Then
a necessary and sufficient condition for S to be almost-parallel is that there

exists, for each point us M, an element k(u) of GL(n, R) such that
k(u):C =0s(u)C,
where o(u) = p(u)/o(u) and u; is some fixed point in M.

We end this paragraph by proving the following lemma which was used in
the proof of Theorem 2.2 and will be used again in the next paragraph.

Lemma 2.1. If S is recurrent so that S (2) = ¢(2)C on Blz], the assignment
u-z(u) € B[ 2)] can be so chosen that the function p(u) =¢(z2(u)) on M has
the property that, for some fixed ui = M and variable u< M, the set of values

a(u) = p(u)/o(u)) covers entirely some interval [1, ;1 where s, >1.

Proof. Since S is recurrent but not parallel, it follows from Lemmas 1.1
and 1.2 that the C” function ¢ on B[z,] is non-constant. Let zs< B[z] be a
point such that ¢(z3) % ¢(z0) and let z(r) be a horizontal curve joining 2-to z.
Then ¢(z(r)) is continuous in r. Let 2 =z(r;) be the farthest point from z
in z(7) such that ¢(z1) =¢(2). Then since z(r) is horizontal and ¢(z(r)) is

continuous in r, there exists a point 2= z(1), r1<7, in z(r) sufficiently near
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z; such that ¢(z) % ¢(2z;) and the curve u(r) =nz(r), < r<rt, has no self-
intersection. Now let us choose 2(7r), 1<t <t as the frame in M at u(7),
n<t<t. Then p(u) =¢(2(x)) has the property that p(u()) is continuous in r
and o(u;) = p(%,). One of these values is larger, and there is no loss of generality
in assuming that o(#)>p(%;) (>0). Then putting p(#)/p(%;) = 01, we prove

our lemma.

2.3. Continuation. A main result

Theorem 2.2 leads us to the study of the consistency of the equation
(2.6) E+C =0oC, ie. kit BiCRigrRl -+« BRI =oCiLIT,
where C is a set of components C;!..s" of a tensor of type (7, 7) over R", k is
some element of GL(%, R), and ¢ is a positive number.

We denote by K the set of all elements 2 GL(n, R) such that for each
k € K there exists some ¢ < (0, ) satisfying (2.6), and denote by I the set of
all s (0, ) such that for each ¢ € 3 there exists some k € GL(n, R) satisfying
(2.6). The sets K and I are both non-empty because, for any C, equation
(2.6) is satisfied by ¢ =1 and k= identity matrix.

We now prove two lemmas on K and J.

LemMma 2.2. K is a subgroup of GL(n, R), 3 is a subgroup of the multi-
Dlicative group (0, ), and the correspondence k- g defines a homomorphism K - 3.
Furthermore, if s 3, then ¢™ (m= +1, =2, - -+ ) all belong to =.

Proof. The statements in the Lemma are easy consequences of the fact
that &+ C =0:C and k- C = oC imply that

ki'eC =07'C and (k) * C = (020,)C.

Lemma 2.3. The subgroup X of the multiplicative group (0, ©) is either

totally disconnected or identical with the multiplicative group (0, ).

Proof. Let 3, be the connected component of the neutral element 1 in J.
If 2, ={1}, J is totally disconnected. If ;= {1}, then 2, is a closed interval
containing {1}. From this and the fact that s =23 implies ¢ € 3 for m= =1,
+2, + -, it follows that 2= (0, <), as was to be proved.

It was pointed out in § 1.3 that with a recurrent or parallel tensor S on
M, there is associated a tensor C over R" whose components relative to some

basis are the set C of constants. Now let C be a tensor of type (7, r) over R"
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with components C relative to some basis in B”. We say that C is consistent
with the real number o< (0, ©) if the equation %2+ C =oC holds for some ele-
ment & of GL(n, R). This definition is legitimate because k+C =¢C and C'=
g '+ C, geGL(n, R), imply (g'kg)+C' = ¢C' so that the consistency of C with
o is independent of the choice of basis in R”. Thus we may say that a tensor
C is consistent with the number o< (0, ) if it can be transformed into the
tensor ¢C by the transformation extended from some non-singular linear trans-
formation in R”. If C is consistent with some ¢ € (0, ), any 2 GL(%n, R) that
satisfies k+C = ¢C is said to be corresponding to s. It is seen from above that
the characteristic roots of % are also independent of the choice of basis in R".
(On the other hand, a change of basis in R” changes the group K to one of its
conjugates.)

We now restate Lemma 2.3 as

ProrosiTiON 2.1. A tensor C of type (r, r) over R" is consistent either with
arbitrary o € (0, ) or only with the elements of a totally disconnected subgroup
of the multiplicative group (0, «).

As a direct consequence of Theorem 2.2, Lemma 2.1 and Proposition 2.1,
we have the following main result of this paragraph:

TueoreM 2.3. A recurrent tensor S of type (r,r) on M is almost-parallel
or not almost-parallel according as the tensor C of type (r, r) over R" associated
with it is consistent with every o< (0, ) or only with the elements of a totally
disconmnected subgroup of the multiplicative group (0, ).

We shall make a few applications of this theorem.

2.4. A theorem on recurrent tensors of type (#, ) which are not almost-
parallel.

The object of this paragraph is to prove the interesting result stated in
Theorem 2.4 below. To simplify the notation, composite indices will be used
in part of this paragraph and in § 2.6. The composite indices A, B, I, J are
respectively the sets of ordered indices (ay, = = *, @), (B, * =+, Br), (i, = =+, %),
(i, -+, jr). Since each of the indices a’s 8’s, #’s, j's has the range 1, - - -, 2,
each of the composite indices A, B, I, J has the range of n” values (1, - - -, 1),

-, (n,- -+, n) which we assume to have been arranged in the lexico-
graphical order. Moreover, A = B .means that a;=8i, -+ +, ar = /.
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In the notation of § 1.1, for any tensor S of type (7, 7) on M, we denote
by Sﬁ(z) = S3'ar(2) the components of S relative to the frame z= {X.} and by
S} =S4 and x the components of S and X, in some local coordinate system
in M. If («}) is the inverse of the matrix (x%), g = (¢%) any element of GL(%n, R),
and (g%) the inverse of the matrix (g5-), then we have (§1.1)

UIET(2) = AR e e - XTSIl oo gl
by (28) = EZI‘ C BLISHI(R)aEh - - - ghe

Using composite indices, we write these equations as

2.7 Si=x/Sixs  Si(28) = g4 Si(2)g5.
We now prove

THEOREM 2.4. If a recurrent temsor of type (», r) on M is not almost-

parallel, its recurrence covector is locally a gradient.
Proof. It follows from FS=W® S that
(2.8) ViS; = WiS;
in every local coordinate system (U, #') in M. The theorem asserts that if

there exists no linear connection on M with respect to which S is parallel, then

for each point u; = M there exist a coordinate neighborhood U>#; and a C*
function » on U such that W;=2w/0u’.

Since S is recurrent, we have from Lemma 1.2 and (1.4) that
(2.9) S(2) =¢(2)C on Blz],

where ¢ is a C®, non-constant, nowhere-zero function on B[z], and C are #»*"

constants, not all zero.

Let z, zg be two points in B[z], where g GL(n, R). Then we have from
(2.9) that

S(zg) =¢(22)C, S(z)=¢(2)C,
which, together with S(zg) =g+ S(2), give
(2.10) g1 C={¢(28)/9(2)}C.

Since S is not almost-parallel, the tensor C over R* with components C is con-
sistent only with the elements of a totally disconnected subgroup X of the

multiplicative group (0, «) (see Theorem 2.3). Thus it follows from (2.10) that
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if z, zg are two points in Blz,],

(2.11) #(28) = no(2),

where ¢, is some element of J.

Let #; be any point of M. Equation (2.11) shows that on each component
(which is arcwise connected) of = '(#;) N Blz], the function ¢ is constant. Let
us choose a sufficiently small coordinate neighborhood U = u; in M so that each
component of 7 '(z) N B[z] is contained in one and only one component of
#~'(U) N B[z]. Take any of the components, say V, of = *(U/) N B[z,]. Then

¢ is C* on V and is constant on each fiber in V. Hence we can write the

equation

S(z)=¢(z)C on V
as
(2.12) S(z)=p(@)C on V,

where p(u) = ¢(2(2)), so that p is a nowhere-zero, C* function on U.

Now we prove that on U, W;=0;logp. Let u(r) be any C”-curve in U
passing through #;, z; any point in z7 (%) N V, and z(¢) the lift of u(r) passing
through z;. Then z(r) is a horizontal curve lying entirely in V< BlzJ. There-
fore, z(7) ={X,(u(r))} is a C*-field of parallel frames in M along the curve
u(7), so that ‘

l 1
(2.13) %’;-V,xf =0, %%V,xé =0.

Let us write (2.12) in the form

Sa(2) =p(u)Cs on V,
evaluate it along z(r), and use (2.7);. Then we have
(2.14) (7S5 x) (u(7)) = p(ulc))Ch.

If we differentiate this equation covariantly along the curve #(r) and make
use of (2.8) and (2.13), the result is
! !
xi‘(;;’;— Wz)S.ixé = (%%azp)cﬁ,

which, together with (2.14), gives
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(‘fi—z:_l Wl) 0Cs = (%3!0)01;.

Since the constants Cj are not all zero and the function p is nowhere zero in
U, it follows from the above equation that

d. du
d_z:- 44 =d—tz_azlog 0.

But the curve u(r) through %, can be so chosen as to make its tangent vector
du'/dc at uy coincide with any given tangent vector in M at . Therefore, we
have Wi=29;logp at u;= M and consequently everywhere in U. This completes
the proof of Theorem 2.4.

Remark. 1t follows from (2.11) that if another component Vi of z~(U) N Blz,]
is used, the corresponding function p; is a constant multiple of the function p
corresponding to V. Therefore, we have

W, =3;log p = 9;log py.
2.5. A sufficient condition for a recurrent tensor of type (7, ») to be almost-
parallel

Let us now return to Theorem 2.3 and recall that the problem of deciding
when a recurrent tensor of type (7,7) is almost-parallel is equivalent to the
problem of consistency of a tensor of type (7, #) over R” with a number ¢>0.
We shall prove later in §3 some remarkable results stated below in Proposition
2.2 which enable us to give a fairly general sufficient condition for a recurrent
tensor of type (7, ) to be almost-parallel (Theorem 2.5). In order to state our
results in a convenient form we say that C* is a variable tenmsor (over R") if,
relative to some basis in R" its non-zero components are independent variables.
A tensor C is called a specialization of the variable tensor C* if its components
C relative to some basis in R" are obtained from the components C* of C* re-

lative to the same basis by giving constant values to the independent variables
contained in C*.

ProrosiTION 2.2. If a temsor C of type (r,r) over R" is consistent with
some 5,>0, =1, such that among the elements k= GL(n, R) corresponding to o,
there is one whose characteristic roots are all real, then C is consistent with

any ¢>0; and, for each ¢>0, there exists a corresponding k= GL(n, R) whose
characteristic roots are all real.
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Furthermore, a tensor C of type (r,r) over R" has the property described
above iff it is a specialization of one of the variable tensors C*s determined as
JSollows:

(i) Let ¢>0 be a parameter. Take any set (*) of n-1 independent and con-
sistent equations of the form
ol c A =Ray t t* Aay
in the n unknowns Ay, . . ., An.
(ii) Solve (*) for the ratios of X, . . ., An, obtaining
At tn=e0® i s o ends,
where each ¢, + -, en is+1 0r —1, and q, - - - , qn are rational numbers.
(iii) Then the variable tensor C* corresponding to (*) is obtained by putting
C*{tlr =0 or an independent variable
according as the i, - - -, Ax given in (ii) satisfy
Ghey* +* Aep—Ar, "+ * Aer%0 07 =0.

We note that since the number of such sets (*) of equations of the form
ods, * * * Ap,= Ao, * * * Aq, is finite, there are only a finite number of such variable
tensors C™’s.

Thus, combining Theorem 2.3 with Proposition 2.2, we obtain the following
theorem.

TueoreM 2.5. A recurrent tensor S of type (r,7r) on M is almost-parallel
if the tensor C of type (r,r) over R" associated with it is consistent with some
00>0, =1, and if corresponding to o, there is a ki€ GL(n, R) whose character-
istic roots are all real.

A recurrent tensor of type (7, r) on M has the above property iff the tensor
C associated with it is a specialization of ome of the variable temsors C''s de-
termined in Proposition 2.2.

For small values of # and 7, the variable tensors C™s described in Pro-

position 2.2. can be determined easily (§3.3). For example, we have

TueoreM 2.6. A recurrent temsor of type (2,2) on a 2-dimensional C°*-
manifold is almost-parallel if the tensor C of type (2,2) over R® associated with
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it is a specialization of one or the other of two variable tensors C*s whose
components C* arranged lexicographically as elements of a 2°x2° matrix are
respectively as follows:

* * . *
where a dot denotes the zero, and a star denotes an independent variable.
2.6. Some other conditions for a recurrent teosor of type (7, 7) to be almost-
parallel
We recall from algebra that a square matrix N is said to be nilpotent if

N™=0 for some integer m>1, and the smallest such integer m is called the

index of nilpotence. We shall introduce the concepts of nilpotence and complete
nilpotence for tensors of type (7, 7).

Consider first a tensor C of type (7, 7) over R". Let C3 be the components
of C relative to some basis {e.} of R”. We say that C is nilpotent of index m
if the matrix (C%) is nilpotent of index m. To justify this definition we must
show that it is independent of the basis {e.} of R” used. In fact, if {e..} =

{e.g3} is another basis of R”, then the components Cj of C relative to the
basis {e.-} are

Cy =54 Cigh.
Since (g4) = (gh) ™", the matrices (C4) and (C%) are similar, and so, they are

either both non-nilpotent or both nilpotent with the same index.
We now write equation (2.6) as

(2.13) kSCskE = oCS,
where ¢>0, (%) = (k3! - - - k) is a non-singular matrix of order »” and (%%)

= (k)"". Equating the characteristic determinants of the two sides of (2.15),
we get

det(103 — C%) = det(A05 — oC3).
When this is expressed in the polynomial form
a4 oo dap=24aol T+ -+ +apd,

where p =", we see that
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ai=aps, -+, Gp=dapd.

Since ¢>0, it follows from these that either ¢=1 or all the ay, -+ -, ap are
zero. But ai, - - -, ap are all zero iff the matrix (C#) is nilpotent. Hence we

have proved

LemMa 2.4. If a tensor C of type (r, r) over R" is consistent with some
o1, then it is nilpotent. In other words, if C is mot nilpotent, then it is con-

sistent with only ¢ =1.

Let D be any contraction of C, i.e. any tensor obtained from C by con-
traction. Then D is a tensor of type (s,s). Let D3 be the components of D,
where we denote by A;, - .- the composite indices A, = (ai, - -+, as),

Then equation (2.15) implies that

D5ks; = oD,
kit (CsD3) kfks: = ’C2D%.

It follows from these and Lemma 2.4 that if C is consistent with some ¢>0
and =1, then C, its contractions, and the contractions of the (finite) tensor
products of C and its contractions are all nilpotent. This gives rise to the
following definition and proves Proposition 2.3 below.

A tensor C of type (7, 7) over R" is said to be completely nilpotent if the
following tensors constructed from C are all nilpotent:

(i) C and its contractions.

(ii) The contractions of the (finite) tensor products of the tensors in (i).

ProrosttioN 2.3. If a tensor C of type (r,r) over R" is consistent with
some >0 and =1, then C is completely nilpotent. In other words, if C is not
completely nilpotent, then C is consistent with only o =1.

For tensors of type (1,1), nilpotence implies complete nilpotence. In this

case, we can prove

ProrosiTION 2.4. A tensor C of type (1,1) over R" is either consistent
with arbitary ¢>0 or consistent with only ¢ =1. Furthermore, C is consistent
with arbitary ¢>0 iff it is nilpotent.

Proof. For a tensor C of type (1,1), equation (2.6) becomes

2 In this respect we note that the temsor product of a temsor of type (7, r) with a
nilpotent tensor of type (s, s) is nilpotent (a consequence of Lemma 3.1 (ii)).
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(2.16) BiCiRl=0Ci (1<a, B,--+ <.

As in the proof of Lemma 2.4, equation (2.16) implies that either the matrix
(C§) is nilpotent or ¢=1. Thus, to prove Proposition 2.4, it suffices to show
that if (Cj3) is nilpotent, then the tensor C is consistent with arbitrary ¢>0,
i, for any >0, there exists a k= GL(n, R) such that equation (2.16) is
satisfied.

Let 4, -+ -5 (A—=240)%, - - - be respectively the characteristic roots and the
elementary divisors of (C}), and let +>0 be any number. Then (A —-44)%, ...
are the elementary divisors of (¢Cf). Since (C§) is nilpotent, its characteristic
roots are all zero. Therefore, the two matrices (C;) and (¢C}) have the same
elementary divisors 4%, ... and consequently are similar. Hence, there exists
some non-singular matrix (k;) with real elements such that (2.16) is satisfied.
This completes the proof of the proposition.

We now consider tensors on M. Let S be a tensor of type (7, ) on M, and
% any point in M. Then S(x) is a tensor of type (7, 7) over the n-dimensional
tangent space to M at u, and the definitions of nilpotence and complete nil-
potence of tensors of type (7, ) over R” apply to S(#). We now show that #f
a parallel or recurrent tensor S of type (r, r) on M is nilpotent of index m (resp.
completely nilpotent) at some point u in M, then it is nilpotent of index m (resp.
completely nilpotent) everywhere in M. In fact, since S is parallel or recurrent,

there exists at each point #= M a frame z(#) in M such that
(2.17) Si(z(u)) =Cs  or Si(z(u)) =¢(2(u))Cs=o(u)Cs,

where the Cs are constants but not all zero, and p(#) is nowhere zero in M.
If S is nilpotent of index m (resp. completely nilpotent) at some point in M,
then it follows from (2.17) that the matrix (C#) is nilpotent of index m (resp.
completely nilpotent). Hence by (2.17) again, S is nilpotent of index m (resp.
completely nilpotent) everywhere in M.

A consequence of Proposition 2.3 and Theorem 2.3 is the following

TuEOREM 2.7. A mecessary condition for a recurrent temsor of type (7,r)
on M to be almost-parallel is that it is completely nilpotent.

Proof. Let S be a recurrent tensor of type (7,#) on M and C the tensor
over R” associated with it. Assume that S is not completely nilpotent. Then
by Proposition 2.3, C is consistent with only ¢ =1. Therefore, by Theorem 2.3,
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S is not almost-parallel, as was to be proved.
The following theorem is an immediate consequence of Proposition 2.4 and
Theorem 2.3:

THEOREM 2.8. A recurrent tensor of type (1,1) on M is almost-parallel iff

it is nilpotent.

Proposition 2.3 says that if C is not completely nilpotent, then it is con-
sistent with only ¢=1. Using this fact and the method of proving Theorem

2.4, we can prove

THEOREM 2.9. For a recurrent temsor of type (v, r) on M which is not

completely nilpotent, the recurrence covector is globally a gradient.

A direct and simpler proof of this theorem is the following. Since S is

recurrent, we have by definition
FrS=wWe®S, W=0.

Let T be any one of the tensors constructed from S in the manner described
in the definition of complete nilpotence of C. Then T satisfies the equation

VFT=WQ®T, and consequently also the equation
(2.18) FT'? =qgWQ T?,

where ¢ is any positive integer and 7'¢ denotes the “gth power” of T.

Since S is not completely nilpotent, there exists at least one such tensor T°
which is not nilpotent. For this 7, there exists some positive integer g and
some point # in M such that the trace of T'”(u) is not zero. On the other
hand, it follows from (2.18) that

P(trace T'?) = g(trace T'V)W.

Hence the C*-function (trace T°?) on M is nowhere zero, and W is globally a
gradient, as was to be proved.

It is an open question whether complete nilpotence is a sufficient condition
for a recurrent tensor of type (7, 7), =2, on M to be almost-parallel (i.e. for
a tensor C of type (7, 7), =2, over R"” to be consistent with arbitrary ¢>0).
And algebraically, it would be an interesting problem to determine for each
r=2 all the completely nilpotent tensors of type (7, 7).

Other algebraic considerations of the consistency of equation (2.6) lead to
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the following theorem the proof of which will be given later in § 4.

TrEOREM 2.10. For a recurrent temsor of type (r,r) to be almost-parallel

it 1s necessary
(1) that it is nilpotent and its index of nilpotence is at most equal to
(m+r—D/(n—-1Dlrl;
(ii) that it has at least
/(@) (g+1)? (r=mg+p, 0<p<gq)

elementary divisors.

Here the elementary divisors of a tensor S of type (7, #) at u = M is defined
as the elementary divisors of the matrix (S§(z(%))). By arguments similar to
those used in the first part of §2.6, it ‘can easily be shown that this definition
is legitimate and that the number of elementary divisors of a parallel or re-

current tensor of type (7, ) on M is everywhere the same in M.

2.7. Examples
Some easy examples can be given to illustrate the theorems in this section.
First let M be any connected C*-manifold, g; a Riemannian metric on M and
¢ a non-constant nowhere-zero C*-function on M. Then the tensor S;j; = pgi; of
type (0,2) is recurrent with respect to the Riemannian connection arising from
&ij, while it is parallel with respect to the Riemannian connection arising from
the metric tensor S;;. On the other hand. the tensor S}: pﬁ;: of type (1,1) on
M, where p is as above and 6§ is the Kronecker delta, is recurrent with respect
to every linear connection on M, but is never parallel with respect to any linear
connection on M. Furthermore, for this recurrent tensor S}, which is not nil-
potent, the recurrence covector is 9;log p and is therefore globally a gradient.
Next, let M be a connected parallelisable C®-manifold, and {X,} a C*-field
of frames on M. Then it is well known (cf. Eisenhart [3], p. 48) that

T ;‘k = — X;Or%%

are local components of a linear connection I" on M with respect to which each
vector X, is parallel. Now let C# be any set of #°” constants not all zero, and
p any non-constant nowhere-zero C”-function on M. Then the tensor S of type

(r,7) on M defined by the components
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S) = pxiChx5

is such that 7;S; = (9;log 0)S. S is therefore recurrent with respect to I. It
is almosi-parallel if, for example, the tensor C over R" with components C3 is
a specialization of one of the variable tensors C*™’s determined in Proposition
2.2; it is not almost-parallel if, for example, the tensor C is not completely

nilpotent.

3. The matrix equation (Q72)C(Q7k!)=0¢C, and
proof of Proposition 2.2

The object of this section is to prove Proposition 2.2 on the consistency of
a tensor C of type (7, ) over R” with a real number +> 0 corresponding to which
there is a ke GL(n, R) whose characteristic roots are all real. Let C =
(C8L8m) be the set of components of C relative to some basis {e,} in R". Then

by definition, C is consistent with ¢ if the equation &+ C =4C, i.e.
(3.1) o R CRUTRY - - - B = oG,
holds for some non-singular matrix (k;) with real elements.

Let g be any element of GL(n, R). Then, changing the basis {e.} in R” to
{e.*g} changes the equation 2+ C =¢C to (g7'kg)+ C' = C', where C' is the set
of components of C relative to the basis {e.* g} (see §2.3). This change does
not change the characteristic roots of k. Since we now confine ourselves to
the case where the characteristic roots of % are all real, we can always choose
g€ GL(n, R) so that the matrix of g7 'kg is in Jordan canonical form. There-
fore, to study the consistency of a tensor C with a number ¢>0 for which there
exists a corresponding k< GL(n, R) whose characteristic roots are all real, it
suffices to study the consistency of equation (3.1) in the case when the matrix
(ka) is in Jordan canonical form.

We shall treat equation (3.1) as a matrix equation by using the concept
of direct products (i.e. Kronecker products) of matrices. It will be seen (§3.4)
that the discussions in this section completely solve the problem of consistency

of the equation &+ C =oC in an algebraically closed field.

3.1. Direct sums and direct prodncts of matrices (cf. MacDuffee [8], pp. 81-
86).

We need a few definitions and results on matrices.
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If L,, L, are two matrices of order m; m., the matrix

L 0
Li®L= [ 0 Lz]
of order m + ms is called the direct sum of Liand L,. If Li=(13), (1<a, b<my),
then the matrix

liLz c ot 1}11 2
LiQL,=
L, - - - Izilz

of order mym., is called the direct product of L; and L,. Neither the direct
sum nor the direct product is commutative. Direct sums and direct products
of more than two matrices are defined in a natural way, and it is easily seen
that they are both associative. In particular, we have the direct »th power of

a square matrix L, defined by
®L=L® --+- QL (r factors).

In what follows, s and » are some fixed positive integers; the indices g,
#1, -+ +, pr all have the range 1, - - -, s; and matrices except the non-singular
7 X n matrix k are denoted by capital latin letters. By a permutation matrix
we mean a square matrix whose elements are one or zero and which has exactly
one nonzero element in each row and exactly one in each column. We write
F~ F if the matrices F and F are similar.

The following lemma contains some properties of the direct products of

matrices. The proof will be omitted if it is obvious.

LemMma 3.1.

(1) (Li+ L)@ Li=LiQ@Ls+ Ly @ Ly,
Li@(Le+ Ly) = Li@ Lo+ L ® Ls.

(i) (LiLe) ® (LsLy) = (L@ Ls) (L ® Ly).

(iii) (®uKD®L= @ u(K.QL).

(iv) LR (DK ~Du(L®K,),

where the similarity can be accomplished by a permutation matrix which depends

only on the orders of the matrices L and K,.
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(V) Kp"'ku imj)ly ®FKM~@LLRM and ®|.LKy.~ ®;}.Ru.
(Vi) (@],LIK“I)® .. ®(®V‘1‘Kl‘<r)~ 6)“‘1 AR V‘r(KV'1® A ®Kp.r),

where the similarity can be accomplished by a permutation matrix which depends

only on the orders ni, . .., ns of the matrices K1, . . ., K.

Proof of (iv). Let L=(13), (1<e¢, d<m). Then

( K, K A
I : “c ol
KS Ks 7
LR (DLK,) = : : : ,
K1 K1
i I
Ks .Ks

LK - - - K,

II"KI' .. I#Kl
@u(L@Ku) =
I}Ks A lyInKs

'K+ - = InKs

The two matrices on the right sides can be transformed one into the other by
suitable rearrangements of the rows and the corresponding columns; they are
therefore similar to each other under a permutation matrix which is easily

seen to depend only on the orders of the matrices L and K.

Proof of (vi). The formula is trivially true for »=1. By (iii), (iv) and

(v), we have successively
(& ulKh) (D uzKuz) =® ux{Km@’ (& leKl-Lz)>
= @ p.l( ~ @ p,z(KPq@ KH))
~& uluz(qu ® Ku,)-

Therefore formula (vi) is true for » =2. Now assume that it is true for r<
m—1. Then
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(00K ® -+ @ (DK = (DK ® * * * (D pp K ) ) R (D, K,,)
(by induction hypothesis) ={~®®,,.. ., (Eu® * - @Ky, ,)} Q(D,,.Kyu,)
(by Lemma 3.1 (v)) ~{Bu. e (K ® ¢ @Ky ) (D, Kun)
(by formula (vi) for 7=2) ~®,.. ... (K,Q *** @Ky, Ky,

=Dy (B ® - - @Ky,

This completes the proof of formula (vi). The assertion that the similarity
can be accomplished by a permutation matrix follows from the fact that direct
sums and direct products of permutation matrices are permutation matrices.

We now prove

LemMmA 3.2. Let A, be any fixed numbers, E, the unit matrix of order n,,

and N, any nilpotent matrix of order n,. Then the matrix
Ny oo = (lmEux'}'Nux)@ Tt ®uu,Eu,.+Nur) — Ayttt A B ® - ® E,,
of order ny, - - - n,, is nilpotent.

Proof. If we expand the first term on the right side of the above equation
by using Lemma 3.1 (i), we see that N,, ... .. is the sum of a finite number
of matrices each of which is a direct product containing at least one of the nil-
potent matrices N, as factor. But an easy consequence of Lemma 3.1 (ii) is
that a direct product containing a nilpotent matrix as factor is itself nilpotent.
Therefore, N,, . .., is the sum of nilpotent matrices and is consequently a

nilpotent matrix itself.

3.2. Proof of Proposition 2.2

We now confine ourselves to the field of real numbers. Let us first fix the
notation and give a few definitions. Denote by % the square non-singular
matrix of order n with elements k;, and by C the squaer matrix of order »” with

elements Cjl. 5. arranged in the lexicographical order. Then equation (3.1)

can be written as
(3.2) (RTR)C(®TE™) =4C,

where the left side is the (ordinary) product of the matrices ® "%, C, @7k
of order #”. Corresponding to the definitions given in §2.5 for tensors of type
(7, ) over R", we shall say that a matrix C of constants (i.e. a matrix C whose
elements are constants) is conmsistent with the number ¢>0 if equation (3.2)

holds for some non-singular matrix k& A matrix C*= (C*3*.5r) is called a
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matrix of variables if its non-zero elements are independent variables. A matrix
C of constants is called a specialization of the matrix C* of variables if C is
obtained from C* by giving constant values to the variable elements contained
in C*. It is obvious that if for some % and s equation (3.2) is satisfied by a
variable matrix C*, then it is satisfied by any specialization C of C*.

Three lemmas are needed for the proof of Proposition 2.2. In what follows,
we assume that s is some fixed integer such that 1<s< #; the indices g, u,

-, try v1, + + -, vr all have the range 1,---, s; A, are some fixed (real)
numbers; E, is the unit matrix of order #. such that Z.#,=#; and N, is the
nilpotent matrix of order n, and index 7. in Jordan canonical form (i.e. all its

elements on the first superdiagonal are 1 and all the other elements are 0).
LemMA 3.3. Let the equation
(3.2) (®"RIC(®F") =4C
be satisfied by
C=Cox0, 0=0>0, k=®,(LE.+N,) (A*0)
and let C=Cy be the most general solution of (3.2) when
s=0, k=®.(1LE).
Then Cf is a matrix of variables and Co is a specialization of Cy .
Proof. Let us study equation (3.2) when
o=on,- k=@.K.= @.LE,+e.N,y,
where the e, are all equal to 1 or are all 0. By Lemma 3.1 (iv) we have
k=L Dy ... Ku® - @Ky )L,

where L is a permutation matrix of order »” which depends only on ny, - - - , #s.

Therefore equation (3.2) can be written
(@p oo 1, Ku® *** QK,LCL = LCL™(®y, . . . 0, Ku® «+ - QK,).
Thus putting
Z=LCL™,
equation (3.2) is equivalent to

(3.3) (@l‘d “ e PTKI-“1® MR ®K|.LT)Z= 002(@}11 o .0 F,-KI-‘-1® st ®Kp‘r)'
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We note that since L is a permutation matrix, C can be obtained from Z by a
rearrangement of its rows and the corresponding columns.

To study equation (3.3), we partition Z into blocks

_(lex lL'r'), (]—_<_ﬂlr"')#f! V"'..’Dr—<‘5)’

corresponding to the partition (B ..., K., ® + -+ ®K,,). Then Z':I7 is an
(B, + -+ my) X (my, + + - m,) matrix and (3.3) is equivalent to the following set
of equations

(3-4) (Km@ ce e ®K )Z'“ \tr "‘70 l-Lx “ (KV1® ®K¥r)'

Here and in similar equations appearing below, no summation is assumed over

the repeated indices.

Now by Lemma 3.1 (i),

Kﬂx® ° v ®KV-,‘=(XMEIH+8}'«;NM)® st ®(lu—,‘Ey.r+euerr)
=Au A B, ® et ®Eur+Nu1 EECECI )

where

Ny oo, = ABu+eu N ® - 0 @ (A, By, + eu,Ny,)
"Aux . e XH,-ELL1® .« e ®EM,-~

On account of this and the fact that E, ® - - - ®E,. is equal to the unit

matrix of order =z, * - * n,

»

equation (3.4) can be written

(8.5)  (godv; * = * Av, = Ay

" AV Z BT = Ny v o o 280 = a0 Z8 TR, L L

r

There are two cases to be considered.

Case 1. aody,* * *Av.— Ay, * * A, % 0. Iterating equation (3.5) (m —1)-times,
we get

(G0hvy = =+ Ay

m
r_zu ) LL1 ur

= 1)m‘(m1>(ao)m‘(N,L, ) (N ™

where the summation is taken over the integers myj, m, such that m;+m, =m

and 0 < my, m:<m, and (Z ) are binomial coefficients. Since by Lemma 3.2,
1

Ny, ...pn and N, ..., are nilpotent, the right side of the above equation is

zero for sufficiently large m. Therefore, in this case, ZV: 47 =0.
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Case 2. agodv, * * * Ay, — Ay, * * * A, =0. In this case, equation (3.5) reduces

to

N (25 RRTY % S Mye.e
Py oo oo o wpdoviiovp T 004y v dVyy o e e e

When all the ¢, are equal to 1, these equations generally impose some con-
ditions on Z{}::47. But when all the e, are zero, the matrices Ny, ... ., and
N, . . ., are both zero so that the above equations all reduce to 0 =0; there-
fore, in this case, ZV! V7 are arbitrary.

From the above properties of Zi}r it follows that LCYL™' is a matrix of
variables and that LC,L ™' is a specialization of LCyL™". Since L is a permutation
matrix, what has just been said of the matrices LCFL™ and LCoL™* hold for
the matrices C; and Co,. Lemma 3.3 is thus completely proved.

LemMmA 3.4. For any fixed number ¢>0 and any fixed diagonal matrix k=
Dohe (Ae=x0,1<a, B<n), the most general solution of (3.2) for C is the matrix

C* of variables whose element
C*t:87 =0 or an independent variable

according as

Oyt Agp—Rey t ** Au. %0 0r =0.

Proof. For k= @.A, we have
@k=Bq, .o apha,** " ey
and the equation
(®R)C=0C(R"F)

is equivalent to

(ahpy * ** App— Aoy * * * Aa,)CRLIET =0,

where no summation is taken over the indices ay, ..., ar, Lemma 3.4 is an

immediate consequence of this.

LemMa 3.5. Let ¢>0 be a parameter. Then any set of (n—1) independent
and consistent equations of the form

(3.6) YR Y SR W

together with the condition A+ '+ An0, completely determines the ratios of
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A, * *+, An in the form
Aploeee 1n=elaq‘ Dol e e enaq",
where each e, + - - ,ents +1 0or —1, and q1, - - + , Gn are rational numbers.

Proof. Let there be given #—1 independent and consistent equations of

the form (3.6). Each of these equations can be written in the form

(8.7 7t fat=o,
where fo= /A1, -+ - ,fn=2As/lrand each a,, . . . ,asis — 1,0, or +1, and, because
¢ is a parameter, not all a,, . . ., a, are zero. If we eliminate f, from the n—1

equations of the form (3.7) which are equivalent to the n—1 given equations,

we obtain # — 2 independent and consistent equations of the form
fzbz .« .. f,l;ﬂ_—ll - dbo’

where each by, b, + -+, bu-1 is an integer or zero, but not all &,, - - -, by—q are
zero. Repeating this process of elimination » —3 times, we arrive in the end

at a single equation of the form

=",
where m,, m, are integers, and m. is not zero because ¢ is a parameter. This
proves our lemma.
We are now ready to prove Proposition 2.2. Let us return to Lemma 3.3
and write the matrix ®,(A.E,) there as ®.dpx =diag (Ao, - - -, Aon), Where
1<a, B<n Since Cy=0, so Cf 0. Therefore, by Lemma 3.4, ¢, and A, must

satisfy one or more equations of the form

(3.6) PR Y S

Denote by (*), the set of independent equations of this form satisfied by g0 and
Aoe. Since 0o>>0 and =1, and A, >0, there exist, for each a, a unique g. = +1
or —1, and a unique number go. such that Aw. = €e00°®>. Then the equations (*),,
being satisfied by o= gy and A. = eu07*®, are satisfied by 1, = e.0™* for arbitrary
¢>0. From this it follows that the equation

(®@7k(a)CH(R@R(s)™") =oCS
holds for

k(o) = diag(end™, « - + , &md™") and arbitrary ¢>0.
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And since C, is a specialization of C;, the same is true of the equation

( ®rk(o‘))Co( ®rk(o‘) -1) = o'Co.

This proves the first part of Proposition 2.2.

To prove the second part of Proposition 2.2, we observe that the set (*),
of equations satisfied by ¢, and A, can always be extended in some way to a
maximal set (%) of #—1 independent and consistent equations of the form
(3.6) with >0 as parameter. By Lemma 3.5, the most general solution of

(*) is of the form

a « , .

M i da=¢e0 ©ege™,

where each ¢, is +1or —1 and ¢, ..., g» are rational numbers. Now by

Lemma 3.4, for
k(g) =diag(ei™, . . ., ex0?) and arbitrary ¢>0,
the most general solution for C of the equation
(®@"k()C(Rk(0)™) =aC

is a matrix C* of variables. And since the set (*), of equations is contained
in the set (*) of equations, C;* is a special case of C*. But Cy is a specialization
of Cff. Therefore C, is a specialization of C* This completes the proof of
Proposition 2.2.

3. 3. The complete set of C¥s for small » and »

As examples, we now determine the complete set of the variable tensors
C*s in Proposition 2.2 for a few simple cases. It should be noted that when
two sets of #—1 independent and consistent equations of the form (3.6) de-
termine two sets of ratios of Ay, - - -, A, which differ from each other only by
a permutation, they give rise to two matrices of variables whose elements are
components, relative to two different bases, of the same variable tensor C*
over R"; for then the two corresponding matrices £'s are similar under a per-
mutation matrix (see the introductory remarks at the beginning of § 3). It is
not known whether, even after allowance has been made for the permutations
of 14, + + -, As, the variable tensors determined in Proposition 2.2 are all dis-
tinct. But we shall not pursue this question as its answer is of no importance

to our present problem.
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(i) The case n=2, r=2.

Here 1< ay, as, B1, B2 <2 and the composite indices A = (ay, az), B = (81, 82)
have the range (11), (12), (21), (22). Among the equations of the form a2s4s,

= A4,Aa, Wwe need only consider
oA =Mdes oAl=124,
which give respectively,
MiA=110; Wi h=1:d"

Since the element C*§%? of C* is zero or an independent variable according as
028, A, ~ Aa,he, %0 Or =0, we can easily see that the C* corresponding to these
two equations are respectively

B . .

¥ e e e
X o e e « e .

where a dot + denotes the zero and the stars * denote independent variables.

(ii) The case n=2, r=3.
Here 1< ay, as, as, 81, B2 B3<2 and the composite indices A = (a3, as, as),
B= (B, B2 Bs) have the range (111), (112), (121), (122), (211), (212), (221),

(222). Among the equations of the form AsAs,As, = Aa.he,he,, We need only con-
sider

oli=Nke; oli=Adi; odi =iy,
which give respectively
Mih=11a; Mik=1:d"; M:il=1:d"
The corresponding C* are:

. . . . . .
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(iii) The case n=3, r=2.

Here 1< ay, as, B1, B2< 3 and the composite indices A = (a;, az), B= (B, B2)
have the range (11), (12), (13), (21), (22), (23), (31), (32), (33). Each C*=
(C*3%2) is a 9 x 9 matrix. There are altogether 15 C*’s. Instead of listing them
here, we only point out that each C* is determined from a set of two inde-
pendent and consistent equations of the form oAs s, = A« 4., such as

oA =hls,  oh1os =11,
which give
Ml h=1:6"1 0N

3.4. The equation %+ C =¢C in an algebraically closed field

It is easily seen that the discussions of the equation k+C =o¢C in this
section completely solve the problem of consistency of this equation in any
algebraically closed field. In the case of field of real numbers, we have to
confine ourselves to the case where the equation k+C =¢C is satisfied by some
¢>0 and =1 and some k< GL(n, R) whose characteristic roots are all real.
The reason for this restriction is to ensure the existence of an element g
GL(n, R) so that the matrix g 'kg is in Jordan canonical form. In the case of
an algebraically closed field F, there is no need for any such restriction. Since
all the characteristic roots of any £ GL(#n, F) belong to F, there always exists
some ge& GL(n, F) so that g”'%g is in Jordan canonical form. (Here we denote
by GL(n, F) the n-dimensional general linear group over the algebraically closed
field F). Moreover, the content of §§ 3.1-3.3 obviously holds for any field.
Thus, we have as a by-product the following remarkable and perhaps important

results :

ProrosiTion 3.1. Let F be any algebraically closed field. Let C be a tensor
of type (r,r) over the n-dimensional vector space over F, and ¢ a non-zero ele-
ment of F. C is said to be consistent with o if lthere exists an element k of
GL(n, F) such that k+C =oC, where C is a set of components of C.

Then any given C is consistent either with arbstrary o0 or with only ¢ =1.
Furthermore, C is consistent with arbitrary o0 iff it is a specialization of one
of the variable tensors C*s determined as follows:

(i) Let 00 be a parameter. Take any set (*) of n—1 independent and con-
sistent equations of the form
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0’151' o lﬂr-_—l“x e l“r

in the n unknowns 2y, + « +, in.
(ii) Solve (*) for the ratios of X, . .., An, Obtaining

a ... - L4

A s tdy=d td'n,

where qi, . . . , Gn are rational numbers.

(iii) Then the variable tensor C* corvesponding to (x) is obtained by putting
C*Lir =0 or an independent variable
according as the Xy, + + + , An given in (ii) satisfy

dhe,*t  Ae—Ar, 0t A %0 07 =0.

4. Proof of Theorem 2. 10

The proof is based on certain algebraic considerations of the equation (3.2).

4.1. Two lemmas

Consider the equation (3.2) namely
(4.1) (®"k(6))C(®"k(s)™") = 4C,

where C is a n" x#n” matrix whose elements are constants, ¢>>0 is a parameter,
and %(s) is a non-singular matrix of order n. Let N be the Jordan canonical

form of C. Then there exists a non-singular constant matrix 7T such that
(4.2) TCT™ =N.

We note that since C is nilpotent (see §2.6), N has real elements, so that T

can be chosen to have real elements. Now using (4.2), we can write (4.1) as
{(THRR)TIN{T(Q"k(s) ™)) T} = aN.

Therefore, the matrix

(4.3) Flo) =T (®"k(a)™)T

satisfies the equation

(4.4) ' F(a)"'NF(s) = gN.

Hence

LEMMA 4.1 A mecessary condition for C to be comsistent with arbitrary
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06> 0 is that there exists some matrix F(c) which satisfies (4.4) and which is

similar to the direct rth power Q@7k(s)™' of a non-singular matrix k(s)~".

We shall prove Theorem 2.9 by first finding the characteristic roots of the
matrix F(o) satisfying (4.4) and then comparing them with those of the direct
rth power ® "k(s)7

Since any C satisfying (4.1) is nilpotent (cf. §2.6), the Jordan canonical
form N of C is of the form

71 72 7s
s e

5 NNy ® -+ ONpONLD -+« ONp® -+ BNpO - - - BN,

where p1<p< =+ <pPs, 1P1F1e2t o - +rshps=n", and Np, (1<, v<s) is
the nilpotent matrix of order p, and index p, in Jordan canonical form. It is
easy to see that the index of nilpotence of XV, and therefore also of C, is ps.

We now prove

LemMma 4.2. If the matrix N is given by (4.5), the characteristic roots of

any F(o) satisfying (4.4) are (all non-zero and) of the form

(uly c uf,_)’ (uly MY u71)61 o s ey (ulg MY url)apl—l;
(v, =+, v, (01, «+«, O)a, oo, (v, 0o, 000"
(wl) MY wr‘,)y (wly C wfs)a; CECEE Y (w1, oy, Wrs)aps—l.

Proof- Following a well-kncwn procedure for finding all the matrices
commutative with a given matrix (cf. Gantmacher [5], p. 220), we can easily

show that the most general solution of (4.4) for F(s) is
F(o) = (Fsn) (1<& n<rm+ +- - +7),
where, for £, 7 satisfying

7'1+ ¢t +ru—l<€£rl+ cce +r)-l4
i+ o Frna<np<rit+ -+,

Feq is a pu X p, matrix of the following form

(i) pu.:p»: a b c
0 ca ob
0 0 da --- ,
0 0 g

https://doi.org/10.1017/5002776300001134X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300001134X

106

(i) pu<py:

(iii) pu>py:

where a, b, ¢ * - -

o

YUNG-CHOW WONG

o O O

c ..
ob .
gza . o o ,
. e « . o.l’y.'la
e
.. 0
.. 0

are arbitrary parameters. Now by suitably rearranging the

rows and the corresponding columns of F(s), we can obtain a matrix which is

similar to F(¢) and whose characteristic equation

example, if

where and in the next two

general F(o) satisfying (4.4)

F(o) =

a1

.

Qs

ast

and this matrix is similar to

aiy
az1
as

can be found easily. For

matrices a dot denotes the zero, then the most

is
bu
aau
b2y
aaey
bay
aaly

a;
[22]
Gz

b2
(23t
22
aQs2
bz
0as3

bu
bzx

oai1
(2230
(7231
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This shows that the characteristic roots of F(o¢) are equal to those of the

matrices

[‘a11 alz], [aau 9Ge ], [033], [dﬂaa], [0'2033]

ay O 0az1 OG-~
and are therefore of the form
(w1, ), (%1, )0} 1, V16, Vid"
The general case is similar.

4.2. The proof

First, if 6y, . - ., 0 are the characteristic roots of k() ", the characteristic roots
of the direct 7th power ®7k{(s)™" are the terms in the expansion of (f;+ - - -
+0,)" (cf. MacDuffee [81 p. 84). Therefore, since Hy = (n+7—1)!/(n—1) 17! is
the largest possible number of distinct terms in the expansion of (0;+ * * * +60,)",
the matrix ®"k(¢)™* has at most H; distinct characteristic roots.

On the other hand, since ¢>0 and =1, it follows from Lemma 4.2 that any
F(o) satisfying (4.4) has at least ps distinct characteristic roots. Now by Lemma
4.1, F(¢) and ®7k(s)™! have the same characteristic roots. Therefore, we have
ps<H;. But ps is the index of nilpotence of C. Hence Theorem 2.10 (i) is
proved.

Next, we know (Chrystal [2], pp. 16-17) that the largest coefficient in the

expansion of (6,4 -« -+ +6,) is

M=7r!/(@)"(q+1)? (r=ng+p, 0<p<n).
Therefore, at least M of the characteristic roots of ®“%(s)”" are equal. By
Lemma 4.1, the same must be true of F(s). By Lemma 4.2, these M/ equal

characteristic roots of F(¢) must be distributed one in each of the r;+ « - « 475

different sets
-1 -1
(uly Uag, * * *, uldﬁ1 )» « .y (wfs’ Wr,dy * * wrsdps )

because no two characteristic roots in the same set are equal. Therefore, we
must have M7y <7+ +++ +7. But 7+ -+ +7s is equal to the number of
elementary divisors of the matrix N given by (4.5) and consequently also of
C. Hence Theorem 2.10 (ii) is proved.

Remark. Better results than Theorem 2.10 would have been obtained if
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we could compute the elementary divisors of the matrices F(s) and ® "k(s)"!
and compare them instead of the characterstic roots. Since ®k(s)™' is the
direct rth power of k(s)7, its elementary divisors can be explicitly expressed
in terms of those of k(s)™*' (Roth [10]). But unfortunately, there appears to
be no simple way to compute the elementary divisors of F(s); already the

elementary divisors of

0 0 - a

are rather complicated (cf. Gantmacher [5], p. 156).
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