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an offset mass centre in a quiescent fluid
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Gravitational sedimentation and the collision of particles play key roles in various natural
and engineering processes. In practice, particles are often non-spherical in shape with
non-uniform mass distribution. In this study we investigate how the mass eccentricity
influences the settling and gravitational collision of non-spherical particles in a quiescent
fluid. Firstly, we theoretically analyse the effect of mass centre offset on the settling
motion of a single spheroid under the low-Reynolds-number assumption. We find that
the competition of fluid-inertia torque and gravitational torque determines the terminal
settling mode of the spheroid. As the mass centre offset increases from zero to a critical
value, the orientation of a settling spheroid undergoes a transition from the broad-side-on
to narrow-side-on alignment. With an intermediate mass centre offset, the settling spheroid
prefers an oblique orientation with a horizontal drift. Secondly, we investigate the
gravitational collision rate of settling spheroids. With the change of particle orientation,
the collision kernel exhibits a non-monotonic variation with a maximum when particles
settle with an intermediate oblique orientation. Therefore, adjusting the mass centre offset
to alter particle orientation can indirectly affect the collision rate of settling spheroidal
particles. In summary, our findings reveal the significance of the mass eccentricity on
particle dynamics in fluid flows, and suggest a potential approach for manipulating the
settling motion and collision rate of non-spherical particles by adjusting their mass centre
position.
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1. Introduction

1.1. Particle collisions
The collision–coagulation of particulate matters in fluids is ubiquitous in various natural
and industrial scenarios. For instance, the coagulation of sinking marine debris determines
the formation of marine snow in oceans (Jackson 1990; McDonnell & Buesseler 2010).
This process holds significant biogeochemical importance as it contributes to global
carbon fixation (Trudnowska et al. 2021; Arguedas-Leiva et al. 2022). Besides, the
collision–coalescence of droplets or ice crystals in the atmosphere plays an important
role in the growth of clouds (Grabowski & Wang 2013; Naso et al. 2018), which
directly influences the formation of precipitation and, consequently, impacts weather
patterns. In addition, in the papermaking industry the aggregation of fibre flocs affects
the paper quality (Lundell, Söderberg & Alfredsson 2011). Thus, the understanding and
manipulation of particle coagulation are essential for addressing environmental concerns
and optimizing industrial operations.

To model the coagulation of particles in fluid flows, Wang, Wexler & Zhou (1998) and
Wang et al. (2008) proposed to decompose this problem into three interrelated processes:
(1) geometric collision, which refers to the physical encounter among particles without
the consideration of particle–particle hydrodynamic interactions. This process is primarily
caused by turbulence transport or particle settling motion. (2) Hydrodynamic interaction,
which can either enhance the collision rate by far-field many-body hydrodynamic
interactions or attenuates it through short-range binary interactions (Wang et al. 2008).
(3) Coagulation, which determines whether two particles coagulate or separate after a
collision. Until now, extensive studies have been conducted on the geometric collision of
spherical particles in various fluid flows. Smoluchowski (1917) theoretically demonstrated
that the collision rate of tracer-like spherical particles is proportional to the shear rate in
a linear shear flow. Wang et al. (2008) indicated that the collision of settling spherical
particles in a quiescent fluid is caused by the settling velocity difference. In homogeneous
isotropic turbulence (HIT), Saffman & Turner (1956) first derived the collision kernel
of tracer-like spherical particles, which is a function of turbulence dissipation rate, fluid
viscosity and collision diameter. Subsequently, several researchers further explored the
collision of inertial particles in HIT (Abrahamson 1975; Sundaram & Collins 1997; Wang,
Wexler & Zhou 2000). It has been found that the effect of particle inertia is to enhance
the collision rate either by increasing particle relative velocity (Falkovich, Fouxon &
Stepanov 2002) or by increasing particle local concentration (Maxey 1987; Eaton & Fessler
1994).

In practice, the dispersed particles are commonly non-spherical, which motivates the
investigation of shape effect on particle collision rate. Siewert, Kunnen & Schröder (2014)
and Slomka & Stocker (2020) studied the geometric collision of settling non-spherical
particles in the quiescent fluid. They demonstrated that, unlike spherical particles, the
collision rate of mono-dispersed elongated particles is non-zero, owing to the difference
of settling velocity of elongated particles with random orientations. Moreover, Jucha et al.
(2018) and Arguedas-Leiva et al. (2022) investigated the collision rate of non-spherical
particles in HIT through numerical simulations. They observed a significant enhancement
of the collision rate of disk-like or rod-like particles compared with spherical ones,
and highlighted the importance of particle orientation in the collision of non-spherical
particles. Furthermore, by means of the Monte Carlo simulation, Gruy & Nortier (2017)
investigated the collision rate of spheroidal particles in a linear shear flow, and found that
the size and shape of particles can influence the collision rate.
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Settling and collision of spheroidal particles

1.2. Particles with non-uniform mass distribution
Another issue worth concern in practical applications is the non-uniform mass distribution
of the particle, which induces a non-coincidence of particle mass centre and geometric
centre. Examples are commonly seen, such as some planktons with non-uniformly
distributed organelles (Sengupta, Carrara & Stocker 2017), bottom-heavy maple seeds with
a heavy embryo on one side of the seed (Lee & Choi 2017) and ice crystals containing
entrapped air bubbles or impurities (Maeno 1967; Bogdan 2018). Under the action of
gravity, the non-coincidence between particle mass centre and geometric centre induces
a gravitational torque that affects particle dynamics. For example, the offset between the
mass centre and geometric centre of swimming microorganisms results in a gyrotaxis
effect (Kessler 1986; Pedley 1987), which drives the microorganisms to align upwards
and promotes their vertical migration in oceans.

Several researchers have noticed this issue and studied on the motion of particles
with mass eccentricity in fluids. On the one hand, for spherical particles, the influence
of mass eccentricity is primarily on their rotational motion. Jenny, Duek & Bouchet
(2004) reported a substantial alteration of the settling motion of a sphere in a still fluid
because of an entrapped air bubble inside the particle. The bubble changes the mass centre
position of the particle, inducing the instability of particle settling motion in the vortex
shedding regime. Will & Krug (2021) fabricated a spherical shell with an adjustable inner
heavy core to experimentally study the descending and ascending of a sphere with an
offset mass centre. They observed a resonance between particle rotational motion and
shed vortices by adjusting the position of the inner core to specific positions. Tanaka
et al. (2020) investigated the motion of spherical particles with mass eccentricity in the
homogeneous shear turbulence through numerical simulations. The gravitational torque
caused by mass eccentricity was found to counteract part of the shear-induced torque,
which results in a reduction in particle rotation rate and horizontal displacement. On
the other hand, regarding non-spherical particles, orientation plays an important role on
particle dynamics. It is well known that a settling cylinder or spheroid with a uniform
mass distribution tends to align broad-side-on as the steady settling orientation under
the action of a fluid-inertia torque (Jayaweera & Mason 1965; Khayat & Cox 1989;
Dabade, Marath & Subramanian 2015). However, when the symmetry of mass distribution
within the particle is broken, the gravitational torque can alter the aforementioned steady
orientation of a settling non-spherical object. Yasseri (2014) and Angle, Rau & Byron
(2019) experimentally studied the effect of mass distribution on the settling of a cylinder.
As the density difference on the two sides of the cylinder increases, its alignment was
found to transition from broad-side-on to tilted or narrow-side-on. Similarly, Roy et al.
(2019) carried out experiments on the settling motion of a rod with asymmetric mass
density. The orientation of the rod was found to follow a pitchfork bifurcation with the
change of mass distribution. Moreover, in the experiments of falling thin plates with an
offset mass centre at Re ∼ O(1000), Huang et al. (2013) and Li et al. (2022) observed a
sensitive dependence of the plate falling motion on the change of its mass centre position.

1.3. Objects of the present study
However, to the best of the authors’ knowledge, there are still unresolved questions
regarding the settling motion of a non-spherical particle with an offset mass centre: What
are the influential parameters in this problem, and how do these parameters affect particle
settling motion? Moreover, there is also a lack of study on the collision rate of settling
non-spherical particles with mass eccentricity. How the mass eccentricity affects particle
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collision behaviour, even in a quiescent fluid, is not known. These scientific problems,
however, play important roles in practical applications. Hence, in the present study, we
aim to investigate the effect of mass centre offset on the settling motion and collision rate
of non-spherical particles. To simplify our problems, the present study is conducted under
the following main assumptions. First, non-spherical particles are modelled as spheroids
following the majority of earlier studies (Voth & Soldati 2017). Second, we only consider
the settling motion of particles in a quiescent fluid under the low-Reynolds-number
assumption. Third, complex particle–particle hydrodynamic interactions are disregarded
when studying particle collisions. In principle, the present work is composed of two
parts. In the first part, we investigate the stability of different settling modes of a single
spheroid, and illustrate the bifurcation characteristics of the spheroid settling motion with
the variation of relevant parameters. We observe a transition of the stable orientation of
the settling spheroid, as well as a non-monotonic variation of the horizontal drift angle as
the mass centre offset increases. Subsequently, in the second part of this work, we move
on to studying the gravitational collision rate of settling spheroidal particles. The collision
kernel exhibits a non-monotonic variation with the change of particle pitch angle. These
findings altogether reveal the possibility for manipulating the settling motion and collision
rate of non-spherical particles by adjusting their mass centre position.

The remainder of this paper is organized as follows. First, we describe the problem
of settling and gravitational collision of spheroidal particles in a quiescent fluid in § 2.
Subsequently, in § 3 we present the theory and numerical method involved in the current
study. Then, we analyse the effect of mass centre offset on the settling motion of a single
spheroidal particle in § 4, and focus on the gravitational collision rate of settling spheroidal
particles with different orientations in § 5. Finally, we provide a discussion on the settling
spheroidal particles with mass eccentricity in turbulent flows, and summarize key findings
and prospects of this study in § 6.

2. Problem description

2.1. Settling of a spheroidal particle with an offset mass centre
In figure 1 we depict the schematic of the spheroidal particle with an offset mass centre.
The major and minor axes of the spheroid have a length of 2a and 2b, respectively. The
aspect ratio of a spheroid is defined as λ = rp/re, where rp is the polar radius and re is the
equator radius. Based on the shape, we can categorize spheroidal particles into two groups:
prolate particles with rp = a, re = b and λ > 1 (figure 1a); and oblate particles with rp =
b, re = a and λ < 1 (figure 1b). The equivalent diameter of the spheroid (the diameter of
a sphere with the same volume as the spheroid) is denoted by Deq = 2(r2

e rp)
1/3. In the

present study we consider the gravity-driven settling motion of spheroidal particles with
an offset mass centre. Gravity acts in the negative y direction (eg = −ey) with the gravity
acceleration g = geg. The mass centre G of the spheroid deviates from its geometric centre
C along the major axis, as illustrated in figure 1. The distance between point G and point
C is defined as the mass centre offset

d = ‖RCG‖, (2.1)

in which RCG = xG − xC represents the vector from the geometric centre to the mass
centre.
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ẑ
ẑ
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Figure 1. Schematic of (a) a prolate particle and (b) an oblate particle with an offset mass centre. The mass
centre of the spheroid is denoted by G and the geometric centre of the spheroid is dented by C. The orientation
of the spheroid is described by the unit vector n along the symmetric axis, which determines the pitch angle θ
and the azimuth angle φ. Here Cx̂ŷẑ represents the body-fixed frame of the spheroid.

(b)(a)

t = t2

t = t1

Figure 2. Schematic of the geometric collision between two settling spheroidal particles. The dotted lines
depict particle settling trajectories. Note that the orientations and trajectories of different particles vary in the
three-dimensional space, although the schematic here is two dimensional.

2.2. Geometric collision of settling spheroidal particles
The collision of settling spheroidal particles in a quiescent fluid is also investigated
in the present study. Specifically, we only account for the geometric collision in a
mono-dispersed system by neglecting particle–particle hydrodynamic interactions. Under
this assumption, a collision event is equivalent to the physical encounter of two particles
with different settling velocities. For example, as illustrated in figure 2(a), a collision
event occurs when two settling particles encounter each other at time t = t2. However,
in figure 2(b) a geometric collision cannot happen since the two particles settle with the
same orientation and identical velocity.

3. Theory and numerical method

3.1. Governing equations
In a viscous fluid the motion of a spheroidal particle with an offset mass centre is governed
by Newton–Euler equations as follows:

F H + F G + F B = ρpVp
dvG

dt
, (3.1)

T H,G + T B = d(IG · ω)

dt
. (3.2)
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Note that (3.1) and (3.2) should be established with respect to the mass centre G of the
particle rather than the geometric centre C. In (3.1), F H = ∫

∂Vp
τ · ns dS is the resultant

hydrodynamic force acting on the particle (where τ denotes the hydrodynamic stress and
ns denotes the outer normal unit vector on the particle surface ∂Vp), F G = −ρpVpgey is
the gravitational force and F B = ρf Vpgey is the buoyancy force, vG represents the velocity
of the mass centre and ρp, ρf and Vp denote the particle density, fluid density and particle
volume, respectively. In (3.2), IG denotes the moment of inertia of the particle with respect
to the mass centre, ω is the angular velocity, T H,G represents the hydrodynamic torque
about the mass centre and T B denotes the moment of buoyancy force with respect to
the mass centre, which is calculated by T B = −RCG × F B. As for a particle with an
offset mass centre, IG is determined by the mass distribution inside the particle (see more
details in Appendix A). In general, T H,G is calculated by T H,G = ∫

∂Vp
rG × τ · ns dS,

where rG = x − xG represents the vector from the mass centre G to a point on the
particle surface. In addition, we can also define a hydrodynamic torque with respect to
the geometric centre C as T H,C = ∫

∂Vp
rC × τ · ns dS with rC = x − xC. The relationship

between T H,G and T H,C can be derived as

T H,G =
∫
∂Vp

rG × τ · ns dS

=
∫
∂Vp

rC × τ · ns dS − RCG ×
∫
∂Vp

τ · ns dS

= T H,C − RCG × F H. (3.3)

Note that the moment of gravitational force vanishes in (3.2) since its application point
coincides with the mass centre G.

3.1.1. Low-Reynolds-number limit
We define the particle Reynolds number as Rep ≡ ρf ‖vC − uf @p‖Deq/μ. Here, uf @p
denotes the fluid velocity at the position of the particle, vC is the velocity of the particle
centroid and μ is the dynamic viscosity of the fluid. In the cases of a small particle
Reynolds number, the hydrodynamic force acting on a spheroidal particle is the Stokesian
drag formulated as (Happel & Brenner 1983)

F H = F st = 6πμaMst · (uf @p − vC). (3.4)

Here, the resistance tensor Mst is given as

Mst =
⎡
⎣Mst,11 Mst,12 Mst,13

Mst,21 Mst,22 Mst,23
Mst,31 Mst,32 Mst,33

⎤
⎦ = XAnn + YA(I − nn), (3.5)

in which XA and YA are two dimensionless coefficients determined by the aspect ratio
(see Appendix B). Moreover, in the low-Reynolds-number limit, the hydrodynamic torque
acting on a spheroidal particle can be regarded as the superposition of shear-induced
torque T J and fluid-inertia-induced torque T I (Sheikh et al. 2020), whose expressions are
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(Jeffery 1922; Dabade et al. 2015)

T̂ J = 16πμ

3
r3

eλ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 + λ2

β0 + λ2α2
0

[
1 − λ2

1 + λ2 Ŝŷẑ + (Ω̂ŷ − ω̂ŷ)

]

1
β0
(Ω̂ŷ − ω̂ŷ)

1 + λ2

β0 + λ2α2
0

[
λ2 − 1
1 + λ2 Ŝx̂ŷ + (Ω̂ẑ − ω̂ẑ)

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.6)

and
T I = −ρf a3hλ(vc · n)(vc × n). (3.7)

Here, the symbol ‘·̂’ denotes the variable in the body-fixed frame (as depicted in figure 1);
Ŝ and Ω̂ represent the strain rate tensor and vorticity of the fluid at the position of the
particle, respectively. Parameters α0, β0 and hλ are dimensionless coefficients that are
solely determined by the aspect ratio of the spheroid (see Appendix B).

Furthermore, we emphasize that the Jeffery torque and fluid-inertia torque, as
formulated in (3.6) and (3.7), refer to the hydrodynamic torques with respect to the
geometric centre of the spheroid, i.e. T H,C = T J + T B. Therefore, by applying (3.3) to
Newton–Euler equations (3.1) and (3.2), we can derive the following equations to govern
the translational and rotational motions of a settling spheroid with an offset mass centre:

F st + (ρp − ρf )Vpg = ρpVp
dvG

dt
, (3.8)

T J + T I − RCG × (F st − ρf Vpg) = d(IG · ω)

dt
. (3.9)

Hereinafter, we name the term T g = −RCG × (F st − ρf Vpg) as the gravitational torque,
similar to Roy et al. (2019) and Tanaka et al. (2020). In addition, (3.4) and (3.7) involve the
velocity of the geometric centre (vC), which is related to the velocity of the mass centre
(vG) by

vC = vG − ω × RCG. (3.10)

3.1.2. Terminal velocity of a settling spheroid in a quiescent fluid
In a quiescent fluid the terminal velocity (denoted by vt) of a settling spheroid with a
pitch angle θ and azimuth angle φ (see figure 1) can be determined by the equilibrium
of gravitational force, buoyancy force and Stokesian drag force. The expression of the
terminal velocity is

vt = τpg
re

a

⎡
⎣( 1

YA
− 1

XA

)⎛⎝−cos θ sin θ cosφ
cos2 θ

cos θ sin θ sinφ

⎞
⎠−

⎛
⎝ 0

1/YA
0

⎞
⎠
⎤
⎦ , (3.11)

where τp is a time scale defined by

τp = (ρp − ρf )D2
eq

18ρf ν
. (3.12)

According to (3.11), when the spheroid settles with its symmetry axis perpendicular
to gravity (θ = 90◦) or parallel to gravity (θ = 0◦), the terminal velocity aligns with the
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gravitational direction. This allows us to define two characteristic settling velocities: v1
corresponding to θ = 90◦ and v3 corresponding to θ = 0◦, with the following expressions:

v1 = τpg
Deq

2a
1

YA
,

v3 = τpg
Deq

2a
1

XA
.

⎫⎪⎪⎬
⎪⎪⎭ (3.13)

As for a prolate particle, v1 is the broad-side-on (maximum-drag alignment) settling
velocity, while v3 corresponds to the narrow-side-on (minimum-drag alignment) settling
velocity, with v1 < v3. Conversely, for an oblate particle, the opposite is true so that
v1 > v3. With the above expressions of v1 and v3, the terminal velocity vt in (3.11) can be
equivalently expressed as

vt = v1eg + (v3 − v1)(eg · n)n =
⎡
⎣ (v1 − v3) cos θ sin θ cosφ

−v1sin2θ − v3cos2θ
(v1 − v3) cos θ sin θ sinφ

⎤
⎦ . (3.14)

3.1.3. Two-dimensional settling motion of a single spheroid in a quiescent fluid
In general, the oblate spheroid as shown in figure 1(b) would undergo a three-dimensional
rotation if the mass centre initially deviates from the plane spanned by the symmetry
axis of the spheroid and the gravitational direction (named as the symmetry-vertical plane
hereinafter). However, with the focus on the terminal settling state of the spheroid, we only
explore the problem with the mass centre onto the symmetry-vertical plane. This choice
is justified by studying the time evolution of the three-dimensional rotation of an oblate
spheroid in Appendix C). Moreover, the azimuth angle φ could be an arbitrary value in a
three-dimensional space. Without the loss of generality, we consider the settling motion of
the spheroid in the x–y plane by setting φ = 0. Under these conditions, the orientation of
the spheroid is solely described by the pitch angle θ . By applying zero fluid velocity uf ≡ 0
into (3.4)–(3.9), the governing equations of particle settling motion can be simplified as

Fst,x = ρpVp
dvGx

dt
, (3.15)

Fst,y − (ρp − ρf )Vpg = ρpVp
dvGy

dt
, (3.16)

d(e0yFst,x − e0xFst,y − e0xρf Vpg)− 16πμ

3
r3

eλ
1 + λ2

β0 + λ2α2
0
ω

+ ρf a3hλ(vCx sin θ + vCy cos θ)(vCy sin θ − vCx cos θ) = ρpVpr2
I

dω
dt
. (3.17)

Here, Fst,x and Fst,y are the components of the Stokesian drag, e0x and e0y are the
components of the unit vector e0 = RCG/‖RCG‖, ω denotes the angular velocity of the
spheroid around z- axis, and rI = √IGz/ρpVp is the radius of revolution, where IGz is the
moment of inertia around the z axis. Additionally, the time evolution of the pitch angle θ
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is subject to

−ω = dθ
dt
. (3.18)

Moreover, (3.10) can be rewritten as

vCx = vGx + ω de0y, (3.19)

vCy = vGy − ω de0x. (3.20)

In summary, (3.15)–(3.20) altogether govern the two-dimensional settling motion of a
spheroid with an offset mass centre in a quiescent viscous fluid.

3.1.4. Normalization
To normalize (3.15)–(3.20), we choose Deq as the characteristic length scale, U =√
(α − 1)gDeq as the characteristic velocity scale and T = Deq/U = √Deq/[(α − 1)g]

as the characteristic time scale. Here, α = ρp/ρf represents the density ratio between the
spheroid and fluid. However, since the mass centre deviates from the geometric centre
along the major axis of the spheroid, we use the semi-major axis length a, instead of Deq,
to normalize the mass centre offset, yielding d̄ = d/a. Hereinafter, we utilize the value of
d̄ to measure the extent of deviation between the mass centre and geometric centre of the
spheroidal particle.

Finally, we can derive the normalized form of the governing equations (3.15)–(3.20) as
follows:

− 36
Ga

1
α

a∗(Mst,11v
∗
Cx + Mst,12v

∗
Cy) = dv∗

Gx
dt∗

, (3.21)

− 36
Ga

1
α

a∗(Mst,21v
∗
Cx + Mst,22v

∗
Cy)− 1

α
=

dv∗
Gy

dt∗
, (3.22)

1
αr∗2

I

⎡
⎢⎢⎢⎣
αa∗

(
v̇∗

Gxe0y − v̇∗
Gye0x − 1

α − 1
e0x

)
d̄ − 32

Ga
r∗3

e
λ(1 + λ2)

β0 + λ2α2
0
ω∗

+ 6
π
α3hλ(v∗

Cx sin θ + v∗
Cy cos θ)(v∗

Cy sin θ − v∗
Cx cos θ)

⎤
⎥⎥⎥⎦ = dω∗

dt∗
,

(3.23)

−ω∗ = dθ
dt∗
, (3.24)

v∗
Cx = v∗

Gx + a∗ω∗d̄e0y, (3.25)

v∗
Cy = v∗

Gy − a∗ω∗d̄e0x. (3.26)

Here, the superscript ‘*’ represents the dimensionless variables normalized by the
characteristic scales mentioned above (except for the dimensionless mass centre offset
d̄), and the dot symbol in (3.23) denotes the derivative with respect to the dimensionless
time t∗. Moreover, the dimensionless parameter Ga presented in (3.21)–(3.23) is defined
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by

Ga =
√
(α − 1)gD3

eq

ν
. (3.27)

This parameter, which is called the Galileo number, measures the ratio of buoyancy to
viscous force acting on the particle. With this definition, the normalized characteristic
settling velocities v1 and v3 defined by (3.13) are formulated as

v∗
1 = Ga

36YA

Deq

a
,

v∗
3 = Ga

36XA

Deq

a
.

⎫⎪⎪⎬
⎪⎪⎭ (3.28)

At the end of this section, we emphasize that the Galileo number should be constrained
to satisfy the low-Reynolds-number limit. Further details regarding this assumption are
given in Appendix D.

3.2. Particle collision kernel

3.2.1. Dynamic collision kernel and the Monte Carlo simulation
In a multi-particle system the collision rate of dispersed particles is quantified by the
collision kernel defined by Wang et al. (1998)

Γ D = 2ṄC

n2 . (3.29)

Here, ṄC represents the number of collisions that occur per unit time and per unit volume,
and n denotes the particle number concentration (the number of particles per unit volume).
The collision kernel defined in (3.29) is referred to as the dynamic collision kernel
(denoted by the superscript ‘D’). One needs to detect and count collision events in the
multi-particle system to obtain Γ D (Wang et al. 2005).

In the present work we employ the Monte Carlo simulation to calculate the dynamic
collision kernel of dispersed particles. Specifically, we randomly seed Np particles within
a triple-periodic computational domain Ω . The position of each particle is tracked by
numerically solving the following equation with a time step Δt:

dxi

dt
= vi. (3.30)

Here, xi denotes the centroid position of the ith particle, and vi represents the velocity of
the ith particle (which is equal to the terminal velocity vt as provided in (3.11) for settling
spheroidal particles). At each time step, we detect the contact status for all particle pairs
in the system (by employing the contact detection method proposed by Choi et al. (2009)
for spheroidal particles). One ‘collision event’ is identified if a pair of particles are not in
contact at the previous time step but get in touch at the current time step. Finally, when
the simulation ends at time t = T , the dynamic collision kernel can be directly computed
according to (3.29) as follows:

Γ D = 2NC(T)VΩ
N2

pT
. (3.31)

Here, NC(T) represents the total number of collision events counted in the simulation from
t = 0 to t = T , and VΩ is the total volume of the computational domain. In Appendix E we
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validate the present Monte Carlo simulation method to determine the dynamic collision
kernel.

3.2.2. Kinematic collision kernel
Alternatively, the collision kernel can also be described in a kinematic manner as the
average inward flux of particles across a collision sphere per unit time (Saffman & Turner
1956; Wang et al. 2000). As for the particles with a uniform spatial distribution, the
kinematic collision kernel is expressed by Wang et al. (2000)

Γ K = 2πR2〈|Wr(R)|〉. (3.32)

Here, the superscript ‘K’ denotes the kinematic collision kernel, R is the radius of the
collision sphere and 〈|Wr(R)|〉 is the mean relative radial velocity (RRV) of particles
with a centre-to-centre distance R. The angle bracket 〈·〉 denotes the ensemble average
over all samples. For spherical particles, the collision radius R is equal to the particle
diameter, and the kinematic collision kernel Γ K is theoretically equivalent to the dynamic
collision kernel Γ D (Wang et al. 2005). However, regarding spheroidal particles, deriving
the accurate expression of the kinematic collision kernel is theoretically challenging
because of the complexity of the particle geometry. As an alternative, Siewert et al. (2014)
suggested to use the equivalent diameter Deq as the collision radius R, by which Γ K

defined in (3.32) is regarded as an ‘approximate kinematic collision kernel’ for spheroidal
particles. Hence, according to (3.32), the key point for determining the kinematic collision
kernel is reduced to the calculation of RRV. Moreover, we emphasize that a correction of
the kinematic collision kernel should be taken into account by multiplying (3.32) with a
radial distribution function if the particles are not uniformly distributed, for example, in
the case of the spatial accumulation of inertial particles in turbulent flows (Sundaram &
Collins 1997; Wang et al. 2000).

4. Results: settling of a spheroid with an offset mass centre

In this section we investigate the two-dimensional settling motion of a spheroid with an
offset mass centre. Specifically, we first derive and analyse the stability of possible terminal
settling modes of the spheroid in § 4.1. Then, we study the bifurcation characteristics of the
settling mode with the change of involved parameters in § 4.2. Finally, we further discuss
the horizontal drift in § 4.3.

4.1. Terminal settling modes
Let the time derivatives on the right-hand sides of (3.21)–(3.24) be zero, we can obtain
the settling motion of a spheroid in the terminal state, in which the hydrodynamic force,
gravitational force and buoyant force are in balance. As a result, there are four equilibrium
pitch angles for a settling prolate particle (λ > 1), i.e.

θ1 = 0,

θ2 = π,

θ3 = arccos
(

216πXAYA

hλ

α

α − 1
1

Gα2 d̄
)
,

θ4 = 2π − arccos
(

216πXAYA

hλ

α

α − 1
1

Ga2 d̄
)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.1)
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Figure 3. Schematic of three typical terminal settling modes. (a,d) Top-heavy mode, (b,e) bottom-heavy
mode, (c, f ) oblique mode for (a–c) a prolate particle and (d–f ) an oblate particle.

and, for a settling oblate particle (λ < 1),

θ1 = 3π/2,

θ2 = π/2,

θ3 = arcsin
(

216πXAYA

hλ

α

α − 1
1

Ga2 d̄
)
,

θ4 = 2π − arcsin
(

216πXAYA

hλ

α

α − 1
1

Ga2 d̄
)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.2)

As depicted in figure 3, the terminal settling motion with θ = θ1 or θ2 corresponds to a
narrow-side-on alignment that the major axis of the spheroid aligns with the direction of
gravity. In these two cases, both the fluid-inertia torque and the gravitational torque vanish.
Specifically, when θ = θ1, the mass centre G is positioned above the geometric centre C,
resulting in a ‘top-heavy settling mode’. While, when θ = θ2, the mass centre G lies below
the geometric centre C, leading to a ‘bottom-heavy settling mode’. However, the other two
equilibrium pitch angles, i.e. θ3 and θ4, correspond to an ‘oblique settling mode’. In this
scenario, the balance between the gravitational torque and the fluid-inertia torque results in
a finite pitch angle of the settling spheroid. Note that, due to the symmetry of the problem,
the settling motions with θ = θ3 or θ4 are physically equivalent. The preference for θ3 or
θ4 as the terminal orientation for a settling spheroid is determined by the initial condition.
Hence, for the sake of simplicity, unless stated otherwise, we only focus on the oblique
settling mode with θ3 in the following discussions.

With the pitch angle of the spheroid obtained, we can easily derive the terminal velocity
of the settling spheroid according to (3.14) as

vt,i =
⎡
⎣vx

vy
vz

⎤
⎦

i

=
⎡
⎣ (v1 − v3) sin θi cos θi

−v1 sin2 θi − v3 cos2 θi
0

⎤
⎦ . (4.3)
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Settling and collision of spheroidal particles

Here, the subscript i = 1, 2, 3 corresponds to the aforementioned ‘top-heavy’,
‘bottom-heavy’ and ‘oblique’ settling modes, respectively. Since the spheroid does not
rotate in the equilibrium state (ω = 0), the velocities of the geometric centre and mass
centre are identical, and are both equal to the terminal velocity (i.e. vC = vG = vt).

Then, we define the settling velocity (vsett) of the spheroid as the component of the
terminal velocity along the gravitational direction, and the horizontal drift velocity (vdrift)
as the velocity component perpendicular to the gravitational direction. i.e.

vsett = vt · eg = v1 sin2 θ + v3 cos2 θ, (4.4)

vdrift = ‖vt − vsetteg‖ = 1
2 |v1 − v3|| sin(2θ)|. (4.5)

We can infer from (4.4) and (4.5) that with the change of the pitch angle θ , vsett varies
between v1 and v3, while vdrift ranges from 0 to |v1 − v3|/2. Furthermore, we define a
drift angle ψ to quantify the capability of a settling spheroid to drift horizontally:

ψ = arctan
( |vdrift|

|vsett|
)

= arctan

⎛
⎜⎜⎝
∣∣∣∣v1

v3
− 1
∣∣∣∣ | tan θ |

v1

v3
tan2 θ + 1

⎞
⎟⎟⎠ . (4.6)

Obviously, when the spheroid aligns with narrow-side-on or broad-side-on, it settles
vertically with a zero horizontal drift (i.e. vdrift = 0 and ψ = 0).

4.1.1. Critical mass centre offset
According to (4.1) and (4.2), the oblique settling mode is conditionally present with the
following condition: ∣∣∣∣216πXAYA

hλ

α

α − 1
1

Ga2 d̄
∣∣∣∣ ≤ 1. (4.7)

By defining the three factors fλ = XAYA/hλ, fα = α/(α − 1) and fGa = 1/Ga2, (4.7) can
be equivalently expressed as:

d̄ ≤ d̄cr = 1
216π

∣∣∣∣ 1
fλ

1
fα

1
fGa

∣∣∣∣ . (4.8)

Therefore, the oblique settling mode exists only when the particle mass centre offset d̄
is not greater than a critical threshold value d̄cr, which is a function of the aspect ratio,
density ratio and Galileo number of the spheroid. Figure 4 plots the value of fλ with
the variation of λ. It is observed that | fλ| decreases as the particle asphericity increases,
regardless of whether the particle is prolate or oblate in shape. Meanwhile, according to
the expressions of fα and fGa, these two factors decrease monotonically with the increase
of α or Ga. Hence, we can infer from (4.8) that the critical mass centre offset d̄cr is greater
for a spheroid with a higher density ratio α, a higher Galileo number Ga or deviating
further from a sphere in shape.

4.1.2. The stability of terminal settling modes
In this section we examine the stability of the ‘top-heavy’, ‘bottom-heavy’ and ‘oblique’
settling modes by performing linear stability analysis. To do so, we first calculate the
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Figure 4. Variation of the shape factor fλ with the aspect ratio λ.

Jacobian matrix (denoted by J) of the dynamic system subject to the governing equations
(3.21)–(3.26):

J(x) =
[
∂F
∂x

]
. (4.9)

Here x = [vGx, vGy, ω, θ ]T represents the vector of variables and F = F (x) is the vector
composed of the left-hand terms of (3.21)–(3.24). Next, we calculate the eigenvalues of
the Jacobian matrix evaluated at x = x̃i. Here, x̃i(i = 1, 2, 3) denotes the variable vector
corresponding to the ith terminal settling mode mentioned above. Finally, the stability
of the ith settling mode is determined by the maximum eigenvalue of J(x̃i), denoted by
eigi

max. The ith settling mode is stable if eigi
max is negative.

There are four involved parameters (d̄, λ, α, Ga) in the governing equations
(3.21)–(3.26). Thus, these parameters determine the dynamics of the settling spheroid. To
begin with, we keep the density ratio and Galileo number fixed at α = 3 and Ga = 4, and
analyse the stability of different settling modes by varying the aspect ratio and mass centre
offset. The results of linear stability analysis are presented in figure 5. First, the maximum
eigenvalue of the top-heavy settling mode is always positive, regardless of the aspect ratio
or mass centre offset. This indicates that the top-heavy settling mode is unconditionally
unstable. Second, the bottom-heavy settling mode is conditionally stable only if d̄ is greater
than d̄cr. Third, the oblique settling mode is always stable as long as it exists when d̄ < d̄cr.

Furthermore, we illustrate the pitch angle and drift angle of the spheroid in the steady
settling mode (denoted by the subscript ‘s’) in figure 6. First, when the mass centre
coincides with the geometric centre (i.e. d̄ = 0), the steady pitch angle is θs = 90◦ for
a prolate particle or θs = 0◦ for an oblate particle, which is actually the value of θ3 with
d̄ = 0. In fact, this is a special case of the oblique settling mode, i.e. a broad-side-on
alignment of the settling spheroid with a zero horizontal drift (ψs = 0). This stable
alignment is the result of the fluid-inertia torque acting on the settling spheroid with a
symmetric mass distribution (Dabade et al. 2015). Second, when d̄ is greater than d̄cr, the
bottom-heavy settling mode becomes stable and the spheroid settles with a narrow-side-on
alignment, which also results in a zero horizontal drift. Third, when the mass centre offset
is set between 0 and dcr, the spheroid settles in an oblique alignment. As indicated by
the arrow in figure 6(a,c), the steady pitch angle (θs) progressively increases from 90◦ to
180◦ for a prolate particle (or from 0◦ to 90◦ for an oblate particle) as d̄ increases from
0 to d̄cr, corresponding to a transition of particle orientation from the broad-side-on to
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Figure 5. Maximum eigenvalue of the Jacobian matrix of different terminal settling modes for (a–c) a prolate
particle and (d–f ) an oblate particle. The aspect ratio and mass centre offset vary, while the density ratio and
Galileo number are fixed at α = 3 and Ga = 4. (a,d) Top-heavy settling mode, (b,e) bottom-heavy settling
mode, (c, f ) oblique settling mode. The black solid line represents the critical mass centre offset d̄cr . The grey
zone in panel (c, f ) represents the parameter space where d̄ > d̄cr and the oblique settling mode does not exist.
The spheroid in each panel depicts the schematic of each settling mode.

the narrow-side-on alignment. Throughout this transition, the settling velocity increases
monotonously according to (4.4). However, the drift angle ψs exhibits a non-monotonous
variation with a local maximum for an intermediate oblique orientation. As depicted in
figure 6(b,d), the maximum value of the drift angle increases as the particle asphericity
grows. More detailed discussions regarding the maximum drift angle are provided in § 4.3.

Next, we move on to examining the effect of density ratio and Galileo number on the
stability of different settling modes. To do so, we vary the values of α and Ga and fix the
aspect ratio λ and the mass centre offset d̄. As shown in figure 7, the top-heavy settling
mode remains unconditionally unstable; the oblique settling mode is stable as long as it
exists when d̄ < d̄cr; and the bottom-heavy settling mode becomes stable when d̄ is greater
than d̄cr. We note that the stability of each settling mode exhibited here is qualitatively the
same as what is shown in figure 5 with varying λ and d̄ and fixed α and Ga.

Moreover, similar to figure 6, we illustrate the steady pitch angle and drift angle of the
settling spheroid with varying α and Ga but fixed d̄ and λ in figure 8. Here, the transition
from the oblique settling mode to the bottom-heavy settling mode as α or Ga decreases
is ascribed to the decrease of d̄cr (as indicated by the arrow in figure 8a,c). Throughout
this transition, the drift angle ψs also exhibits a non-monotonous variation (figure 8b,d),
similar to the results shown in figure 6(b,e).

4.2. Pitchfork bifurcation of particle settling motion
In the previous section we demonstrated the terminal settling motion of a spheroid shifts
from the oblique mode to the bottom-heavy mode as d̄ increases from less than d̄cr to
greater than d̄cr. Here, we discuss the bifurcation characteristic through this transition.
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Figure 6. Variation of (a,d) the steady pitch angle and (b,e) the steady drift angle of the settling spheroid with
the change of aspect ratio and mass centre offset. The density ratio and Galileo number are fixed at α = 3 and
Ga = 4. (c, f ) The schematic diagrams of the steady pitch angle θs and the steady drift angle ψs. (a–c) Prolate
particles, (c,d) oblate particles. The black solid line in (a,b,d,e) represents the critical mass centre offset d̄cr.
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Figure 7. Same as figure 5 but for varying α and Ga with the mass centre offset fixed at d̄ = 0.005 and the
aspect ratio fixed at (a–c) λ = 2 (prolate particle) or (d–f ) λ = 0.5 (oblate particle).

In figure 9 we present bifurcation diagrams of the steady settling mode of the spheroid with
the variation of relevant parameters (i.e. Ga, α, λ and d̄). There are two different sections
of the steady pitch angle in each panel. On the one hand, the dual-branch structure of θs
corresponds to the bi-steady oblique settling mode with θ = θ3 or θ4. In this scenario, the
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Figure 8. Variation of (a,c) the steady pitch angle and (b,d) the steady drift angle of the settling spheroid with
the change of Galileo number and density ratio. The mass centre offset is fixed at d̄ = 0.005. (a,b) A prolate
particle with λ = 2, (c,d) an oblate particle with λ = 0.5. The black line corresponds to d̄cr = d̄ = 0.005.

preference of θ3 or θ4 as the terminal pitch angle for the settling spheroid is determined
by the initial releasing condition. On the other hand, the single-branch structure of θs
corresponds to the bottom-heavy settling mode. According to figure 9, the transition
from the bottom-heavy settling mode to the oblique settling mode exhibits a pitchfork
bifurcation pattern, which is the same as the bifurcation behaviour of a settling rod with
mass eccentricity in the experiments of Roy et al. (2019). In principle, this pitchfork
bifurcation can be induced in two ways: by changing d̄ with a certain d̄cr (figure 9d,h),
or by varying d̄cr through tuning the involved parameters (Ga, α or λ) with a fixed d̄
(figures 9a–c and 9e–g).

Last but not least, we can infer from figure 9(d,h) that the spheroid is able to favour
an oblique pitch angle between the broad-side-on to narrow-side-on alignment by the
adjustment of d̄. This finding enlightens us on the possibility of manipulating the settling
motion of spheroidal particles by adjusting their mass centre position.

4.3. Horizontal drift
In this section we further explore the horizontal drift of the settling spheroid. According
to the formulation of the drift angle ψ (4.6), we can derive the maximum drift angle ψmax
over all pitch angle as

ψmax = arctan
( |κ − 1|

2
√
κ

)
. (4.10)
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Figure 9. Bifurcation diagrams of the steady pitch angle θs with the variation of (a,e) Ga, (b, f ) α, (c,g) λ or
(d,h) d̄. The other three influencing parameters are fixed as indicated in each panel. (a–d) Prolate particles,
(e–h) oblate particles.

Here, κ = XA/YA is a shape-dependent parameter. Recalling the characteristic settling
velocities v1 and v3 as defined in (3.13), we find that κ can be physically interpreted as the
ratio between v1 and v3:

κ = v1

v3
= XA

YA . (4.11)

Accordingly, κ is referred to as the velocity ratio that measures the range of variation of
the settling velocity (vsett) of a spheroid. As shown in figure 10(a), with the increase of λ,
the velocity ratio decreases monotonously from a value greater than one (λ < 1) to less
than unity (λ > 1). This finding indicates that the range of variation in settling velocity
increases as the particle shape deviates further from a sphere. For an infinitely thin disk
(λ→ 0) or an infinitely elongated rod (λ→ ∞), the values of the velocity ratio κ are

lim
λ→0

κ = 1.5, (4.12)

lim
λ→∞

κ = 0.5. (4.13)

Regarding the maximum drift angle ψmax, it is a function of κ according to (4.10). Thus,
ψmax is also solely determined by the aspect ratio. As shown in figure 10(b),ψmax increases
as the degree of particle asphericity increases. In other words, more elongated prolate
particles or thinner oblate particles are capable of experiencing greater horizontal drift
by adjusting their mass centre offset. Furthermore, by substituting (4.12) and (4.13) into
(4.10), we can obtain the maximum drift angle for an infinitely elongated rod and an
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Figure 10. Dependence of (a) the velocity ratio κ and (b) the maximum drift angle ψmax on the aspect ratio
of the spheroid.

infinitely thin disk as

max
λ>1

{ψmax} = lim
λ→∞

ψmax = arctan

(√
2

4

)
rad ≈ 19.5◦, (4.14)

max
λ<1

{ψmax} = lim
λ→0

ψmax = arctan

(√
6

12

)
rad ≈ 11.5◦. (4.15)

5. Results: gravitational collision of settling spheroidal particles

In § 4 we have demonstrated that adjusting the mass centre position can change the
terminal settling orientation of a spheroidal particle. Based on this finding, we investigate
the collision kernel of settling spheroidal particles with different orientations in this
section, to study how mass eccentricity influences the gravitational collision rate. In
the following, we consider two different orientation distributions of dispersed particles:
a completely random orientation and a partially random orientation with a fixed pitch
angle. To examine the gravitational collision rate, we will first derive the approximate
kinematic collision kernel, and then conduct Monte Carlo simulations to compute the
dynamic collision kernel in these two scenarios.

5.1. Approximate kinematic collision kernel
According to the theory introduced in § 3.2.2, the primary focus should be fixed on the
calculation of RRV to obtain the kinematic collision kernel of dispersed particles.

5.1.1. Random orientation
The problem of geometric collision of settling spheroidal particles with random
orientations was proposed by Siewert et al. (2014). Without the consideration of mass
eccentricity and fluid-inertia torque, settling spheroidal particles do not experience any
change in their orientation after being released. Consequently, the orientation distribution
of dispersed particles is assumed to be completely random. Under this assumption, the
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mean RRV (〈|Wr|〉) can be derived as follows (Siewert et al. 2014):

〈|Wr(R12)|〉 = 1
2πR2

12

∫ 2π

0

∫ π/2

0
|(v1 − v2) · x1 − x2

‖x1 − x2‖ |R12 sin θc dθcR12 dφc

= 1
32π3R2

12
τpgc(λ)

∫ 2π

0

∫ π/2

0

∫ 2π

0

∫ π/2

−π/2

∫ 2π

0

∫ π/2

−π/2

× R2
12 sin θc

∣∣∣∣∣∣
⎛
⎝ (cos θ1 sin θ1 sinφ1 − cos θ2 sin θ2 sinφ2) sin θc cosφc

+(− cos θ1 sin θ1 cosφ1 + cos θ2 sin θ2 cosφ2) sin θc sinφc

+(cos2 θ1 − cos2 θ2) cos θc

⎞
⎠ sin θ1 sin θ2

∣∣∣∣∣∣
× dθ1 dφ1 dθ2 dφ2 dθc dφc = π2

32
τpgc(λ). (5.1)

Here, x1 and x2 represent the positions of two particles with a centre-to-centre distance
of the collision radius R12. The six-fold integral in (5.1) represents the average over all
possible orientations of particles and all relative directions of pairwise particles. Moreover,
c(λ) is a dimensionless shape-dependent function defined by

c(λ) =
∣∣∣∣ 1
XA − 1

YA

∣∣∣∣ re

a
, (5.2)

which is plotted in figure 11. Substituting the expression of 〈|Wr|〉 into (3.32), and
regarding Deq as the collision radius, we can obtain the approximate kinematic collision
kernel as

Γ K
rand = π3

16
D2

eqτpgc(λ). (5.3)

Here, the subscript ‘rand’ denotes the completely random distribution of particle
orientations. Indicated by (5.3), the collision kernel is proportional to the shape-dependent
function c(λ), which implies a vanishing Γ K

rand for spherical particles since c(λ) is equal
to zero at λ = 1. This makes sense as spherical particles with an equal size settle with the
same velocity and have no chance to collide. In the following parts, we regard Γ K

rand as a
characteristic collision kernel to normalize the collision kernel in other cases.

5.1.2. Fixed pitch angle
As discussed in § 4, the terminal settling state of a spheroidal particle depends on its
mass centre offset when the fluid-inertia torque is involved. By adjusting d̄, the spheroid
can settle with an arbitrary pitch angle between the broad-side-on and narrow-side-on
alignment. Therefore, we consider a partially random distribution of particle orientations:
a random distribution of the azimuth angle φ but a fixed pitch angle with θ = θ0. By
varying θ0, we can investigate how the change of mass centre offset affects the gravitational
collision rate. In view of the symmetry, we restrict our discussion on the fixed pitch angle
ranging from θ0 = 0◦ to θ0 = 90◦, which encompasses all possible orientations from the
broad-side-on to narrow-side-on alignment for settling spheroidal particles.
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Figure 11. Plot of the shape-dependent function c(λ) versus the aspect ratio λ.

In this scenario, the calculation of (〈|Wr|〉 is achieved by averaging over all possible
azimuth angles φ and relative directions of particle pairs as follows:

〈|Wr(R12)|〉 = 1
2πR2

12

∫ 2π

0

∫ π/2

0

∣∣∣∣(v1 − v2) · x1 − x2

‖x1 − x2‖
∣∣∣∣R12 sin θc dθcR12 dφc

= 1
8π3R2

12
τpgc(λ)

∫ 2π

0

∫ π/2

0

∫ 2π

0

∫ 2π

0

×
∣∣∣∣ cos θ0 sin θ0(sinφ1 − sinφ2) sin θc cosφc

− cos θ0 sin θ0(cosφ1 − cosφ2) sin θc sinφc

∣∣∣∣ dφ1 dφ2 dθc dφc

= 1
π

| sin(2θ0)|τpgc(λ). (5.4)

Since the pitch angle of the particle is fixed at θ1 = θ2 = θ0, the average is reduced to
a four-fold integral instead of the six-fold integral in (5.1). Accordingly, the approximate
kinematic collision kernel can be written as

Γ K
fix = Γ K

fix(θ0) = 2| sin(2θ0)|D2
eqτpgc(λ). (5.5)

The subscript ‘fix’ indicates the fixed pitch angle of dispersed particles. Same as Γ K
rand,

Γ K
fix is also proportional to the shape-dependent function c(λ). Thus, the ratio Γ K

fix/Γ
K

rand
is independent of particle shape, but is correlated with the pitch angle by the function of
| sin(2θ0)|, as illustrated in figure 12. The maximum value of Γ K

fix/Γ
K

rand is 32/π3 ≈ 1.03
at θ0 = 45◦.

Interestingly, as discussed in § 4.1, the horizontal drift velocity of a settling spheroidal
particle is also correlated with the pitch angle by | sin(2θ)| (see (4.5)), just as Γ K

fix does.
The relationship between the collision kernel and the drift velocity can be interpreted
as follows. According to (4.4), dispersed particles with a fixed pitch angle settle with
the same vertical velocity. Thus, the geometric collision can only be caused by the
difference of their horizontal drift velocities. Therefore, it is rational that the correlation of
particle drift velocity with the pitch angle is the same as that of the gravitational collision
kernel. Especially, as for the narrow-side-on or broad-side-on settling (θ0 = 0◦ or 90◦),
the collision kernel Γ K

fix vanishes since the particles experience zero horizontal drift with
these two orientations.
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Figure 12. Plot of Γ K
fix normalized by Γ K

rand with the variation of θ0.

Lx × Ly × Lz φ Np T Δt

20 × 20 × 20 10 % 1528 10 0.01

Table 1. Dimensionless parameters for the Monte Carlo simulation of settling spheroidal particles. For the
normalization, we choose the particle equivalent diameter Deq as the characteristic length scale, τpgc(λ) as the
characteristic velocity and Deq/(τpgc(λ)) as the characteristic time scale. Here φ represents the particle volume
fraction.

5.2. Dynamic collision kernel
In the derivation of the approximate kinematic collision kernel for spheroidal particles,
we introduce an assumption that the collision radius is equal to the particle equivalent
diameter (Siewert et al. 2014). However, this assumption needs to be further examined.
Hence, we conduct Monte Carlo simulations of settling spheroidal particles to determine
the dynamic collision kernel Γ D. The configuration of the Monte Carlo simulation is
provided in table 1.

5.2.1. Random orientation
We first consider settling spheroidal particles with random orientations. We choose
eight particle shapes: oblate particles with aspect ratio λ = 0.2, 0.33, 0.5, 0.8 and prolate
particles with aspect ratio λ = 1.2, 2, 3, 5. Figure 13(a) illustrates the dynamic collision
kernels obtained by the Monte Carlo simulation. It can be inferred that the approximate
kinematic collision kernel underestimates the dynamic collision kernel for most particle
shapes (except for a slight overestimation for the case of λ = 1.2). The difference between
Γ D

rand and Γ K
rand becomes more pronounced as the particle shape deviates further from

a sphere, especially for oblate particles. This difference actually reflects the geometric
complexity for the collision of spheroidal particles, which is ignored in deriving the
approximate kinematic collision kernel. Nevertheless, in spite of the deviation, Γ K

rand
still provides a reasonable estimation of the dynamic collision kernel, as long as the
particle shape does not deviate significantly from a sphere. Even in the case of the greatest
discrepancy here (the case of λ = 0.2), Γ K

rand is still within the same order of magnitude
as Γ D

rand.
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Figure 13. Normalized dynamic collision kernel of settling spheroidal particles obtained by the Monte Carlo
simulation. (a) Random orientation. (b) Fixed pitch angle. The approximate kinematic collision kernel Γ K

fix
(indicated by ‘kinematic’ in the legend) is included for comparison.

5.2.2. Fixed pitch angle
Then we move on to the case of settling spheroidal particles with a fixed pitch angle.
Figure 13(b) shows the comparison of the dynamic collision kernel obtained by the Monte
Carlo simulation and the approximate kinematic collision kernel for spheroidal particles
with different aspect ratios and different pitch angles. The difference between Γ D

fix and
Γ K

fix is manifested in two aspects. Firstly, Γ D
fix exhibits a skewed dependence on θ0 towards

the narrow-side-on alignment side (θ0 = 0◦ side for oblate particles and θ0 = 90◦ side
for prolate particles), which is different from the symmetry function of Γ K

fix(θ0) about
θ0 = 45◦. Secondly, the normalized dynamic collision kernel (Γ D

fix/Γ
K

rand) is not only a
function of the pitch angle but also dependent on particle aspect ratio. The discrepancy
between Γ K

fix and Γ D
fix , which is generally manifested by an underestimation of the exact

collision rate by Γ K
fix , becomes more pronounced with the increase of particle asphericity.

Nevertheless, in spite of these differences, we demonstrate that Γ K
fix qualitatively captures

the non-monotonic variation trend of the dynamic collision kernel with the change of θ0.
In summary, by conducting Monte Carlo simulations, we verified the results obtained

in § 5.1 that the collision rate of settling spheroidal particles reaches its maximum when
particles settle with an intermediate pitch angle. This finding enlightens us to manipulate
the gravitational collision rate of settling spheroidal particles by adjusting the mass centre
position.

6. Discussion and conclusions

6.1. Discussion: extend to turbulent flows
Although the present study is conducted by only considering the simplest quiescent fluid
as the background flow, the results are relevant in the case of turbulent flows. Here, we
provide a discussion on the collision of particles with mass centre offset in turbulent flows.
In the previous studies on the settling particles in turbulence, Siewert et al. (2014) and
Jucha et al. (2018) have demonstrated that the collision rate of non-spherical particles
is enhanced compared with spherical ones, since the settling spheroidal particles with
random orientations increases the RRV. This conclusion was drawn without considering
the fluid-inertia torque and gravitational torque induced by mass centre offset. To analyse
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the collision rate of settling spheroidal particles in turbulent flows with the inclusion of
these two torques, the orientation of particles has to be re-examined.

In general, there are three torques determining the orientation of particles in turbulent
flows. The first is the shear-induced torque, i.e. Jeffery torque, which can be estimated
by TJ ∼ μa3|ω − Ω|. While the vorticity fluctuations in the turbulent flow randomize the
orientation of dispersed particles. The second one is the fluid-inertia torque, which can be
estimated by TI ∼ ρf a3|u − v|2. Under the action of this torque, spheroidal particles tend
to settle with broad-side-on. The third is the gravitational torque related to the mass centre
offset, which can be estimated by Tg ∼ ρpVpgd. As discussed in the present work, this
torque aligns the major axis of the settling spheroids in the gravitational direction.

In the earlier study, Anand, Ray & Subramanian (2020) explored the effect of
fluid inertia on the orientation of settling spheroids in turbulence and found that the
fluid-inertia torque leads to the broad-side-on alignment. Furthermore, Sheikh et al. (2020)
discussed the competition between the fluid-inertia torque and Jeffery torque by defining
a dimensionless parameter R = |u − v|2/(ν|ω − Ω|). They demonstrated that spheroidal
particles tend to settle with the broad-side-on alignment when the fluid-inertia effect
is dominant with R � 1. While, in a strong turbulent flow where R � 1, the turbulent
shear effect prevails, leading to a random orientation distribution of dispersed particles.
If we further introduce the effect of mass centre offset into this problem, the relative
strength of TI , TJ and Tg should be examined. It can be predicted that if the mass centre
offset is large enough to make the gravitational torque overwhelm the other two torques,
the narrow-side-on alignment would be present. Moreover, if the gravitational torque is
comparable to the fluid-inertia torque, and both of them are much stronger than the Jeffery
torque, settling spheroidal particles would preferentially favour an oblique orientation,
which is determined by the specific ratio between TI and Tg as discussed in the present
work.

The enhanced collision rate of spheroidal particles with random orientations reported
in Siewert et al. (2014) and Jucha et al. (2018) occurs when TJ plays a predominant
role. However, if the fluid-inertia torque or the gravitational torque dominates, the RRV
induced by settling velocity would be considerably attenuated since particles prefer the
broad-side-on or narrow-side-on alignment (corresponding to the case of a fixed pitch
angle θ0 = 0 or θ0 = π/2). While, in the scenario where TI is comparable with Tg but
much greater than TJ , the RRV of colliding particles could be primarily predicted by the
situation of a fixed pitch angle, which has been discussed in §§ 5.1.2 and 5.2.2.

Nevertheless, the above qualitative discussion only considers the contribution of
settling-velocity-induced RRV to the collision rate of spheroidal particles in turbulent
flows. However, as for settling inertial particles in turbulent flows, the collision rate would
also be affected by other effects, such as the sling effect (Falkovich & Pumir 2007; Jucha
et al. 2018), preferential concentration at low-vorticity regions (Sundaram & Collins 1997;
Zhou, Wexler & Wang 1998; Pumir & Wilkinson 2016; Anand et al. 2020) and preferential
sweeping effect to enhance settling velocity (Ghosh et al. 2005; Good et al. 2014; Anand
et al. 2020). A quantitative study on the effects of fluid-inertia torque and mass centre
offset on particle behaviour in turbulence is left for future work.

6.2. Conclusions and prospect for future work
In this study we have investigated the effect of mass centre offset on the settling motion
and gravitational collision rate of spheroidal particles in a quiescent fluid under the
low-Reynolds-number assumption.
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We firstly analysed the settling motion of a single spheroid with an offset mass centre.
Based on the Newton–Euler equations, we derived a critical mass centre offset that
determines the terminal settling mode of the spheroid. When the mass centre coincides
with the geometric centre, a spheroid settles with the broad-side-on alignment under the
action of the fluid-inertia torque. With a non-zero mass centre offset below the critical
threshold, a spheroid prefers an oblique settling mode, in which the fluid-inertia torque
balances with the gravitational torque. The spheroid drifts horizontally in this mode,
due to the misalignment of its velocity and the direction of gravity. However, when
the mass centre offset exceeds the critical value, the gravitational torque is dominant,
and the spheroid settles in a bottom-heavy mode with a narrow-side-on alignment and
vanishing horizontal drift. Therefore, we conclude that the orientation of a settling
spheroid undergoes a transition from the broad-side-on to narrow-side-on alignment as
the mass centre offset increases from zero to the critical value. This transition, which is
found to follow a pitchfork bifurcation pattern, can be induced either by the change of
mass centre offset, or by varying the critical mass centre offset through tuning the density
ratio, Galileo number or aspect ratio. Moreover, we further analysed the horizontal drift of
the spheroid. The maximum drift angle is found to be a function of velocity ratio between
narrow-side-on and broad-side-on settling. As the shape of the spheroid deviates further
from a sphere, both the velocity ratio and the maximum drift angle increase accordingly.

In the second part of this work, we shifted to study the gravitational collision rate of
settling spheroidal particles with different orientations. First, we originally derived the
approximate kinematic collision kernel of settling spheroidal particles with a fixed pitch
angle, following the theoretical model proposed by Siewert et al. (2014). It is found that
the approximate kinematic collision correlates with the pitch angle in the same manner
as the drift velocity does. Then, Monte Carlo simulations are conducted to determine the
dynamic collision kernel of settling particles. It is demonstrated that the collision kernel
of settling spheroidal particles varies from zero (for the broad-side-on or narrow-side-on
alignment) to a maximum value (for an intermediate oblique orientation) with the
change of pitch angle. Furthermore, the comparison between the kinematic and dynamic
collision kernel reveal that the approximate kinematic collision kernel of spheroidal
particles underestimates the collision rate in most scenarios. This discrepancy is related
to the geometric complexity for colliding spheroids and becomes more significant with
the increase of particle asphericity. However, despite the discrepancy, the approximate
kinematic collision kernel is qualitatively correct and provides a reasonable estimation
of the dynamic collision kernel for spheroidal particles, as long as the particle does not
deviate significantly from a spherical shape. This finding justifies the rationality of the
theory of approximate kinematic collision kernel for spheroidal particles as provided
in § 3.2.2. By expressing the collision kernel in a kinematic manner, the collision rate
of particles can be estimated based on the collective statistics of dispersed particles,
rather than relying on complicated procedures of collision detection and counting. This is
particularly helpful in establishing theoretical models for collision rates of non-spherical
particles in other complex scenarios, such as turbulent particle-laden flows.

According to our analysis, the settling motion of a spheroidal particle is highly sensitive
to the mass centre offset. For example, according to (4.8), as for a prolate particle with
an aspect ratio λ = 3, density ratio α = 2 and Galileo number Ga = 4, the value of d̄cr is
only 0.0734. This indicates that even a small degree of the offset between particle mass
centre and its geometric centre can result in a substantial change of particle alignment
from broad-side-on to narrow-side-on. Regarding the collision in a multi-particle system,
it also reveals a sensitive dependency of collision rate on the mass centre offset.
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These findings highlight the importance of considering mass eccentricity in practical
applications involving settling non-spherical particles, even in the cases where the extent
of deviation between particle mass centre and geometric centre is small. Furthermore, the
present results also imply the possibility for the manipulation of the settling motion and
collision rate of spheroidal particles by adjusting their mass centre position.

Finally, we discuss the potential valuable work awaiting future explorations as follows.
First, with the focus on the terminal settling state of the spheroid, we restrict the
mass centre on the symmetry-vertical plane in the present study. However, when the
mass centre is not located on the symmetry axis of the spheroid and deviates from
the symmetry-vertical plane, our preliminary exploration in Appendix C demonstrates
that the spinning (rotation around the symmetry axis) and tumbling (rotation around
the axis perpendicular to the symmetry axis) motions of the spheroid are coupled in
the developing stage. The three-dimensional angular dynamics in this scenario may
introduce more intricate bifurcation behaviour of the rotation of the spheroid. What
and how the relevant factors influence the developing process for the three-dimensional
rotation are unknown and remain for further investigation. Second, we propose a way to
manipulate the orientation of non-spherical particles in the present work. Although we
only consider the quiescent flow, this mechanism should also play a significant role in
turbulent flows. As discussed in § 6.1, the coupled effect of turbulent shear, fluid-inertia
torque and mass centre offset may result in an intricate behaviour of the orientations
and collisions of non-spherical particles in turbulent flows, which can be explored in the
future. Third, it is important to note that all the results presented in this study are obtained
within the low-Reynolds-number limit with a disregard of particle–particle hydrodynamic
interactions. In future work these limits can be broken by performing particle-resolved
direct numerical simulations of settling spheroidal particles with an offset mass centre.
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Appendix A. Mass distribution of the particle

The mass centre position and moment of inertia of a spheroidal particle depend on the
mass distribution. In this study we consider a spheroid with a hole located on its major
axis (on the negative ŷ axis for a prolate particle or negative x̂ axis for an oblate particle),
as depicted in figure 14. To compensate the missing mass from the hole, an equivalent mass
is added to the position that is mirror symmetric to the hole with respect to the equatorial
plane (x̂–ẑ plane) for a prolate particle or the meridional plane ( ŷ–ẑ plane) for an oblate
particle. This results in a heavy core located on the major axis with a density of 2ρp, as
indicated by the black region in figure 14. In this manner, the mass centre of the spheroid
deviates from its geometric centre along the major axis.

As for the spheroid with such a mass distribution, the moment of inertia about the
geometric centre C is the same as that of a mass-uniform spheroid, i.e.

ÎC = diag[Ix̂, Iŷ, Iẑ] = diag[ 1
5 m(r2

e + r2
p),

2
5 mr2

e ,
1
5 m(r2

e + r2
p)]. (A1)
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(b)

C C
G

G

n

n(a)

x̂

x̂
ẑ

ẑ

ŷ

ŷ

Figure 14. Section views of the mass distribution inside (a) a prolate particle and (b) an oblate particle. The
mass centre G of the spheroid deviates from its geometric centre C. Here n is the unit vector along the symmetry
axis of the spheroid; Cx̂ŷẑ is the body-fixed frame.

Therefore, according to the parallel-axis theorem of a rigid body, the moment of inertia of
the spheroid about its mass centre G can be derived as

ÎG(d) = diag[Ix̂ − md2, Iŷ, Iẑ − md2]

= diag[ 1
5 m(a2 + b2 − 5d2), 2

5 mb2, 1
5 m(a2 + b2 − 5d2)] (A2)

for a prolate particle and

ÎG(d) = diag[Ix̂, Iŷ − md2, Iẑ − md2]

= diag[ 1
5 m(a2 + b2), 1

5 m(2a2 − 5d2), 1
5 m(a2 + b2 − 5d2)] (A3)

for an oblate particle. Consequently, the dimensional form of the radius of gyration rI in
(3.17) is

rI =
√

Iẑ

m
=
√

a2 + b2 − 5d2

5
. (A4)

Note that in a limiting case where the hole is as large as half of the spheroid, all of the
mass accumulates on half of the volume (ŷ > 0 half for a prolate particle or x̂ > 0 half for
an oblate particle). In this limiting case, the mass centre position of the spheroid is

x̂G =

∫∫∫
1
2 Vp

2ρpx̂ dV∫∫∫
Vp

ρp dV
=
{

[0, 0.375a, 0]T (λ > 1),

[0.375a, 0, 0]T (λ < 1),
(A5)

where Vp represents the whole volume of the spheroid and 1
2 Vp represents the dense

half-part. Therefore, the dimensionless mass centre offset d̄ = d/a is constrained within
the range of d̄ ∈ [0, 0.375].

984 A40-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

24
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.248


X. Jiang, C. Xu and L. Zhao

Appendix B. Coefficients in the hydrodynamic forces and torques

The coefficients XA and YA presented in the Stokesian resistance tensor M st in (3.5) are
(Happel & Brenner 1983)

XA =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

4e3

3

(
(2e2 − 1) cot−1

(√
1 − e2

e

)
+ e

√
1 − e2

) (λ < 1),

8e3

3
(

−2e + (1 + e2) ln
(

1 + e
1 − e

)) (λ > 1),

(B1)

YA =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

8e3

3

((
2e2 + 1

)
cot−1

(√
1 − e2

e

)
− e

√
1 − e2

) (λ < 1),

16e3

3
(

2e + (−1 + 3e2
)

ln
(

1 + e
1 − e

)) (λ > 1).

(B2)

Here, e is the ellipticity of the spheroid defined by

e =
{√

1 − λ2 (λ < 1),√
1 − (1/λ)2 (λ > 1).

(B3)

The expressions of coefficients α0 and β0 involved in the Jeffery torque (3.6) are (Jeffery
1922)

α0 =

⎧⎪⎪⎨
⎪⎪⎩

2
1 − λ2 − 2 arccos(λ)λ

(1 − λ2)3/2
(λ < 1),

−2
λ2 − 1

+ 2arccosh(λ)λ
(λ2 − 1)3/2

(λ > 1),
(B4)

β0 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
λ2

λ2 − 1
+ arccos(λ)λ
(1 − λ2)3/2

(λ < 1),

λ2

λ2 − 1
− arccosh(λ)λ
(λ2 − 1)3/2

(λ > 1).

(B5)

The coefficient hλ presented in the expression of fluid-inertia torque (3.7) is (Dabade et al.
2015; Sheikh et al. 2020)

hλ = πe3
√

1 − e2(−420 + 3500e2 − 9989e4 + 4757e6)

315
√

1 − e2(−e
√

1 − e2 + (1 + 2e2) sin−1 e)(e
√

1 − e2 + (2e2 − 1) sin−1 e)2

+ 210πe2(2 − 24e2 + 69e4 − 67e6 + 20e8) sin−1 e

315
√

1 − e2(−e
√

1 − e2 + (1 + 2e2) sin−1 e)(e
√

1 − e2 + (2e2 − 1) sin−1 e)2

+ 105πe3(12 − 17e2 + 24e4)(sin−1 e)2

315(−e
√

1 − e2 + (1 + 2e2) sin−1 e)(e
√

1 − e2 + (2e2 − 1) sin−1 e)2
(B6)
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eg

pGC

n

χ

θ

Figure 15. Sketch of the three-dimensional rotation of an oblate spheroid with mass eccentricity. The unit
vector along the direction from the centroid C to the mass centre G is denoted by p. The green plane
represents the symmetry-vertical plane (the plane spanned by the direction along the symmetry axis (n) and
the gravitational direction (eg)).

for an oblate particle (λ < 1) and

hλ = −πe2(420e + 2240e3 + 4249e5 − 2152e7)

315((e2 + 1) tanh−1 e − e)2((1 − 3e2) tanh−1 e − e)

+ πe2(420 + 3360e2 + 1890e4 − 1470e6) tanh−1 e

315((e2 + 1) tanh−1 e − e)2((1 − 3e2) tanh−1 e − e)

− πe2(1260e − 1995e3 + 2730e5 − 1995e7)(tanh−1 e)2

315((e2 + 1) tanh−1 e − e)2((1 − 3e2) tanh−1 e − e)
(B7)

for a prolate particle (λ > 1).

Appendix C. Three-dimensional rotation of the oblate spheroid

In this appendix we consider the three-dimensional rotation of an oblate spheroid with
mass eccentricity settling in a quiescent fluid. As shown in figure 15, we define an azimuth
angle χ (which is different from the azimuth angle φ defined in figure 1) as the angle
between the unit vector p and the symmetry-vertical plane.

To examine the three-dimensional rotation, we need to compute the six-degree-of-
freedom motion of the spheroid by numerically solving the Newton–Euler equations
(3.8)–(3.10). In figure 16 we provide a few examples of the solution of this problem. We
consider an oblate spheroid with Ga = 3, α = 3, λ = 1/3, while the mass centre offset and
the initial condition are varied in different simulations. According to the results shown in
figure 16(a–d), we observe that the mass centre always drifts to the symmetry-vertical
plane (corresponding to χ = 0) in the terminal state, and the spheroid orientation
converges to the steady pitch angle as provided in the main text, regardless of the value
of d̄ and the initial condition. Specifically, in the cases shown in figure 16(a,b,e, f ),
the narrow-side-on settling is finally reached (θs = 90◦), since the mass centre offset is
larger than the critical threshold (i.e. d̄ > d̄cr). In contrast, the oblique mode with a finite
pitch angle (θs ≈ 47◦) is preferred by the spheroid with d̄ < d̄cr in the cases shown in
figure 16(c,d,g,h). Therefore, the above results justify the two-dimensional simplification
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Figure 16. Three-dimensional rotation of the oblate spheroid. (a–d) Time evolution of the pitch angle θ and
the azimuth angle χ (Ug = √(α − 1)gDeq is the characteristic velocity used for the normalization of time);
(e–h) phase diagram of the rotation on the θ − χ plane. Mass centre offset varies in different panels: (a,e)
d̄ = 0.1, (b, f ) d̄ = 0.05, (e,g,d,h) d̄ = 0.02. The initial condition is set as n0 = [−0.5, 0.866, 0] and p0 =
[0.742, 0.429,−0.515] (corresponding to θ0 = 30◦ and χ0 = 15◦) in the cases shown in (a–c, e–g), and n0 =
[−0.866, 0.5, 0] and p0 = [0.235, 0.407,−0.883] (corresponding to θ0 = 60◦ and χ0 = 50◦) in the case shown
in (d,h). The dashed line in (a–d) represents the steady pitch angle θs. The blue circle and red star in (e–h)
represent the initial condition and the terminal state, respectively.
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Figure 17. Maximum settling Reynolds number (Rep,max) of the spheroid at different Ga and λ. The vertical
dash-dotted line represents λ = 1.

(setting χ = 0) adopted in the main text, if the terminal steady state of the spheroid is of
concern.

Additionally, note that the three-dimensional rotation can also appear for a prolate
spheroid if the mass centre does not lie on the symmetry axis, although we only consider
the case of an oblate spheroid as a preliminary exploration.

Appendix D. Low-Reynolds-number assumption

The expressions of Stokesian drag, Jeffery torque and fluid-inertia torque provided in
(3.4)–(3.7) are only applicable under the low-Reynolds-number limit. Here, we define
a maximum settling Reynolds number based on the maximum settling velocity of the
spheroid as

Rep,max = ‖vt‖maxDeq

ν
= max{v1, v3}Deq

ν
. (D1)

By substituting the expressions of v1 and v3 (in (3.13)) into (D1), we obtain

Rep,max = Ga2

36min{XA, YA}
Deq

a
, (D2)

which indicates that Rep,max is determined by the Galileo number and aspect ratio of the
spheroid. We illustrate Rep,max at different Ga and λ in figure 17.

As shown in figure 17, it progressively deviates from the low-Reynolds-number limit
with the increase of the Galileo number. It is true that the analysis based on the
low-Reynolds-number assumption would have a non-negligible error in the cases with
a particle Reynolds number larger than unity (or equivalently a large Galileo number).
However, in § 4 of the parameter study, the Galileo number ranges from 0 ≤ Ga ≤ 4. The
largest Reynolds number is only Rep,max ≈ 0.93 within the parameter space considered in
this study, which ensures the validity of most results shown in the present work.

Appendix E. Validation of the Monte Carlo simulation

To validate the Monte Carlo simulation for determining the dynamic collision kernel, we
consider a linear shear flow laden with tracer-like spherical particles. In this special case,
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D
Ly

x

y

z

Lz

Lx

u = [γy, 0, 0]T

Figure 18. Schematic of the Monte Carlo simulation of spherical particles in a linear shear flow between two
parallel planes. The size of the computational domain is Lx, Ly and Lz in the streamwise, wall-normal and
spanwise directions, respectively.

Lx × Ly × Lz φ Np T Δt

20 × 20 × 20 10 % 1528 10 0.01

Table 2. Dimensionless parameters for the Monte Carlo simulation of spherical particles in a linear shear flow.
For the normalization, we use the particle diameter D as the characteristic length scale, γLy as the characteristic
velocity and D/(γLy) as the characteristic time scale.

the geometric collision kernel is analytically available (Smoluchowski 1917):

Γ = 4
3γR3. (E1)

Here R is the diameter of the sphere and γ is the shear rate. It is important to note that
(E1) is valid for a randomly spatial distribution of particles in an infinitely large domain.
However, when the linear shear flow is confined between two parallel plates with a distance
l, the collision kernel should be corrected as follows (Wang et al. 1998):

Γ = 4
3
γR3

(
1 − 3π

16
R
l

)
. (E2)

To conduct a Monte Carlo simulation, we randomly seed Np particles in a linear shear
flow between two parallel plates, as shown in figure 18. The velocities of the top and
bottom plate are utop = [ 1

2γLy, 0, 0]T and ubottom = [−1
2γLy, 0, 0]T to generate a linear

shear flow. Dispersed spherical particles motion as tracers so that the velocity of the
ith particle is vi = uf @xi = [γ yi, 0, 0]T . A periodic boundary condition for the particle
motion is imposed in the streamwise (x) direction. The configuration of the Monte Carlo
simulation is provided in table 2. According to (E2), the theoretical collision kernel should
be Γ th = 0.0647γLyD2 in this case. We repeat the Monte Carlo simulation six times, and
compare the dynamic collision kernel obtained by the Monte Carlo simulation with the
theoretical value in table 3. Here, the error of the Monte Carlo simulation is defined by

Error = Γ D − Γ th

Γ th ×100 %. (E3)

As shown in table 3, the dynamic collision kernel obtained by the Monte Carlo simulation
agrees well with the theoretical value, which validates the present numerical method
of the Monte Carlo simulation. The deviation between Γ D and Γ th is ascribed to the
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Number of simulation 1 2 3 4 5 6 Average

Γ D/(γLyD2) 0.06133 0.06448 0.06654 0.06716 0.06434 0.06304 0.06448
Error −5.21 % −0.34 % 2.84 % 3.80 % −0.56 % −2.57 % −0.34 %

Table 3. Results of the Monte Carlo simulation for the dynamic collision kernel of spherical particles in a
linear shear flow.

statistical error in the Monte Carlo simulation, which may be due to the limited size of the
computational domain and the limited simulation time for obtaining statistics.
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